JPH0672768A - Cubic boron nitride sintered compact for cutting tool - Google Patents

Cubic boron nitride sintered compact for cutting tool

Info

Publication number
JPH0672768A
JPH0672768A JP4246011A JP24601192A JPH0672768A JP H0672768 A JPH0672768 A JP H0672768A JP 4246011 A JP4246011 A JP 4246011A JP 24601192 A JP24601192 A JP 24601192A JP H0672768 A JPH0672768 A JP H0672768A
Authority
JP
Japan
Prior art keywords
sintered body
cbn
boron nitride
purity
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4246011A
Other languages
Japanese (ja)
Other versions
JP3411593B2 (en
Inventor
Masaharu Suzuki
正治 鈴木
Teruyoshi Tanase
照義 棚瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17142136&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0672768(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Materials Corp, Denki Kagaku Kogyo KK filed Critical Mitsubishi Materials Corp
Priority to JP24601192A priority Critical patent/JP3411593B2/en
Publication of JPH0672768A publication Critical patent/JPH0672768A/en
Application granted granted Critical
Publication of JP3411593B2 publication Critical patent/JP3411593B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To ensure a long service life, high strength, high toughness and wear resistance by sintering high purity BN by a direct conversion method so that primary grains forming the resulting sintered compact are regulated to a prescribed size. CONSTITUTION:Low pressure phase BN having >=99wt.% purity such as pyrolytic BN is wrapped with Ta foil and put in a reaction chamber made of a high purity material not reacting with cubic BN. The BN in the chamber is then heated and held at 1,900-2,100 deg.C under desired pressure for <=120min to produce the objective cubic boron nitride sintered compact for a cutting tool having <=3.0mum average diameter of the primary grains.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ドリル加工等の切削加
工用工具素材、特に鋳鉄、超硬合金、焼入鋼等の切削加
工用工具素材として用いられる立方晶窒化ほう素焼結体
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cubic boron nitride sintered body used as a tool material for cutting such as drilling, especially as a tool material for cutting cast iron, cemented carbide, hardened steel and the like. Is.

【0002】[0002]

【従来の技術】窒化ほう素の高圧相である立方晶窒化ほ
う素(cBN)はダイヤモンドに次ぐ硬さと熱伝導率を
有し、鉄系金属と反応しないというダイヤモンドにはな
い特徴を持つことから、鉄系金属やコバルトなどの鉄系
金属を多く含む超硬合金の切削加工用工具素材としての
利用が進められている。
BACKGROUND OF THE INVENTION Cubic boron nitride (cBN), which is a high-pressure phase of boron nitride, has hardness and thermal conductivity second only to diamond, and has the characteristic that diamond does not react with iron-based metals. , Cemented carbides containing a large amount of iron-based metals and iron-based metals such as cobalt are being used as cutting tool materials.

【0003】近年の切削加工は、高能率化、無人化の方
向にある。高能率化の具体的な方法としては、重切削、
高速切削であるが、このような過酷な切削条件では工
具、特に工具の刃先部分に大きな負荷がかかるため、高
い強度を持つ工具用素材が必要となる。一方、無人化の
ためには長時間使用しても摩耗することなく、工具の交
換を頻繁に必要としない耐摩耗性に優れた長寿命の工具
用素材が必要となる。
In recent years, cutting work has tended to be highly efficient and unmanned. As a concrete method of high efficiency, heavy cutting,
Although it is high-speed cutting, under such severe cutting conditions, a large load is applied to the tool, especially the cutting edge of the tool, so a tool material with high strength is required. On the other hand, for unmanned use, a long-life tool material that does not wear even after long-term use and has excellent wear resistance that does not require frequent tool replacement is required.

【0004】しかしながら、高強度でかつ耐摩耗性に優
れるという二つの機能を同時に満足するようなcBN焼
結体工具、特に鋳鉄、超硬合金、焼入鋼等のように脆い
が高硬度の難削材の切削加工に適するようなものは、ほ
とんど開発されていない。これは、以下に述べるような
理由による。 (1)従来のcBNのみからなる焼結体は、cBNの微
粒子を焼結することによって得られる。そのため、焼結
体自身の硬度は非常に大きいが、cBN粒子は焼結しに
くいために切削工具素材に使えるような高強度のものが
得られなかった。 (2)従来の工具用cBN焼結体は、高強度にするた
め、cBN粒子にAl、Co等の金属、TiN、Ti
C、Al2 3 等の炭化物、窒化物、酸化物などの結合
剤を添加して焼結されてなる複合体が用いられてきた。
しかし、このような複合体は、焼結体中にcBNより硬
度の小さい結合剤を含むため、焼結体自身の硬度が小さ
くなりcBN本来の高硬度の特性を充分に活かせなかっ
た。
However, a cBN sintered body tool which is capable of simultaneously satisfying the two functions of high strength and excellent wear resistance, particularly brittle but hard to have high hardness, such as cast iron, cemented carbide and hardened steel. Little has been developed that is suitable for cutting work materials. This is for the following reasons. (1) A conventional sintered body composed only of cBN can be obtained by sintering fine particles of cBN. Therefore, the hardness of the sintered body itself is very large, but the cBN particles are difficult to sinter, so that a high-strength material that can be used as a cutting tool material cannot be obtained. (2) In the conventional cBN sintered body for tools, in order to obtain high strength, a metal such as Al or Co, TiN or Ti is added to the cBN particles.
A composite obtained by adding a binder such as a carbide such as C or Al 2 O 3 , a nitride or an oxide and sintering the mixture has been used.
However, since such a composite contains a binder having a hardness smaller than that of cBN in the sintered body, the hardness of the sintered body itself becomes small, and the high hardness characteristic of cBN cannot be fully utilized.

【0005】[0005]

【発明が解決しようとする課題】本発明者らは、上記の
状況に鑑み、鋳鉄や超硬合金、焼入鋼等のように脆いが
高硬度の難削材の加工に対しても、高強度、高靭性かつ
耐摩耗性に優れるという性能を同時に満足するような切
削工具素材を開発することを目的として種々検討した結
果、cBN焼結体の合成方法、純度及び微細組織が、c
BN焼結体の特性に以下に示すように深く関係している
ことを見いだし、本発明を完成させたものである。
SUMMARY OF THE INVENTION In view of the above situation, the inventors of the present invention have made it possible to obtain a high degree of hardness even for processing of brittle but high hardness difficult-to-cut materials such as cast iron, cemented carbide, and hardened steel. As a result of various studies aimed at developing a cutting tool material that simultaneously satisfies the properties of strength, high toughness, and excellent wear resistance, the results show that the method of synthesizing the cBN sintered body, the purity and the microstructure are c
The present invention has been completed by discovering that the characteristics of the BN sintered body are deeply related to each other as shown below.

【0006】すなわち、従来より一般的に用いられてき
た結合剤を添加する焼結法ではなく直接転換法を用いる
と、cBNのみからなる硬度の高い多結晶型焼結体が得
られ、しかもその中でも純度99重量%以上のcBN焼
結体は、特に強度が大きくなること、及び適当な合成条
件を選ぶと焼結体を構成するcBN一次結晶粒子の大き
さが一定で均一な微細組織を持つものが得られ、cBN
一次結晶粒子の大きさは焼結体の摩耗特性に深く関係
し、その大きさの平均が3.0μm以下である場合に、
特に鋳鉄や超硬合金等のように脆いが高硬度の難削材を
切削加工した際に耐摩耗性に優れることを見いだしたも
のである。
That is, when a direct conversion method is used instead of a sintering method in which a binder is generally used, a polycrystalline sintered body having a high hardness and composed of only cBN can be obtained. Among them, a cBN sintered body having a purity of 99% by weight or more has a particularly high strength, and if proper synthesis conditions are selected, the cBN primary crystal grains constituting the sintered body have a uniform size and a uniform fine structure. Obtained, cBN
The size of the primary crystal particles is closely related to the wear characteristics of the sintered body, and when the average size is 3.0 μm or less,
In particular, it has been found that when a difficult-to-cut material having brittleness but high hardness such as cast iron and cemented carbide is cut, it has excellent wear resistance.

【0007】[0007]

【課題を解決するための手段】すなわち、本発明は、直
接転換法によって得られた純度99重量%以上の立方晶
窒化ほう素焼結体からなり、その焼結体を構成する一次
結晶粒子の大きさの平均が3.0μm以下であることを
特徴とする切削工具用立方晶窒化ほう素焼結体である。
That is, the present invention comprises a cubic boron nitride sintered body having a purity of 99% by weight or more obtained by a direct conversion method, and the size of primary crystal grains constituting the sintered body. It is a cubic boron nitride sintered body for a cutting tool, which has an average thickness of 3.0 μm or less.

【0008】以下、さらに詳しく本発明について説明す
る。
The present invention will be described in more detail below.

【0009】本発明における直接転換法とは、触媒や結
合剤を用いず、固体間の直接相転移によってcBN焼結
体を得る方法である。その一例は、特公昭63−394
号公報に記載されており、低圧相窒化ほう素の一つであ
る熱分解窒化ほう素をcBNの安定領域である高温・高
圧下で処理することによって得ることができる。ここで
いう低圧相窒化ほう素とは、ほう素、窒素原子が交互に
結合されることによって形成される六角網面が積層した
構造を持つものであり、具体的には、六方晶系の窒化ほ
う素(hBN)、乱層構造の窒化ほう素(tBN)、菱
面体晶の窒化ほう素(rBN)の単体又は混合物からな
るものである。
The direct conversion method in the present invention is a method of obtaining a cBN sintered body by direct phase transition between solids without using a catalyst or a binder. An example of this is Japanese Examined Japanese Patent Publication No. 63-394.
It can be obtained by treating pyrolytic boron nitride, which is one of low-pressure phase boron nitrides, at a high temperature and high pressure, which is a stable region of cBN. The low-pressure phase boron nitride referred to here has a structure in which hexagonal mesh planes formed by alternately bonding boron and nitrogen atoms are stacked, and specifically, a hexagonal nitride system. Boron (hBN), turbostratic boron nitride (tBN), and rhombohedral boron nitride (rBN) are used alone or as a mixture.

【0010】本発明においては、上記した高純度と一次
結晶粒子の大きさが制御されたcBN焼結体を得るため
に、原料、高温高圧を発生する反応室及び保持温度と時
間を厳密に制御する必要があり、これについては後記す
る。
In the present invention, in order to obtain the above-mentioned cBN sintered body in which the high purity and the size of the primary crystal grains are controlled, the raw material, the reaction chamber for generating high temperature and high pressure, and the holding temperature and time are strictly controlled. This will be described later.

【0011】本発明において、直接転換法を用いる理由
としては、(1)触媒や結合剤を用いた合成法では、c
BN焼結体の一次結晶粒子の粒内や粒界にそれらが不純
物として残存してしまうために高硬度の焼結体が得られ
ないこと、(2)触媒や結合剤を用いた合成法では、得
られるcBN焼結体の一次結晶粒子の大きさが数μm以
上のものしか得られないのに対し、直接転換法では合成
条件を変えることによって、一次結晶粒子の大きさを種
々変化させることができることによる。
In the present invention, the reason for using the direct conversion method is (1) in the synthetic method using a catalyst or a binder, c
A high-hardness sintered body cannot be obtained because they remain as impurities in the grains of the primary crystal grains of the BN sintered body or in the grain boundaries. (2) In the synthesis method using a catalyst or a binder While the size of the primary crystal particles of the obtained cBN sintered body is only several μm or more, the size of the primary crystal particles can be variously changed by changing the synthesis conditions in the direct conversion method. It depends on what you can do.

【0012】本発明において、純度99重量%以上のc
BN焼結体とした理由は、それよりも純度が低いとcB
N焼結体の強度と硬度が低下するからである。そのた
め、直接転換法を用いても焼結体中にcBN以外の成
分、例えば原料の低圧相窒化ほう素の一部が未転換で残
存したり、反応室等からの不純物が混入したりしてcB
N純度が99重量%未満の焼結体にならないような配慮
が必要である。
In the present invention, c having a purity of 99% by weight or more is used.
The reason for using BN sintered body is that if the purity is lower than that, cB
This is because the strength and hardness of the N sintered body decrease. Therefore, even if the direct conversion method is used, components other than cBN, for example, a part of the low-pressure phase boron nitride as a raw material remains unconverted in the sintered body, or impurities from the reaction chamber are mixed. cB
Care must be taken not to produce a sintered body having N purity of less than 99% by weight.

【0013】不純物の一つである低圧相窒化ほう素の残
存量は、通常の粉末エックス線による定量法のように、
低圧相窒化ほう素の特定の回折線、例えばd002 (hB
N及びtBNの場合)又はd003 (rBNの場合)の回
折線強度とcBNの特定回折線強度、例えば(111)
回折線強度との比を測定し、あらかじめ作成された検量
線とを比較することによって測定することができる。検
量線は、低圧相窒化ほう素とcBNとを既知の重量%で
混合した試料を用い、低圧相窒化ほう素のd002 又はd
003 回折線強度及びcBNの(111)回折線強度との
比を測定して作成される。
The remaining amount of low-pressure phase boron nitride, which is one of the impurities, is determined by a conventional powder X-ray quantification method.
Specific diffraction lines of low-pressure phase boron nitride, such as d 002 (hB
N and tBN) or d 003 (for rBN) and cBN specific diffraction line intensities, eg (111)
It can be measured by measuring the ratio with the diffraction line intensity and comparing it with a calibration curve prepared in advance. For the calibration curve, a sample in which low-pressure phase boron nitride and cBN were mixed at a known weight% was used, and d002 or d of low-pressure phase boron nitride was used.
It is prepared by measuring the ratio between the 003 diffraction line intensity and the (111) diffraction line intensity of cBN.

【0014】また、反応室等から混入する炭素や、金属
等の不純物量については、通常の化学分析法や蛍光エッ
クス線を用いて測定することができる。
Further, the amount of impurities such as carbon and metals mixed in from the reaction chamber and the like can be measured by a usual chemical analysis method or fluorescent X-ray.

【0015】本発明において、cBN焼結体を構成する
一次結晶粒子の大きさとは、多結晶体である焼結体を構
成するcBN結晶粒子の大きさのことを意味し、別の言
い方としては、その大きさを焼結体の一次粒径と呼ぶこ
ともある。
In the present invention, the size of the primary crystal grains forming the cBN sintered body means the size of the cBN crystal grains forming the sintered body which is a polycrystalline body. The size may be called the primary particle size of the sintered body.

【0016】cBN焼結体を構成する一次結晶粒子の大
きさの平均は、例えば以下のようにして測定することが
できる。ただし、いずれの測定法においても、微少部分
の解析となるので、焼結体全体の組織を均一に調べられ
るように複数の場所を測定するのが望ましい。 (1)焼結体を薄片として、透過型電子顕微鏡を用い、
特定の回折線だけを用いて結像させて一次結晶粒子の大
きさに対応したコントラストを持つ暗視野像を得、その
暗視野像の写真(多数個の一次結晶粒子像を含む)を画
像解析することによって測定する。 (2)焼結体を破断して、粒界で破断した部分の組織を
走査型原子斥力顕微鏡を用いて直接観察し、得られた写
真を画像解析することによって測定する。 (3)焼結体の表面を熱溶融炭酸ナトリウムでエッチン
グし、粒界部分を選択的にエッチングして表面に凹凸を
つけ、表面粗さ計を用いて凹凸の大きさを測定すること
によって測定する。
The average size of the primary crystal grains constituting the cBN sintered body can be measured, for example, as follows. However, in any of the measuring methods, a minute portion is analyzed, so it is desirable to measure at a plurality of locations so that the structure of the entire sintered body can be uniformly examined. (1) Using a transmission electron microscope with the sintered body as a thin piece,
A dark field image with a contrast corresponding to the size of the primary crystal particles is obtained by imaging using only specific diffraction lines, and a photograph of the dark field image (including many primary crystal particle images) is image analyzed. To measure. (2) The sintered body is broken, and the structure of the broken portion at the grain boundary is directly observed using a scanning atomic repulsive force microscope, and the obtained photograph is analyzed by image analysis. (3) Measured by etching the surface of the sintered body with hot-melt sodium carbonate, selectively etching grain boundary portions to make the surface uneven, and measuring the size of the unevenness using a surface roughness meter. To do.

【0017】本発明において、cBN焼結体を構成する
一次結晶粒子の大きさの平均を3.0μm以下と規定し
たのは、一次粒子の大きさの平均が3.0μmを越える
と焼結体の靭性が低下し、また、切削工具として用いた
場合に耐摩耗性が著しく低下するからである。また、一
次結晶粒子の大きさの平均の下限については、特に制限
されるものではないが、たとえば、0.1μmでも良
い。
In the present invention, the average size of the primary crystal grains constituting the cBN sintered body is defined to be 3.0 μm or less, because the average size of the primary particles exceeds 3.0 μm. This is because the toughness of the steel is reduced, and the wear resistance is significantly reduced when used as a cutting tool. The lower limit of the average primary crystal grain size is not particularly limited, but may be 0.1 μm, for example.

【0018】本発明で使用されるcBN焼結体は、例え
ば以下のようにして製造することができる。すなわち、
基本的には、例えば特公昭63−394号公報に記載さ
れているように、熱分解窒化ほう素をcBNの安定領域
である高温・高圧下で処理することによって得るが、本
発明においては、原料、高温・高圧を発生する反応室及
び保持温度と時間を以下のように厳密に制御して行う。
The cBN sintered body used in the present invention can be manufactured, for example, as follows. That is,
Basically, for example, as described in JP-B-63-394, it is obtained by treating pyrolytic boron nitride at a high temperature and high pressure, which is a stable region of cBN, but in the present invention, The raw materials, the reaction chamber that generates high temperature and high pressure, and the holding temperature and time are strictly controlled as follows.

【0019】まず、原料としては、熱分解窒化ほう素等
の高純度の低圧相窒化ほう素を用いる必要があり、その
純度としては、99.9重量%以上が好ましい。また、
高温・高圧処理過程で汚染が起きないように、反応室の
材質についてもcBNと反応せず高純度のものを用い
る。具体的には、半導体グレードの99.9重量%以上
の高純度カーボンを加熱用ヒーターとして用い、高純度
のNaCl粉末の成形体からなるスリーブをヒーター内
部に配し、さらにタンタル(Ta)箔で包まれた低圧相
窒化ほう素原料をその中に入れる反応室構造が好適であ
る。このような構造であると、Taが不純物を吸収する
ゲッターとなるので、カーボンヒーターやその外部から
の不純物の拡散をTa箔で食い止めることができる。ま
た、NaClは電気伝導率が小さいので、これを電気良
導体であるTaとカーボンの間にスリーブとして配すこ
とによって、Taとカーボンを接触させることなく安定
した加熱ができる。
First, it is necessary to use high-purity low-pressure phase boron nitride such as pyrolytic boron nitride as the raw material, and its purity is preferably 99.9% by weight or more. Also,
As the material of the reaction chamber, a high-purity material that does not react with cBN is used so that contamination does not occur in the high temperature / high pressure treatment process. Specifically, 99.9% by weight or more of semiconductor grade high-purity carbon is used as a heater for heating, a sleeve made of a molded body of high-purity NaCl powder is arranged inside the heater, and tantalum (Ta) foil is used. A reaction chamber structure is preferred in which the encapsulated low pressure phase boron nitride raw material is placed. With such a structure, Ta serves as a getter that absorbs impurities, so that diffusion of impurities from the carbon heater and the outside can be stopped by the Ta foil. Further, since NaCl has a low electric conductivity, by arranging it as a sleeve between Ta which is a good electric conductor and carbon, stable heating can be performed without bringing Ta and carbon into contact with each other.

【0020】高温・高圧下で保持する温度、圧力及び時
間については、得られる焼結体の純度と一次結晶粒子の
大きさに深く影響する。一次結晶粒子の大きさの平均が
3.0μm以下であるものを得るためには、熱力学的に
cBNが安定な圧力において、温度1900〜2100
℃にする必要がある。1900℃未満では、低圧相窒化
ほう素原料が完全にcBNに転換しないので純度99重
量%以上の焼結体が得られず、一方、2100℃を越え
ると、粒成長が大きく進むためか、一次結晶粒子の大き
さの平均が3.0μmを越えてしまう。
The temperature, pressure and time of holding at high temperature and high pressure have a great influence on the purity of the obtained sintered body and the size of primary crystal grains. In order to obtain the primary crystal particles having an average size of 3.0 μm or less, the temperature is set to 1900 to 2100 at a pressure at which cBN is thermodynamically stable.
Must be ℃. If the temperature is less than 1900 ° C, the low-pressure phase boron nitride raw material is not completely converted to cBN, so that a sintered body having a purity of 99% by weight or more cannot be obtained. The average crystal grain size exceeds 3.0 μm.

【0021】上記条件における保持時間は、120分間
以下が望ましい。120分間を越えると、一旦できた
3.0μm以下の一次結晶粒子の焼結が進み粒成長を起
こして一次結晶粒子の大きさが大きくなってしまう。
The holding time under the above conditions is preferably 120 minutes or less. If it exceeds 120 minutes, the sintering of the once formed primary crystal particles of 3.0 μm or less proceeds, and the grain growth occurs to increase the size of the primary crystal particles.

【0022】[0022]

【作用】本発明のようなcBN焼結体を切削工具素材と
することによって、鋳鉄、超硬合金、焼入鋼等の切削加
工に適したものとなる理由としては、以下のことが考え
られる。
The reason why the cBN sintered body according to the present invention is suitable for cutting cast iron, cemented carbide, hardened steel, etc. by using it as a cutting tool material is considered as follows. .

【0023】硬度のそれほど高くない金属を加工する場
合は、工具と被削材との硬度差が大きいので、工具の刃
先は被削材に容易に食い込み、断続的な切削においても
工具自体にそれほど大きな力はかからない。これに対
し、鋳鉄、超硬合金、焼入鋼等は脆いが高硬度であるの
で、加工の際、工具の先端に大きなせん断力が衝撃的に
かかる。しかしながら、本発明のように、直接転換法に
よって得られた純度99重量%以上の多結晶型cBN焼
結体は、cBN粒子同士が強固に結合し、粒界に不純物
が存在しないので強度が大きく、しかもその一次結晶粒
子の大きさの平均が3.0μm以下と粒径が小さく均質
な微細組織を有しているのでクラックの伝播が起こりに
くく靭性が大きい。これらの理由から、高硬度の被削材
であっても長寿命な加工が可能となる。
When machining a metal having a not so high hardness, since the hardness difference between the tool and the work material is large, the cutting edge of the tool easily cuts into the work material, and even in intermittent cutting, the tool itself is not so much. It doesn't take much force. On the other hand, cast iron, cemented carbide, hardened steel, etc. are brittle but have high hardness, so that a large shearing force is shocked to the tip of the tool during processing. However, as in the present invention, the polycrystalline cBN sintered body having a purity of 99% by weight or more obtained by the direct conversion method has a large strength because the cBN particles are firmly bound to each other and no impurities are present at the grain boundaries. Moreover, since the average primary crystal grain size is 3.0 μm or less and the grain size is small and it has a uniform fine structure, crack propagation hardly occurs and the toughness is high. For these reasons, even long-hardness work materials can be machined with a long life.

【0024】さらに、本発明のcBN焼結体を切削工具
として使用した場合、刃先の摩耗速度が小さく長寿命と
なる理由であるが、鋳鉄、超硬合金、焼入鋼等の加工の
際に起こる刃先先端の摩耗は、先端に衝撃的なせん断力
がかかることによる一次結晶粒子の欠落によって起こる
と考えている。しかし、本発明のcBN焼結体は純度が
高く粒界に不純物がほとんど存在しないので、一次結晶
粒子同士の結合強度が大きく粒子の欠落が起きにくく、
たとえ欠落が起きたとしても焼結体を構成する一次結晶
粒子の大きさの平均が3.0μm以下と小さいので、一
回に欠落する量が小さく摩耗速度が小さく長寿命とな
る。
Further, when the cBN sintered body of the present invention is used as a cutting tool, it is the reason that the wear rate of the cutting edge is small and the life is long, but when processing cast iron, cemented carbide, hardened steel, etc. It is considered that the abrasion of the tip of the cutting edge that occurs occurs due to the lack of primary crystal grains due to the impactive shearing force applied to the tip. However, since the cBN sintered body of the present invention has a high purity and almost no impurities are present in the grain boundaries, the bonding strength between primary crystal grains is large and the lack of grains is less likely to occur.
Even if chipping occurs, the average size of the primary crystal grains forming the sintered body is as small as 3.0 μm or less, so the amount of chipping at one time is small, the wear rate is small, and the life is long.

【0025】[0025]

【実施例】次に、実施例、比較例をあげてさらに具体的
に本発明を説明する。 実施例1〜4、比較例1〜6 原料に市販の熱分解窒化ほう素、加熱用ヒーターに純度
99.9重量%のカーボンを用い、純度99.9重量%
以上のNaCl粉末の成形体からなるスリーブをヒータ
ー内部に配し、さらにタンタル箔で原料を包みこんでフ
ラットベルト型超高圧高温発生装置に充填し、1870
〜2200℃のさまざまな温度、圧力7.7GPaの条
件で100分間処理して、直接転換法によるcBN焼結
体を合成した。
EXAMPLES Next, the present invention will be described more specifically by way of Examples and Comparative Examples. Examples 1 to 4 and Comparative Examples 1 to 6 Commercially available pyrolytic boron nitride was used as a raw material, carbon having a purity of 99.9% by weight was used as a heater for heating, and the purity was 99.9% by weight.
The sleeve made of the above-mentioned molded body of NaCl powder is placed inside the heater, and the raw material is further wrapped with tantalum foil, and the flat belt type ultrahigh pressure and high temperature generator is filled with 1870.
The cBN sintered body was synthesized by a direct conversion method by treating at various temperatures of ˜2200 ° C. and a pressure of 7.7 GPa for 100 minutes.

【0026】得られた焼結体を粉末エックス線回折装置
(理学電機社製)を用い、Cu−Kα2θのステップス
キャン速度を0.01度/分の条件とし、焼結体中に存
在する低圧相窒化ほう素とcBNの重量%を測定した。
測定は、低圧相窒化ほう素の(002)回折線の強度と
cBNの(111)回折線の強度の比を、あらかじめ作
成しておいた検量線と比較することにより行った。ま
た、焼結体の一部を炭酸ソーダで溶融し、化学分析して
焼結体に含まれる金属不純物の量を測定した。これらの
分析値を合わせて焼結体のcBNの純度を決定した。そ
の結果を表1に示す。
The obtained sintered body was subjected to a step scanning speed of Cu-Kα2θ of 0.01 degree / minute using a powder X-ray diffractometer (manufactured by Rigaku Denki Co., Ltd.), and the low-pressure phase existing in the sintered body. The weight percentages of boron nitride and cBN were measured.
The measurement was performed by comparing the ratio of the intensity of the (002) diffraction line of low-pressure phase boron nitride and the intensity of the (111) diffraction line of cBN with a calibration curve prepared in advance. Further, a part of the sintered body was melted with sodium carbonate and chemically analyzed to measure the amount of metal impurities contained in the sintered body. The cBN purity of the sintered body was determined by combining these analytical values. The results are shown in Table 1.

【0027】一方、焼結体の一部を薄片として、透過型
電子顕微鏡を用い、(111)回折線の一部だけを用い
て結像させて一次結晶粒子の大きさに対応したコントラ
ストを持つ暗視野像を得た。得られた暗視野像の写真
(多数個の一次結晶粒子像を含む)を画像解析装置(ピ
アス社製商品名「LA555」)で解析することによっ
て焼結体を構成する一次結晶粒子の大きさの平均を測定
した。なお、測定は、焼結体全体を平均的に捉えられる
ように、任意に10箇所の視野を選んで行った。その結
果を表1に示す。また、実施例1によって得られたcB
N焼結体の一次結晶粒子の粒子構造を表す透過型電子顕
微鏡による暗視野像(倍率:8000倍)の電子顕微鏡
写真を図1に示す。
On the other hand, a part of the sintered body is used as a thin piece and an image is formed using only a part of the (111) diffraction line by using a transmission electron microscope, and a contrast corresponding to the size of the primary crystal grain is obtained. A dark field image was obtained. The size of the primary crystal grains constituting the sintered body was obtained by analyzing the obtained photograph of the dark field image (including many primary crystal grain images) with an image analyzer (trade name "LA555" manufactured by Pierce). Was measured. In addition, the measurement was performed by arbitrarily selecting 10 fields of view so that the entire sintered body could be captured evenly. The results are shown in Table 1. In addition, cB obtained in Example 1
An electron micrograph of a dark field image (magnification: 8000 times) by a transmission electron microscope showing the particle structure of the primary crystal particles of the N sintered body is shown in FIG.

【0028】次に、上記で得られたcBN焼結体から、
工具用チップブランクをダイヤモンド砥石を用いた研削
加工により切りだした。このチップブランクをバイトの
台座上に機械的にクランプして切削試験用の工具とし、
以下の条件で、鋳鉄及び超硬合金を被削材として切削試
験を実施した。切削試験後に工具先端の欠け状態及び逃
げ面摩耗幅を測定した。その結果を表1に示す。
Next, from the cBN sintered body obtained above,
A chip blank for a tool was cut out by a grinding process using a diamond grindstone. This chip blank is mechanically clamped on the base of the cutting tool to make it a tool for cutting test,
Under the following conditions, a cutting test was performed using cast iron and cemented carbide as work materials. After the cutting test, the chipped state of the tool tip and the flank wear width were measured. The results are shown in Table 1.

【0029】鋳鉄の場合 被削材 :FC25 チップ形状:TNGN332 切削油 :ユシローケンHDE30 使用機械 :日立NK25S−1100 切削速度 :V=700m/min 送り :f=0.1mm/rev 切込み :d=0.1mm 切削時間 :60minIn the case of cast iron Work material: FC25 Chip shape: TNGN332 Cutting oil: Yushiroken HDE30 Machine used: Hitachi NK25S-1100 Cutting speed: V = 700 m / min Feed: f = 0.1 mm / rev Depth of cut: d = 0. 1mm cutting time: 60min

【0030】超硬合金の場合 被削材 :WC−16%Co合金(HRA84.5) チップ形状:TNGN332 切削油 :ユシローケンHDE80(30倍希釈) 使用機械 :日立NK25S−1100 切削速度 :V=20m/min 送り :f=0.2mm/rev 切込み :d=0.5mm 切削時間 :20minIn the case of cemented carbide Work material: WC-16% Co alloy (HRA84.5) Tip shape: TNGN332 Cutting oil: Yushiroken HDE80 (30 times dilution) Machine used: Hitachi NK25S-1100 Cutting speed: V = 20m / Min Feed: f = 0.2mm / rev Depth of cut: d = 0.5mm Cutting time: 20min

【0031】比較例7 市販のセラミックス結合剤を含んだcBN多結晶焼結体
を用い、実施例1と同一の条件で切削試験を行って、試
験後の工具先端の欠け状態及び逃げ面摩耗幅を測定し
た。その結果を表1に示す。
Comparative Example 7 A cutting test was conducted under the same conditions as in Example 1 using a commercially available cBN polycrystal sintered body containing a ceramics binder, and the chipped state of the tool tip and flank wear width after the test were carried out. Was measured. The results are shown in Table 1.

【0032】比較例8 市販の金属結合剤を含んだcBN多結晶焼結体を用い、
実施例3と同一の条件で切削試験を行って、試験後の工
具先端の欠け状態及び逃げ面摩耗幅を測定した。その結
果を表1に示す。
Comparative Example 8 Using a commercially available cBN polycrystalline sintered body containing a metal binder,
A cutting test was performed under the same conditions as in Example 3, and the chipped state of the tool tip and the flank wear width after the test were measured. The results are shown in Table 1.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【発明の効果】本発明のcBN焼結体は、被削材が鋳
鉄、超硬合金、焼入鋼等のように高硬度なものの切削に
適するほど十分な強度を有し、かつ、従来の切削工具素
材に比べて格段に長寿命の切削加工を実現することがで
きる。
EFFECTS OF THE INVENTION The cBN sintered body of the present invention has sufficient strength to be suitable for cutting a work material having high hardness such as cast iron, cemented carbide, and hardened steel, and has a conventional strength. Compared with the cutting tool material, it can realize cutting processing with a much longer life.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1によって得られたcBN焼結体の一次
結晶粒子の粒子構造を示す透過型電子顕微鏡による暗視
野像(倍率:8000倍)の電子顕微鏡写真である。
FIG. 1 is an electron micrograph of a dark field image (magnification: 8000 times) obtained by a transmission electron microscope showing the particle structure of primary crystal grains of the cBN sintered body obtained in Example 1.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 直接転換法によって得られた純度99重
量%以上の立方晶窒化ほう素焼結体からなり、その焼結
体を構成する一次結晶粒子の大きさの平均が3.0μm
以下であることを特徴とする切削工具用立方晶窒化ほう
素焼結体。
1. A cubic boron nitride sintered body having a purity of 99% by weight or more obtained by a direct conversion method, and an average size of primary crystal grains constituting the sintered body is 3.0 μm.
A cubic boron nitride sintered body for a cutting tool, characterized in that
JP24601192A 1992-08-24 1992-08-24 Cubic boron nitride sintered body for cutting tools Ceased JP3411593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24601192A JP3411593B2 (en) 1992-08-24 1992-08-24 Cubic boron nitride sintered body for cutting tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24601192A JP3411593B2 (en) 1992-08-24 1992-08-24 Cubic boron nitride sintered body for cutting tools

Publications (2)

Publication Number Publication Date
JPH0672768A true JPH0672768A (en) 1994-03-15
JP3411593B2 JP3411593B2 (en) 2003-06-03

Family

ID=17142136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24601192A Ceased JP3411593B2 (en) 1992-08-24 1992-08-24 Cubic boron nitride sintered body for cutting tools

Country Status (1)

Country Link
JP (1) JP3411593B2 (en)

Also Published As

Publication number Publication date
JP3411593B2 (en) 2003-06-03

Similar Documents

Publication Publication Date Title
KR100219930B1 (en) Superhard composite member and its production
KR960008726B1 (en) Method for production of high-pressure phase sintered article of boron nitride for use in cutting tool and sintered article produced thereby
EP2752398B1 (en) Cubic boron nitride complex polycrystalline substance, method for manufacturing same, cutting tool, wire-drawing die, and grinding tool
KR101226376B1 (en) Cubic boron nitride compact
EP0974566B1 (en) Cubic boron nitride sintered body
JP2020515490A (en) Sintered polycrystalline cubic boron nitride material
JP6293669B2 (en) Sintered cubic boron nitride cutting tool
JP2005514300A (en) Low oxygen cubic boron nitride and its products
EP1188504B1 (en) Coated cutting tool
US5569862A (en) High-pressure phase boron nitride sintered body for cutting tools and method of producing the same
US5691260A (en) Cubic system boron nitride sintered body for a cutting tool
JP2000247746A (en) Cutting tool of cubic boron nitride-based sintered compact
KR100502585B1 (en) Sintering body having high hardness for cutting cast iron and The producing method the same
JP2000044347A (en) Cbn sintered compact
JP3472630B2 (en) Cubic boron nitride sintered body for cutting tools and cutting tools
WO1991008992A1 (en) Silicon carbide whisker reinforced ceramic composites and method for making the same
EP0816304A2 (en) Ceramic bonded cubic boron nitride compact
JPH04322904A (en) Cutting insert of oxide ceramic and its manufacture
JP2004026555A (en) Cubic boron nitride-containing sintered compact and method for producing the same
CN111315710A (en) Polycrystalline cubic boron nitride bodies
EP3202750B1 (en) Sintered material, cutting tool using sintered material, and method of producing sintered material
JP3411593B2 (en) Cubic boron nitride sintered body for cutting tools
JP2002029845A (en) Super-hard sintered compact
Agarwala et al. Synthesis and characterization of polycrystalline sintered compacts of cubic boron nitride
EP4097064A1 (en) Polycrystalline cubic boron nitride material

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010116

RVOP Cancellation by post-grant opposition