JPH0674809A - Flow rate measuring device - Google Patents

Flow rate measuring device

Info

Publication number
JPH0674809A
JPH0674809A JP27402491A JP27402491A JPH0674809A JP H0674809 A JPH0674809 A JP H0674809A JP 27402491 A JP27402491 A JP 27402491A JP 27402491 A JP27402491 A JP 27402491A JP H0674809 A JPH0674809 A JP H0674809A
Authority
JP
Japan
Prior art keywords
liquid
tank
gas
meter
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27402491A
Other languages
Japanese (ja)
Other versions
JP2842960B2 (en
Inventor
Yoshijirou Watanabe
嘉二郎 渡邊
Yoshito Abe
義人 阿部
Chiaki Yasuda
千秋 安田
Makoto Fujiwara
誠 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP27402491A priority Critical patent/JP2842960B2/en
Publication of JPH0674809A publication Critical patent/JPH0674809A/en
Application granted granted Critical
Publication of JP2842960B2 publication Critical patent/JP2842960B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To embody a device with high measuring accuracy in place of a level meter and a flow rate meter. CONSTITUTION:A nozzle 13 generates swirl liquid flow in a liquid tank 1 and the swirl flow and the hydrophobic part 12 around a meter 10 enable forming a block of gas part 8 around the meter 10. The volume changer of the meter 10 changes a little gas pressure and a pressure detector detects it. By using a gas volume method and obtaining the liquid amount in the liquid tank 1, the improvement of measurement accuracy and lowering of measuring cost are attained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、宇宙ステーション、一
般宇宙機等の液体タンクの液量計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid amount measuring device for a liquid tank of a space station, a general spacecraft or the like.

【0002】[0002]

【従来の技術】従来の液槽内の液量の計測について、代
表的な2つの例を図3に示す。
2. Description of the Related Art FIG. 3 shows two typical examples of conventional measurement of liquid volume in a liquid tank.

【0003】第1の例は、液位検出のためレベル計02
をタンク01内に設け、これによりタンク01内に形成
される液面03のレベルを計測するものであった。この
場合、液面が水平に静定していれば所定の計測が可能で
あるが、揺動体(船舶など)のタンクあるいは宇宙機器
のタンクでは図に示すように液面03が水平でないた
め、計測誤差が大きいことがあった。
The first example is a level meter 02 for liquid level detection.
Was provided in the tank 01, and thereby the level of the liquid level 03 formed in the tank 01 was measured. In this case, predetermined measurement is possible if the liquid level is settled horizontally, but in the tank of the rocking body (such as a ship) or the tank of space equipment, the liquid level 03 is not horizontal, as shown in the figure. The measurement error was sometimes large.

【0004】第2の例は、吐出配管04およびポンプ0
5よりなる液の供給ラインの流量計06を利用した流量
積算方式によるものであった。この場合には、流量計0
6により積算流出量=Σ(流量×時間)を求め、タンク
内初期液量からこれを差引いて残量を求めていた。な
お、上記流量計06は、これに代えて積算流量計を用い
ることもできる。
The second example is a discharge pipe 04 and a pump 0.
It was based on the flow rate integration method using the flow meter 06 of the liquid supply line of No. 5. In this case, flow meter 0
The cumulative outflow amount = Σ (flow rate × time) was obtained from 6 and the remaining amount was obtained by subtracting this from the initial liquid amount in the tank. The flow meter 06 may be replaced by an integrated flow meter.

【0005】[0005]

【発明が解決しようとする課題】従来の液量計測におい
て、レベル計を用いる場合には、液面が水平に静定しな
い系では計測誤差が大きくなるという課題があった。
In the conventional liquid amount measurement, when a level meter is used, there is a problem that a measurement error becomes large in a system in which the liquid surface is not settled horizontally.

【0006】また、流量積算方式の場合には、次のよう
な計測誤差が生じる。この場合、タンク内の液の誤差は
次式で表わされる。 誤差 E=P(n−1) ここに、Pは流量計の誤差、nはタンク初期液量/残留
量の比を示す。
Further, in the case of the flow rate integration method, the following measurement error occurs. In this case, the error of the liquid in the tank is expressed by the following equation. Error E = P (n-1) where P is the error of the flowmeter, and n is the ratio of the tank initial liquid amount / residual amount.

【0007】例えば、流量計の誤差を0.01(1%)
とするとき、残量が初期液量の1/5になったときには
E=0.01×(5−1)=0.04、また残量が1/
10になったときにはE=0.01×(10−1)=
0.09となる。すなわち、流量計の誤差が積算され
て、残量が少くなる程計測誤差が大きくなるという課題
があった。
For example, the error of the flowmeter is 0.01 (1%)
When the remaining amount becomes 1/5 of the initial liquid amount, E = 0.01 × (5-1) = 0.04, and the remaining amount is 1 /
When it reaches 10, E = 0.01 × (10-1) =
It becomes 0.09. That is, there is a problem that the error of the flow meter is integrated and the measurement error increases as the remaining amount decreases.

【0008】本発明は上記の課題を解決しようとするも
のである。
The present invention is intended to solve the above problems.

【0009】[0009]

【課題を解決するための手段】本発明の液量計測装置
は、円筒状の液体タンクの頂部に設けられ体積変化器と
圧力検出器を有する計測器、上記液体タンクの側壁に設
けられ同側壁の接線方向に接続され上記液体タンク内か
らの環流液を同タンク内に噴射するノズル、および上記
計測器の周囲の上記液体タンクの内壁に設けられた疎水
性部を備えたことを特徴としている。
A liquid amount measuring device of the present invention is a measuring device provided on the top of a cylindrical liquid tank and having a volume changer and a pressure detector, and a side wall provided on the side wall of the liquid tank. Nozzle connected in a tangential direction to inject the reflux liquid from the liquid tank into the liquid tank, and a hydrophobic portion provided on the inner wall of the liquid tank around the measuring instrument. .

【0010】[0010]

【作用】上記において、液体タンク内の液量の計測実施
時には、同タンク内からの環流液をノズルにより同タン
ク内へ噴射させ、同タンク内に液体の施回流を発生させ
る。
In the above, when the liquid amount in the liquid tank is measured, the recirculating liquid from the tank is jetted into the tank by the nozzle to generate the circulating flow of the liquid in the tank.

【0011】上記旋回流は、液体タンクの頂部内壁の計
測器の周辺が疎水性部で形成されているため、液が上記
計測器まで達することがない。そのため、上記液体タン
ク内の計測器の周辺には、1つの塊りとなった気体部が
形成され、上記計測器の使用が可能となる。
In the swirling flow, the liquid does not reach the measuring instrument because the periphery of the measuring instrument on the inner wall of the top of the liquid tank is formed by the hydrophobic portion. Therefore, a single lump of gas is formed around the measuring instrument in the liquid tank, and the measuring instrument can be used.

【0012】上記の状態で計測器が有する体積変化器を
作動させると、液体タンク内の気体の圧力が微小変化す
るが、この圧力変化は圧力検出器により検出され、液体
タンク内の液量は気体の体積/体積変化/圧力変化/初
期圧力の関係式を用いる気体体積法により求められる。
When the volume changer included in the measuring instrument is operated in the above state, the pressure of the gas in the liquid tank slightly changes. This pressure change is detected by the pressure detector and the liquid amount in the liquid tank is It is obtained by a gas volume method using a relational expression of volume of gas / volume change / pressure change / initial pressure.

【0013】上記により、体積変化器と圧力検出器を有
する計測器の使用を可能とし、気体体積法を用いて液体
タンク内の液体残量を計測するものとしたため、計測精
度の向上及び計測コストの低減が可能となる。
As described above, since it is possible to use a measuring instrument having a volume changer and a pressure detector and to measure the liquid remaining amount in the liquid tank by using the gas volume method, the measurement accuracy is improved and the measurement cost is improved. Can be reduced.

【0014】[0014]

【実施例】本発明の一実施例を図1(a),(b)に示
す。図1(a),(b)に示す本実施例は、タンク1の
中央頂部に設けられた開口部10a上に配設された計測
器10、同計測器10の周囲のタンク1の内壁に接着さ
れ疎水性材料からなるガードプレート12、上記タンク
1の底部に接続された吐出配管4に設けられたポンプ
5、同ポンプ5の吐出側に弁14を有する枝管として設
けられた戻り配管11、および同戻り配管11の先端に
接続され上記タンク1の上部の側壁に設けられ同側壁の
接線方向に接続されたノズル13を備えており、上記計
測器10は、図2に示すようにハウジング20、体積変
化器であるスピーカ21、および圧力検出器であるマイ
クロホン22よりなっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention is shown in FIGS. In this embodiment shown in FIGS. 1A and 1B, a measuring instrument 10 is provided on an opening 10a provided at the central top of the tank 1, and an inner wall of the tank 1 around the measuring instrument 10 is provided. A guard plate 12 adhered and made of a hydrophobic material, a pump 5 provided in a discharge pipe 4 connected to the bottom of the tank 1, and a return pipe 11 provided as a branch pipe having a valve 14 on the discharge side of the pump 5. , And a nozzle 13 connected to the tip of the return pipe 11 and provided in the upper side wall of the tank 1 and connected in a tangential direction of the side wall. The measuring instrument 10 is provided with a housing as shown in FIG. 20, a speaker 21 which is a volume changer, and a microphone 22 which is a pressure detector.

【0015】上記において、タンク1内の液量の計測実
施時には、弁14を開とし、図1(b)に示すようにノ
ズル13からタンク1内へ還流液を円筒状のタンク1の
側壁の接線方向に流入させ、タンク1内では液体、気体
とも全体に旋回流れとする。このため、遠心力場での質
重差により液体は外側へ、気体は内側に偏ることとな
り、図1(a)に示すように気体部8と液体部9とに分
離する。このとき、ガードプレート12は疎水性である
ために液が付着せず、ガードプレート12外縁に気液境
界ができる。したがって、ガードプレート12の内側の
計測器10には液体は達しない。そのため、気体用のス
ピーカおよびマイクロホンを使用することが可能となり
本計測が成り立つ。
In the above, when the liquid amount in the tank 1 is measured, the valve 14 is opened, and the reflux liquid is supplied from the nozzle 13 into the tank 1 on the side wall of the cylindrical tank 1 as shown in FIG. 1 (b). It is made to flow in a tangential direction, and in the tank 1, both liquid and gas are swirled as a whole. For this reason, the liquid is biased outward and the gas is biased inward due to the difference in mass in the centrifugal force field, and the gas portion 8 and the liquid portion 9 are separated as shown in FIG. At this time, since the guard plate 12 is hydrophobic, liquid does not adhere to it, and a gas-liquid boundary is formed on the outer edge of the guard plate 12. Therefore, the liquid does not reach the measuring device 10 inside the guard plate 12. Therefore, it becomes possible to use a speaker and a microphone for gas, and this measurement is established.

【0016】本実施例におけるタンク1内の液量計測は
気体体積法を活用するものであり、その要領を以下に説
明する。即ち、まず体積変化器であるスピーカ21を作
動させてタンク1内の気体の体積を微小変化させる。す
ると、気体の性質により圧力が微小変化するため、これ
を圧力検出器であるマイクロホン22によって測定した
後、両者の値を気体の体積/体積変化/圧力変化/初期
圧力よりなる関係式に入れることにより気体体積を求
め、タンク体積よりこの気体体積を差引いて液体残量を
求める。
The liquid volume measurement in the tank 1 in the present embodiment utilizes the gas volume method, and the procedure will be described below. That is, first, the speaker 21, which is a volume changer, is operated to slightly change the volume of the gas in the tank 1. Then, the pressure slightly changes due to the nature of the gas, so after measuring this with the microphone 22 which is a pressure detector, put both values in the relational expression of volume / volume change / pressure change / initial pressure of gas. Then, the gas volume is obtained by subtracting this gas volume from the tank volume to obtain the liquid remaining amount.

【0017】体積変化器としては、スピーカの外にピス
トン方式、ベロー方式などがあるが、装置としてはスピ
ーカ方式が最も簡単である。しかるに、スピーカ方式で
はスピーカが液体に浸漬した場合には作動せず、また気
体が2個以上の塊に分かれても誤差を生じる。
The volume changer includes a piston type and a bellows type in addition to the speaker, but the speaker type is the simplest device. However, the speaker system does not operate when the speaker is immersed in the liquid, and an error occurs even if the gas is divided into two or more lumps.

【0018】したがって、上述の船舶、航空機、宇宙機
などのタンクで液にスピーカが浸漬する可能性が強い場
合には適用が難かしいと考えられていたが、本実施例に
おいてはスピーカ21に液が触れることがなく、また図
1(a)に示すように気体が1体化する(2個以上にな
らない)ため、スピーカ方式の採用が可能となった。
Therefore, it has been considered that it is difficult to apply the method to the speaker 21 in the present embodiment when the speaker is highly likely to be immersed in the solution in the tank of the ship, aircraft, spacecraft and the like. Since it is not touched, and the gas is unified as shown in FIG. 1A (not more than 2), the speaker system can be adopted.

【0019】なお、本実施例においてはガードプレート
12を用いているが、これに代えてタンク内壁に直接疎
水性材をコーティングしてもよい。また、吐出配管4の
ポンプ5を利用せず、別途に単独で小型ポンプを設けて
独立の戻り配管系を設けてもよい。
Although the guard plate 12 is used in this embodiment, the inner wall of the tank may be directly coated with a hydrophobic material instead of the guard plate 12. Alternatively, instead of using the pump 5 of the discharge pipe 4, a small pump may be separately provided and an independent return pipe system may be provided.

【0020】上記により、スピーカ及びマイクロホンの
使用を可能とし、気体体積法を用いてタンク内の液体残
量を計測するものとしたため、計測精度の向上及び計測
コストの低減が可能となった。
As described above, since the speaker and the microphone can be used and the remaining amount of liquid in the tank is measured by using the gas volume method, the measurement accuracy can be improved and the measurement cost can be reduced.

【0021】[0021]

【発明の効果】本発明の流量計測装置は、ノズルが液体
タンク内に液体の旋回流を発生させ、同旋回流と計測器
周辺の疎水性部とが計測器の周辺に1つの塊りとなった
気体部の形成を可能とし、上記計測器の体積変化器が気
体の圧力を微小変化させ、それを圧力検出器が検出し、
気体体積法を用いて液体タンク内の液量を求めるものと
することによって、計測精度の向上及び計測コストの低
減を可能とする。
According to the flow rate measuring device of the present invention, the nozzle generates the swirling flow of the liquid in the liquid tank, and the swirling flow and the hydrophobic portion around the measuring device form one clump around the measuring device. It becomes possible to form a gas part that has become unusable, the volume changer of the above measuring device minutely changes the pressure of the gas, and the pressure detector detects it.
By using the gas volume method to determine the liquid amount in the liquid tank, it is possible to improve the measurement accuracy and reduce the measurement cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の説明図で、(a)は側面
図、(b)は平面図である。
FIG. 1 is an explanatory view of an embodiment of the present invention, (a) is a side view and (b) is a plan view.

【図2】上記一実施例に係る計測装置の詳細説明図であ
る。
FIG. 2 is a detailed explanatory diagram of a measuring device according to the above-described embodiment.

【図3】従来の計測装置の説明図である。FIG. 3 is an explanatory diagram of a conventional measuring device.

【符号の説明】[Explanation of symbols]

1 タンク 5 ポンプ 10 計測器 11 戻り配管 12 ガードプレート 13 ノズル 1 Tank 5 Pump 10 Measuring Instrument 11 Return Pipe 12 Guard Plate 13 Nozzle

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安田 千秋 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 藤原 誠 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Chiaki Yasuda 2-1-1 Niihama, Arai-cho, Takasago-shi, Hyogo Inside Takasago Research Laboratory, Mitsubishi Heavy Industries, Ltd. (72) Makoto Fujiwara 2-chome, Niihama, Arai-cho, Takasago-shi, Hyogo No. 1 Mitsubishi Heavy Industries Takasago Research Center

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 円筒状の液体タンクの頂部に設けられ体
積変化器と圧力検出器を有する計測器、上記液体タンク
の側壁に設けられ同側壁の接線方向に接続され上記液体
タンク内からの還流液を同タンク内に噴射するノズル、
および上記計測器の周囲の上記液体タンクの内壁に設け
られた疎水性部を備えたことを特徴とする液量計測装
置。
1. A measuring instrument having a volume changer and a pressure detector, which is provided on the top of a cylindrical liquid tank, and which is provided on a side wall of the liquid tank and is connected in a tangential direction of the side wall, and returns from the liquid tank. Nozzle for injecting liquid into the same tank,
And a hydrophobic portion provided on the inner wall of the liquid tank around the measuring instrument.
JP27402491A 1991-10-22 1991-10-22 Liquid volume measuring device Expired - Fee Related JP2842960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27402491A JP2842960B2 (en) 1991-10-22 1991-10-22 Liquid volume measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27402491A JP2842960B2 (en) 1991-10-22 1991-10-22 Liquid volume measuring device

Publications (2)

Publication Number Publication Date
JPH0674809A true JPH0674809A (en) 1994-03-18
JP2842960B2 JP2842960B2 (en) 1999-01-06

Family

ID=17535899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27402491A Expired - Fee Related JP2842960B2 (en) 1991-10-22 1991-10-22 Liquid volume measuring device

Country Status (1)

Country Link
JP (1) JP2842960B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102538896A (en) * 2011-12-28 2012-07-04 中国科学院水利部成都山地灾害与环境研究所 Flow stabilizing device for measuring different hydraulic gradients
CN104359532A (en) * 2014-11-15 2015-02-18 北京航天计量测试技术研究所 Flow reversing structure and reversing error measuring method thereof
CN104964724A (en) * 2015-07-21 2015-10-07 苏州市兴鲁空分设备科技发展有限公司 Liquid storage tank evaporation rate measuring device and measuring method thereof
CN106989792A (en) * 2017-05-18 2017-07-28 太仓阳鸿石化有限公司 The measuring method of liquid chemical product and gas volume in ship-to-shore feed-line

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102538896A (en) * 2011-12-28 2012-07-04 中国科学院水利部成都山地灾害与环境研究所 Flow stabilizing device for measuring different hydraulic gradients
CN104359532A (en) * 2014-11-15 2015-02-18 北京航天计量测试技术研究所 Flow reversing structure and reversing error measuring method thereof
CN104359532B (en) * 2014-11-15 2017-09-29 北京航天计量测试技术研究所 A kind of flow commutating structure and its reversing error assay method
CN104964724A (en) * 2015-07-21 2015-10-07 苏州市兴鲁空分设备科技发展有限公司 Liquid storage tank evaporation rate measuring device and measuring method thereof
CN106989792A (en) * 2017-05-18 2017-07-28 太仓阳鸿石化有限公司 The measuring method of liquid chemical product and gas volume in ship-to-shore feed-line
CN106989792B (en) * 2017-05-18 2019-11-08 太仓阳鸿石化有限公司 The measurement method of liquid chemical product and gas volume in ship-to-shore feed-line

Also Published As

Publication number Publication date
JP2842960B2 (en) 1999-01-06

Similar Documents

Publication Publication Date Title
JP2005257678A (en) Metering device
US5188258A (en) Apparatus reponsive to pressure of a medium which effects fluid discharge for controlling the pressure of the medium and the time the medium acts on the fluid
MY120480A (en) Multiphase venturi flow metering method
WO2003008913A1 (en) Equipment for measuring gas flow rate
JPH0674809A (en) Flow rate measuring device
JPS58156817A (en) Method and device for measuring liquid level in vessel
US4526035A (en) Device for measuring a pressure difference within a pulsed column
JP5627982B2 (en) Sample liquid weighing device
JPH08121288A (en) Injection rate measuring device
Kress et al. Liquid phase controlled mass transfer to bubbles in cocurrent turbulent pipeline flow
CN208136194U (en) Gas well three phase metering separator
KR970028795A (en) Developer injection inspection system and developer measurement method using the same
EP1898186B1 (en) Method and apparatus for detecting gas bubble content of flowing fluid
KR930004755Y1 (en) Water-water and water-powder boundary level measuring apparatus having air bubble generator
JPH05332807A (en) Liquid amount meter for transporter
JPS61187634A (en) Method and apparatus for limiting particle flow channel
JPS63258629A (en) Plurality of liquid mixers
JPH0560042B2 (en)
JPH0534012Y2 (en)
JPS6324411Y2 (en)
JPH04198818A (en) Flow measuring system
JPH07286872A (en) Flowmeter
RU1824538C (en) Device for measuring physical-mechanical properties of liquids
JPH02236408A (en) Water column nozzle
CN110108334A (en) A kind of unmanned plane liquid level detection device and unmanned plane

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980916

LAPS Cancellation because of no payment of annual fees