JPH0672047B2 - Pyroelectric porcelain composition - Google Patents

Pyroelectric porcelain composition

Info

Publication number
JPH0672047B2
JPH0672047B2 JP63057264A JP5726488A JPH0672047B2 JP H0672047 B2 JPH0672047 B2 JP H0672047B2 JP 63057264 A JP63057264 A JP 63057264A JP 5726488 A JP5726488 A JP 5726488A JP H0672047 B2 JPH0672047 B2 JP H0672047B2
Authority
JP
Japan
Prior art keywords
pyroelectric
porcelain
porcelain composition
present
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63057264A
Other languages
Japanese (ja)
Other versions
JPH01230468A (en
Inventor
信宏 伊藤
行雄 坂部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP63057264A priority Critical patent/JPH0672047B2/en
Publication of JPH01230468A publication Critical patent/JPH01230468A/en
Publication of JPH0672047B2 publication Critical patent/JPH0672047B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は焦電性磁器組成物に関する。TECHNICAL FIELD The present invention relates to a pyroelectric porcelain composition.

(従来の技術) 焦電体は、赤外放射エネルギーを吸収することによって
温度変化を生じ、それに起因して自発分極に変化を生じ
ることから焦電型赤外線センサーとして利用されている
が、その焦電体材料としては、LiTaO3、LiNbO3、硫酸グ
リシン(TGS)、SrxBa1-xNb2O6(SBN)、チタン酸鉛系
磁器、チタン酸ジルコン酸鉛系磁器、ゲルマニウム酸鉛
系磁器等が知られている。
(Prior Art) A pyroelectric material is used as a pyroelectric infrared sensor because it absorbs infrared radiant energy to cause a temperature change, which causes a change in spontaneous polarization. Examples of electrical materials include LiTaO 3 , LiNbO 3 , glycine sulfate (TGS), SrxBa 1-x Nb 2 O 6 (SBN), lead titanate porcelain, lead zirconate titanate porcelain, lead germanate porcelain, etc. It has been known.

通常、これらの材料を用いた焦電型赤外線センサーは、
焦電体に電極を形成した焦電素子そのものではインピー
ダンスが高すぎて実用的でないため、一般には、電界効
果トランジスタで適当なインピーダンスに変換して出力
させるようにしたものが実用に供されている。この赤外
線センサーの良否は、出力電圧感度に対する材料評価指
数(Fv)、及びノイズを含めた比検出率(D)に対する材
料評価指数(FD、以下、S/N比評価指数と記す。)で評
価されるが、これらの評価指数は、焦電体の焦電係数を
λ、比熱をCp、密度をd、比誘電率をεr、誘電正接をt
anδとすると、それぞれ次式で与えられる。
Usually, pyroelectric infrared sensors using these materials,
Since the impedance of the pyroelectric element itself, which has electrodes formed on the pyroelectric body, is too high to be practical, a field-effect transistor that converts the impedance to an appropriate impedance for output is generally used. . The quality of the infrared sensor is determined by the material evaluation index (F v ) for the output voltage sensitivity and the material evaluation index (F D , hereinafter, S / N ratio evaluation index) for the specific detection rate (D) including noise. These evaluation indices are as follows: pyroelectric coefficient of pyroelectric material is λ, specific heat is Cp, density is d, relative permittivity is ε r , and dielectric loss tangent is t.
Let an δ be given by the following equations.

従って、センサーとしてはFvおよびFDの値が大きいほど
優れていることから、焦電体材料としては、(1)式お
よび(2)式から、焦電体の温度変化に対する自発分極
の変化、即ち、焦電体の焦電係数(λ)が大きく、ま
た、比誘電率が小さく、誘電正接が小さいことが要求さ
れる。しかし、比誘電率が小さくなるほど、センサーが
外部回路の浮遊容量の影響を受け易くなり、センサーの
ノイズが大きくなるため、比誘電率はある程度大きいこ
とが要求され、実用上200〜600であることが望まれる。
Therefore, the larger the values of F v and F D are, the better the sensor is. Therefore, as the pyroelectric material, from the expressions (1) and (2), the change of spontaneous polarization with respect to the temperature change of the pyroelectric material is shown. That is, it is required that the pyroelectric coefficient (λ) of the pyroelectric body is large, the relative dielectric constant is small, and the dielectric loss tangent is small. However, the smaller the relative permittivity, the more susceptible the sensor is to the stray capacitance of the external circuit and the greater the noise of the sensor, so the relative permittivity is required to be large to some extent, and it is practically 200-600. Is desired.

また、センサーの温度定定性の観点から、焦電体はその
焦電性が消失する温度、即ち、キュリー温度が少なくと
も150℃以上あることが望ましい。
From the viewpoint of the temperature qualitativeness of the sensor, it is desirable that the pyroelectric body has a temperature at which its pyroelectricity disappears, that is, a Curie temperature of at least 150 ° C or higher.

しかしながら、前記公知焦電体材料のうち硫酸グリシン
やSBNは、比誘電率が30〜50と小さいため、材料評価指
数の点からは好ましいが、焦電素子の電極面積が小さい
場合、素子容量が外部回路の浮遊容量より小さくなり、
センサーのノイズが大きくなるという欠点があり、ま
た、LiTaO3、LiNbO3、ゲルマニウム酸鉛系磁器は、比誘
電率が約60以下で硫酸グリシンやSBNと同様にノイズが
大きくなるという欠点がある他、前二者は比較的高価で
あり、後者はキュリー温度が低いため焦電素子の性能の
温度安定性に劣るという欠点があった。さらに、チタン
酸鉛系磁器は、キュリー温度が470℃と高いが、比誘電
率が200以下と小さく、焼結しにくいという欠点があ
る。このため、現在では、チタン酸ジルコン酸鉛系磁器
が汎用されている。
However, among the known pyroelectric materials, glycine sulfate and SBN have a small relative dielectric constant of 30 to 50, which is preferable in terms of material evaluation index, but when the electrode area of the pyroelectric element is small, the element capacitance is Smaller than the stray capacitance of the external circuit,
There is a drawback that the noise of the sensor becomes large, and LiTaO 3 , LiNbO 3 and lead germanate based porcelain have the drawback that the relative dielectric constant is about 60 or less and the noise becomes large like glycine sulfate and SBN. The former two are relatively expensive, and the latter one has a drawback that the temperature stability of the performance of the pyroelectric element is poor because the Curie temperature is low. Further, the lead titanate-based porcelain has a high Curie temperature of 470 ° C., but has a small relative permittivity of 200 or less and has a drawback that it is difficult to sinter. Therefore, at present, lead zirconate titanate-based porcelain is widely used.

(発明が解決しようとする課題) しかしながら、チタン酸ジルコン酸鉛系磁器、例えば、
Pb(Sn1/2Sb1/2)O3−PbTiO3-PbZrO3からなる主成分に、
副成分としてMnO2、CoO、Cr2O3などを添加含有させたも
のは、実用上比較的良好な焦電性能を示すが、キュリー
温度が200℃以下と低く、しかも、抗折強度が小さいた
め、電極を形成する際あるいは分極の際にワレや欠けを
生じ易いという問題があった。
(Problems to be Solved by the Invention) However, lead zirconate titanate porcelain, for example,
Pb (Sn 1/2 Sb 1/2 ) O 3 -PbTiO 3 -PbZrO 3
Those containing MnO 2 , CoO, Cr 2 O 3 etc. added as sub-components show relatively good pyroelectric performance in practical use, but the Curie temperature is as low as 200 ° C or less and the bending strength is small. Therefore, there is a problem that cracks and chips are likely to occur when forming electrodes or during polarization.

従って、本発明は、緻密で機械的強度が大きく、高い焦
電評価指数および比較的高いキュリー温度を有する焦電
性磁器組成物を得ることを目的とする。
Therefore, an object of the present invention is to obtain a pyroelectric porcelain composition which is dense and has a large mechanical strength, a high pyroelectric evaluation index, and a relatively high Curie temperature.

(課題を解決するための手段) 本発明は、前記問題点を解決する手段として、 一般式: (Pb1-xCax)〔(Cu1/2W1/2)yTi1-y〕O3(但し、x,yはCaお
よび(Cu1/2W1/2)のモル分率で0.25≦x≦0.32、0.02≦
y≦0.04である。)で示される組成を有する化合物を主
成分とし、副成分としてMnを0.3〜2.5原子%含有するこ
とを特徴とする焦電性磁器組成物を提供するものであ
る。
(Means for Solving the Problem) The present invention provides, as a means for solving the above problems, a compound represented by the general formula: (Pb 1-x Ca x ) [(Cu 1/2 W 1/2 ) y Ti 1-y ] O 3 (where x and y are the molar fractions of Ca and (Cu 1/2 W 1/2 )) 0.25 ≦ x ≦ 0.32, 0.02 ≦
y ≦ 0.04. The present invention provides a pyroelectric porcelain composition comprising a compound having a composition represented by the formula (4) as a main component and containing Mn in an amount of 0.3 to 2.5 atom% as a subcomponent.

(作用) 本発明に係る焦電性磁器組成物を前記成分組成の範囲に
限定した理由について、それらの成分の作用と共に説明
する。
(Function) The reason why the pyroelectric porcelain composition according to the present invention is limited to the range of the component composition will be described together with the function of those components.

前記一般式におけるxが0.25未満では分極が困難で、比
誘電率が200未満となってセンサーのノイズが大きくな
り、また、xが0.32を越えると、比誘電率が大きくなり
すぎ焦電評価指数が小さくなり、しかも、1100℃以下で
の焼結が困難となるので、xは0.25〜0.32とした。
If x in the above general formula is less than 0.25, polarization is difficult and the relative permittivity is less than 200, and the noise of the sensor becomes large, and if x exceeds 0.32, the relative permittivity becomes too large and the pyroelectric evaluation index. Since x becomes small and it becomes difficult to sinter at 1100 ° C or lower, x was set to 0.25 to 0.32.

また、yが0.02未満あるいは0.04を越えると、低温での
焼結が困難となるので前記範囲とした。
If y is less than 0.02 or exceeds 0.04, it becomes difficult to sinter at low temperature, so the above range is set.

Mnは誘電損失(tan δ)を小さくしてセンサーにした場
合のノイズを抑制する効果があるが、その含有量が0.3
原子%未満では十分な効果が得られず、2.5原子%を越
えると、その効果がなくなるので0.3〜2.5原子%とし
た。
Mn has the effect of suppressing noise when the sensor is made by reducing the dielectric loss (tan δ), but its content is 0.3
If it is less than atomic%, a sufficient effect cannot be obtained, and if it exceeds 2.5 atomic%, the effect disappears, so the content was made 0.3 to 2.5 atomic%.

以下、本発明の実施例について説明する。Examples of the present invention will be described below.

(実施例) 素原料としてPb3O4、CaCO3、CuO、WO3、TiO2及びMnO2
用い、それぞれ第1表に示す組成になるように秤量し、
各混合原料を約16時間湿式混合した後、乾燥させ、850
℃で3時間仮焼した。この仮焼物を粉砕し、2〜5重量
%の有機バインダと共に10〜20時間湿式混合して造粒し
た後、乾燥させ60メッシュのふるいを用いて整粒した。
得られた粉末を750〜1000kg/cm2の圧力で、直径12mm、
厚さ1.3mmの円板に一軸プレス成型機で成形し、1050〜1
100℃で2時間焼成して磁器円板を得た。
(Example) using a Pb 3 O 4, CaCO 3, CuO, WO 3, TiO 2 and MnO 2 as raw materials were weighed so as to satisfy the composition respectively shown in Table 1,
Wet mix each mixed material for about 16 hours, then dry and mix.
It was calcined at ℃ for 3 hours. This calcined product was pulverized, wet-mixed with an organic binder of 2 to 5% by weight for 10 to 20 hours, granulated, dried, and sized using a 60-mesh sieve.
The obtained powder at a pressure of 750 to 1000 kg / cm 2 , a diameter of 12 mm,
Molded on a 1.3 mm thick disk with a uniaxial press molding machine, and 105-1
A porcelain disc was obtained by firing at 100 ° C. for 2 hours.

前記磁器円板の両面にAg電極を焼き付け、温度150℃、
印加電圧4.0kv/mmで30分分極処理を施して試料とした。
Baking Ag electrodes on both sides of the porcelain disk, temperature 150 ℃,
A sample was obtained by polarization for 30 minutes at an applied voltage of 4.0 kv / mm.

各試料について比誘電率(εr)、誘電正接(tan δ)、
焦電係数(λ)、体積比熱(Cv)、キュリー温度、抗折
強度を測定し、出力電圧感度に対する材料評価指数(Fv)
を求めた。それらの結果を焼結温度と共に第1表に示
す。第1表中、*を付した試料は本発明の範囲外の組成
のものである。
Relative permittivity (ε r ), dielectric loss tangent (tan δ),
Pyroelectric coefficient (λ), volume specific heat (Cv), Curie temperature, flexural strength were measured, and material evaluation index (F v ) for output voltage sensitivity
I asked. The results are shown in Table 1 together with the sintering temperature. In Table 1, samples marked with * have compositions outside the scope of the present invention.

(比較例) 第2表に示す各組成の焦電体からなる試料について、そ
れらの特性を第2表に示す。
(Comparative Example) Table 2 shows the characteristics of samples made of pyroelectric materials having the respective compositions shown in Table 2.

第1表及び第2表の結果から明らかなように、本発明に
係る焦電性磁器組成物は、比誘電率が200〜600と適度に
高く、高い評価指数(Fv)を示す。また、キュリー温度も
200℃以上であり、約1600kg/cm2に達する抗折強度を示
すだけでなく、従来のチタン酸ジルコン酸鉛系磁器組成
物に比べて約150〜200℃低い温度で焼結できる。
As is clear from the results in Tables 1 and 2, the pyroelectric porcelain composition according to the present invention has a reasonably high relative dielectric constant of 200 to 600 and a high evaluation index (F v ). Also, the Curie temperature
It has a bending strength of 200 ° C or more and reaches about 1600 kg / cm 2 , and it can be sintered at a temperature about 150 to 200 ° C lower than that of the conventional lead zirconate titanate porcelain composition.

例えば、本発明に係る焦電性磁器組成物である第1表の
試料1と、第2表に示す従来のチタン酸ジルコン酸鉛系
磁器組成物の試料4とを比較すると、本発明に係るもの
は後者に比べて約16%評価指数が向上している。また、
本発明に係る試料は1400〜1600kg/cm2の高い抗折強度を
有するのに対し、第2表の試料4の抗折強度630kg/cm2
に比べて約2.3倍も向上している。さらに、本発明に係
る磁器組成物はいづれも焼結温度が1100℃以下であるの
に対し、比較試料4の焼結温度は1250℃であった。
For example, comparing sample 1 of Table 1 which is a pyroelectric porcelain composition according to the present invention with sample 4 of the conventional lead zirconate titanate porcelain composition shown in Table 2 of the present invention, The thing with the evaluation index improved about 16% compared with the latter. Also,
The sample according to the present invention has a high bending strength of 1400-1600 kg / cm 2 , while the bending strength of sample 4 in Table 2 is 630 kg / cm 2
It is about 2.3 times better than. Further, the sintering temperature of each of the porcelain compositions according to the present invention was 1100 ° C. or lower, whereas the sintering temperature of Comparative Sample 4 was 1250 ° C.

(効果) 以上の説明から明らかなように、本発明によれば、焦電
係数が高く、また、キュリー点が200℃以上で温度安定
性の高い高感度の焦電素子が得られる。また、本発明の
焦電性磁器組成物を焦電型赤外線センターに適用する
と、比誘電率が200〜600と適度であるため、電極面積を
小さくしても外部浮遊容量の影響を受けず、ノイズが小
さく、高感度で応答性が良い焦電素子を得ることができ
る。また、緻密で機械的強度が高いため歩留まりを向上
させることができるなど、優れた効果が得られる。
(Effect) As is apparent from the above description, according to the present invention, a highly sensitive pyroelectric element having a high pyroelectric coefficient and a Curie point of 200 ° C. or higher and high temperature stability can be obtained. Further, when the pyroelectric porcelain composition of the present invention is applied to a pyroelectric infrared center, since the relative dielectric constant is 200 to 600 and moderate, even if the electrode area is reduced, it is not affected by external stray capacitance, It is possible to obtain a pyroelectric element with low noise, high sensitivity, and good responsiveness. In addition, since it is dense and has high mechanical strength, the yield can be improved, and other excellent effects can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一般式: (Pb1-xCax)〔(Cu1/2W1/2)yTi1-y〕O3(但し、x,yはCaお
よび(Cu1/2W1/2)のモル分率で0.25≦x≦0.32、0.02≦
y≦0.04である。)で示される組成を有する化合物を主
成分とし、副成分としてMnを0.3〜2.5原子%含有するこ
とを特徴とする焦電性磁器組成物。
1. A general formula: (Pb 1-x Ca x ) [(Cu 1/2 W 1/2 ) y Ti 1-y ] O 3 (where x and y are Ca and (Cu 1/2 W 1/2 ) mole fraction 0.25 ≦ x ≦ 0.32, 0.02 ≦
y ≦ 0.04. ) A pyroelectric porcelain composition comprising as a main component a compound having a composition represented by the formula (1) and containing 0.3 to 2.5 atom% of Mn as a subcomponent.
JP63057264A 1988-03-09 1988-03-09 Pyroelectric porcelain composition Expired - Fee Related JPH0672047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63057264A JPH0672047B2 (en) 1988-03-09 1988-03-09 Pyroelectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63057264A JPH0672047B2 (en) 1988-03-09 1988-03-09 Pyroelectric porcelain composition

Publications (2)

Publication Number Publication Date
JPH01230468A JPH01230468A (en) 1989-09-13
JPH0672047B2 true JPH0672047B2 (en) 1994-09-14

Family

ID=13050666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63057264A Expired - Fee Related JPH0672047B2 (en) 1988-03-09 1988-03-09 Pyroelectric porcelain composition

Country Status (1)

Country Link
JP (1) JPH0672047B2 (en)

Also Published As

Publication number Publication date
JPH01230468A (en) 1989-09-13

Similar Documents

Publication Publication Date Title
JP3198906B2 (en) Piezoelectric porcelain composition
US4761242A (en) Piezoelectric ceramic composition
JP3385999B2 (en) Piezoelectric ceramic composition, piezoelectric buzzer and piezoelectric actuator using the same
CA1251037A (en) Dielectric ceramic composition
JPH0672047B2 (en) Pyroelectric porcelain composition
JPH06263535A (en) Piezoelectric ceramic
US5254278A (en) Lead titanate based piezoelectric ceramic material
JPH01261876A (en) Pyroelectric porcelain composition
US4710311A (en) Piezoelectric ceramic composition
JP2833751B2 (en) Porcelain composition for pyroelectric elements
JPH0237045B2 (en)
JP2737451B2 (en) Piezoelectric material
JP2536679B2 (en) Positive characteristic thermistor material
JP2910340B2 (en) Piezoelectric porcelain composition
JPH01230469A (en) Pyroelectric porcelain composition
JPH0714836B2 (en) Pyroelectric porcelain composition
JP2571658B2 (en) Pyroelectric porcelain composition
JP2788925B2 (en) Piezoelectric porcelain composition
JPH0742166B2 (en) Pyroelectric porcelain composition
JPH06256061A (en) Piezoelectric porcelain
JP2892268B2 (en) Piezoelectric ceramic composition
JPH04170364A (en) Piezoelectric porcelain composition
JPH06252468A (en) Piezoelectric porcelain
JP3445879B2 (en) Dielectric porcelain composition
JPH0338892A (en) Piezoelectric porcelain composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees