JPH0668465A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPH0668465A
JPH0668465A JP22438492A JP22438492A JPH0668465A JP H0668465 A JPH0668465 A JP H0668465A JP 22438492 A JP22438492 A JP 22438492A JP 22438492 A JP22438492 A JP 22438492A JP H0668465 A JPH0668465 A JP H0668465A
Authority
JP
Japan
Prior art keywords
temperature
substrate
recording medium
magnetic recording
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22438492A
Other languages
Japanese (ja)
Other versions
JP3210736B2 (en
Inventor
Tomio Takase
富朗 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP22438492A priority Critical patent/JP3210736B2/en
Publication of JPH0668465A publication Critical patent/JPH0668465A/en
Application granted granted Critical
Publication of JP3210736B2 publication Critical patent/JP3210736B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To provide the process for production of the magnetic recording medium which can deal with a trend toward higher densities and having high coercive force. CONSTITUTION:This process for production of the magnetic recording medium includes a stage for cooling a laminate formed by laminating a metallic recording layer contg. a ferromagnetic material having the coefft. of thermal expansion larger than the coefft. of thermal expansion of a substrate on this substrate directly or via a ground surface layer from a temp. Ta1 of 300 to 450 deg.C down to a temp. Ta2 of <=150 deg.C or from a temp. Tb1 of 450 to 700 deg.C down to a temp. Tb2 lower by >=300 deg.C from the above-mentioned temp. Tb1 at >=10 deg.C/min average cooling rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ハードディスク等に使
用される磁気記録媒体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a magnetic recording medium used for a hard disk or the like.

【0002】[0002]

【従来の技術】近年、ハードディスク装置は大容量化、
小型化、高速化の傾向が著しく、この種の装置に用いら
れる磁気記録媒体には、より高い記録密度が要求されて
いる。磁気記録媒体にとって、高記録密度を実現させる
ために最も重要な磁気特性は保持力および残留磁化がと
もに大きいことである。
2. Description of the Related Art In recent years, the capacity of hard disk devices has increased,
The tendency toward miniaturization and high speed is remarkable, and higher recording density is required for the magnetic recording medium used in this type of device. For a magnetic recording medium, the most important magnetic characteristics for achieving high recording density are high coercive force and residual magnetization.

【0003】従来、この種の磁気記録媒体の製造方法と
して、特開昭62−117143号公報には、基板に、
金属からなる記録層を積層し、その後、真空又は不活性
ガス中にて、250〜600℃で、1〜30時間程度保
持し、結晶粒界の明確化及び結晶発達を行う工程を有す
るものが開示されている。なお、この公報には、前記の
熱処理の後の冷却工程については記載されておらず、通
常熱処理後放冷により磁気記録媒体が作製されている。
As a conventional method of manufacturing a magnetic recording medium of this type, Japanese Patent Application Laid-Open No. 62-117143 discloses that a substrate is
What has a step of stacking a recording layer made of a metal and then holding it in a vacuum or an inert gas at 250 to 600 ° C. for about 1 to 30 hours to clarify the crystal grain boundary and develop the crystal. It is disclosed. It should be noted that this publication does not describe the cooling step after the above-mentioned heat treatment, and the magnetic recording medium is usually manufactured by cooling after the heat treatment.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
方法で得られる磁気記録媒体の保持力は900(Oe)
程度が限度であり、今後の高密度化に対応可能な保持力
としては低すぎ、さらに保持力の高い磁気記録媒体の登
場が望まれている。したがって、本発明の目的は、高密
度化に対応可能な、より高い保持力を有する磁気記録媒
体を製造する方法を提供することにある。
However, the coercive force of the magnetic recording medium obtained by the above method is 900 (Oe).
The degree is limited, and the holding power is too low as it can cope with the future high density, and it is desired to introduce a magnetic recording medium having a higher holding power. Therefore, an object of the present invention is to provide a method of manufacturing a magnetic recording medium having a higher coercive force, which can cope with higher density.

【0005】[0005]

【課題を解決するための手段】上記目的を達成する本発
明の第1の磁気記録媒体の製造方法(以下、この方法を
便宜上第1の方法という)は、基板上に直接又は下地層
を介して、前記基板の熱膨張係数よりも大きい熱膨張係
数を有する強磁性体を含む金属記録層を積層した積層体
を、300℃〜450℃の冷却開始温度Ta1から、15
0℃以下の温度Ta2まで、平均10℃/分以上の速度で
冷却する工程を含むことを特徴とする。
The first method of manufacturing a magnetic recording medium of the present invention which achieves the above object (hereinafter, this method is referred to as the first method for convenience) is directed to a substrate directly or via an underlayer. Then, from the cooling start temperature T a1 of 300 ° C. to 450 ° C., a laminated body in which a metal recording layer containing a ferromagnetic material having a thermal expansion coefficient larger than that of the substrate is laminated is
It is characterized by including a step of cooling at a rate of 10 ° C./min or more on average to a temperature T a2 of 0 ° C. or less.

【0006】また、上記目的を達成する本発明の第2の
磁気記録媒体の製造方法(以下、この方法を便宜上第2
の方法という)は、基板上に直接または下地層を介し
て、前記基板の熱膨張係数よりも大きい熱膨張係数を有
する強磁性体を含む金属記録層を積層した積層体を、4
50℃〜700℃の冷却開始温度Tb1から、前記冷却開
始温度より300℃以上低い温度Tb2まで、平均10℃
/分以上の速度で冷却する工程を含むことを特徴とす
る。
A second method for manufacturing a magnetic recording medium of the present invention which achieves the above object (hereinafter, this method will be referred to as a second method for convenience).
Method), a laminated body in which a metal recording layer containing a ferromagnetic material having a coefficient of thermal expansion larger than that of the substrate is laminated on the substrate directly or via an underlayer.
From a cooling start temperature T b1 of 50 ° C. to 700 ° C. to a temperature T b2 lower than the cooling start temperature by 300 ° C. or more, an average of 10 ° C.
It is characterized by including a step of cooling at a rate of not less than / min.

【0007】以下、本発明を詳説する。本発明の磁気記
録媒体の製造方法(前記第1の方法および第2の方法)
では基板上に直接または下地層を介して、強磁性体を含
む金属薄膜を形成した後、強磁性金属薄膜付き基板を所
定の高い基板温度から室温近くまで、所定の早い冷却速
度にて冷却するので、前記基板と強磁性金属薄膜との熱
膨張係数の差違により、強磁性金属薄膜内に大きな内部
応力いわゆる熱応力がもたらされる結果、前記強磁性体
金属固有の逆磁歪効果により磁気異方性がもたらされ
る。このため、媒体が本来持つ面内異方性にこの効果が
付加されるため、従来の金属薄膜媒体では得られない大
きな保磁力が、残留磁化の低下を最小限に抑えて実現さ
れる。
The present invention will be described in detail below. Method for manufacturing magnetic recording medium of the present invention (first method and second method)
Then, after forming a metal thin film containing a ferromagnetic material directly on the substrate or via an underlayer, the substrate with the ferromagnetic metal thin film is cooled at a predetermined high cooling rate from a predetermined high substrate temperature to near room temperature. Therefore, due to the difference in the thermal expansion coefficient between the substrate and the ferromagnetic metal thin film, a large internal stress, so-called thermal stress, is brought into the ferromagnetic metal thin film, and as a result, the magnetic anisotropy is produced due to the inverse magnetostriction effect peculiar to the ferromagnetic metal. Is brought about. For this reason, this effect is added to the in-plane anisotropy inherent in the medium, so that a large coercive force that cannot be obtained by the conventional metal thin film medium is realized while minimizing the decrease in remanent magnetization.

【0008】この作用について、より具体的に以下に説
明する。例として、アルミノシリケートガラス基板上に
コバルト磁性層を形成した積層体の場合について説明す
る。このとき熱膨張の方向および磁気的性質は媒体面内
で等方的であるとする。
This action will be described more specifically below. As an example, a case of a laminated body in which a cobalt magnetic layer is formed on an aluminosilicate glass substrate will be described. At this time, the direction of thermal expansion and the magnetic properties are assumed to be isotropic in the plane of the medium.

【0009】基板上に磁性薄膜を形成した積層体をある
熱処理温度から急冷した場合に、磁性薄膜内に発生する
内部応力は次の(1)式で表わされる。 P=E(αs −αm )(ta −ts ) [kg/mm2 ] …(1) ここで、 E:磁性薄膜のヤング率[kg/mm2 ] αs :基板の熱膨張係数 αm :磁性薄膜の熱膨張係数 ta :熱処理温度=冷却開始温度[℃] ts :冷却後の温度[℃] 前記積層体の場合、コバルトのヤング率E=21×10
3 kg/mm2 、αs =91×10-7、αm =123×
10-7とし、ta =400℃からts =室温25℃まで
急冷した場合、P=25.2kg/mm2 となる。この
とき、Pの符号は正であるから、引張応力である。
When a laminated body having a magnetic thin film formed on a substrate is rapidly cooled from a certain heat treatment temperature, the internal stress generated in the magnetic thin film is expressed by the following equation (1). P = E (α s -α m ) (t a -t s) [kg / mm 2] ... (1) where, E: Young's modulus of the magnetic thin film [kg / mm 2] α s : thermal expansion of the substrate coefficient alpha m: thermal expansion coefficient of the magnetic thin film t a: heat treatment temperature = cooling start temperature [℃] t s: for temperature [℃] the laminate after cooling, the Young's modulus E = 21 × 10 cobalt
3 kg / mm 2 , α s = 91 × 10 −7 , α m = 123 ×
When 10 -7 is set and when rapidly cooled from t a = 400 ° C. to t s = room temperature 25 ° C., P = 25.2 kg / mm 2 . At this time, since the sign of P is positive, it is a tensile stress.

【0010】ここで、磁歪定数が正の場合、磁性体が磁
化したとき磁化方向に長さが伸びる。このとき、内部応
力として引張応力が存在すると、長さが伸びることによ
り応力が緩和されることになり、つまりエネルギーがよ
り小さい安定状態へ変化することになるので、磁気的に
は磁化を促進することになり、保磁力は増大することに
なる。このことを、より一般化していえば、応力と磁歪
定数の符号が一致するとき保磁力Hcは増加し、不一致
の時は低下することになる。
Here, when the magnetostriction constant is positive, when the magnetic body is magnetized, the length thereof extends in the magnetization direction. At this time, if a tensile stress is present as an internal stress, the stress is relaxed by the elongation of the length, that is, the energy changes to a smaller stable state, so that the magnetization is magnetically promoted. As a result, the coercive force will increase. If this is generalized, the coercive force Hc increases when the stress and the sign of the magnetostriction constant match, and decreases when they do not match.

【0011】内部応力による保磁力の変化(ΔHc)は
(2)式により表わされる。 ΔHc=3λσ/Ms [Oe] …(2) ここで、 λ:磁歪定数 σ:内部応力[dyne/cm2 ] Ms:飽和磁化[G] コバルト合金の磁歪定数λ=50×10-6、飽和磁化M
s=1400Gとし、上で求めた内部応力P=25.2
kg/mm2 を用いると、ΔHc=265(Oe)とな
る。したがって、急冷により、この場合保磁力Hcが2
650(Oe)増加することになる。
The change (ΔHc) in coercive force due to internal stress is expressed by equation (2). ΔHc = 3λσ / Ms [Oe] (2) where λ: magnetostriction constant σ: internal stress [dyne / cm 2 ] Ms: saturation magnetization [G] magnetostriction constant of cobalt alloy λ = 50 × 10 −6 , saturation Magnetization M
With s = 1400 G, the internal stress P obtained above is 25.2.
Using kg / mm 2 , ΔHc = 265 (Oe). Therefore, due to the rapid cooling, the coercive force Hc in this case is 2
It will be increased by 650 (Oe).

【0012】表1に、Co磁性膜と種々の基板の組合せ
の場合の保磁力変化ΔHcの計算結果を示した。
Table 1 shows the calculation results of the coercive force change ΔHc when the Co magnetic film and various substrates are combined.

【0013】[0013]

【表1】 表1より、石英ガラスは熱膨張係数が小さいため、保磁
力変化が非常に大きいことが分かる。また、Al基板の
場合は熱膨張係数がCoより大きいのでCo磁性膜は圧
縮応力となり、保磁力は減少してしまう。このようにC
o合金薄膜媒体の場合、Al基板では急冷による保磁力
向上効果は得られないことが分かる。
[Table 1] It can be seen from Table 1 that the coefficient of thermal expansion of quartz glass is small and therefore the change in coercive force is very large. Further, in the case of the Al substrate, the coefficient of thermal expansion is larger than Co, so that the Co magnetic film becomes a compressive stress and the coercive force is reduced. Thus C
It can be seen that in the case of the o alloy thin film medium, the Al substrate does not provide the effect of improving the coercive force by rapid cooling.

【0014】なお、上述の計算式では、記録層等の膜厚
や積層体の冷却速度等を考慮していないために、実際の
製造で得られた磁気記録媒体においては、その保持力の
変化は、上述の計算結果の通りとはいかないが、少なく
とも基板の熱膨張係数が記録層のそれよりも小さい場合
には、下記実施例に示す通り、保持力が大きくなる傾向
を示す。また、これまで、本発明の作用について、基板
に直接記録層を積層した場合について説明したが、基板
と記録層との間にCr等からなる下地層を形成している
場合にも、上述の同様な傾向を示し、保持力は大きくな
る。この理由は、基板の厚さが通常数mm以上あるのに
対して、記録層と下地層の厚さはせいぜい数千オングス
トローム程度しかないことから、前記下地層が前記基板
と前記記録層と間の膨張係数の差を緩和することが出来
ないことによるものである。
In the above formula, since the film thickness of the recording layer and the cooling rate of the laminated body are not taken into consideration, the change of the coercive force of the magnetic recording medium obtained by actual manufacturing is considered. Although it is not the same as the above calculation result, when at least the coefficient of thermal expansion of the substrate is smaller than that of the recording layer, the holding force tends to increase as shown in the following examples. Further, the operation of the present invention has been described so far in the case where the recording layer is directly laminated on the substrate. However, even when the underlayer made of Cr or the like is formed between the substrate and the recording layer, A similar tendency is exhibited, and the holding power is increased. The reason for this is that the thickness of the substrate is usually several mm or more, whereas the thickness of the recording layer and the underlying layer is only about several thousand angstroms at the most, so that the underlying layer is between the substrate and the recording layer. This is because it is not possible to reduce the difference in the expansion coefficient of.

【0015】以下、本発明の磁気記録媒体の製造方法に
ついて、さらに詳しく説明する。
The method of manufacturing the magnetic recording medium of the present invention will be described in more detail below.

【0016】本発明において、平均の冷却速度とは、第
1の方法において、冷却開始温度Ta1、その時の時刻t
a1、急冷の終了時の温度Ta2、その時の時刻ta2で表し
たとき、(Ta1−Ta2/ta2−ta1)の意味である。ま
た、第2の方法において、平均の冷却速度とは、冷却開
始温度Tb1、その時の時刻tb1、急冷の終了時の温度T
b2、その時の時刻tb2で表したとき、(Tb1−Tb2/t
b2−tb1)の意味である。第1および第2の方法におい
て、この平均の冷却速度を10℃/分以上としたのは、
10℃/分未満であると、内部応力が大きくならず、上
述した逆磁歪効果が生じにくくなるため、保持力を大き
くできないからである。好ましくは、30℃/分以上で
ある。なお、この急冷後は、10℃/分未満の速度で冷
却してもよい。なお参考のため述べると、例えば400
℃の積層体を150℃まで放冷する場合の平均冷却速度
はせいぜい5℃/分程度である。
In the present invention, the average cooling rate is the cooling start temperature T a1 in the first method and the time t at that time.
a1 , temperature T a2 at the end of quenching, and time t a2 at that time, (T a1 −T a2 / t a2 −t a1 ). In the second method, the average cooling rate is the cooling start temperature T b1 , the time t b1 at that time, and the temperature T at the end of the rapid cooling.
b2 , when represented by time t b2 at that time, (T b1 −T b2 / t
b2 is the meaning of -t b1). In the first and second methods, the average cooling rate is set to 10 ° C./minute or more,
This is because if it is less than 10 ° C./min, the internal stress does not become large and the above-mentioned inverse magnetostriction effect becomes difficult to occur, so that the holding force cannot be made large. It is preferably 30 ° C./minute or more. In addition, you may cool at a rate of less than 10 degree-C / min after this rapid cooling. For reference, for example, 400
The average cooling rate in the case of cooling the laminated body at 150 ° C. to 150 ° C. is at most about 5 ° C./min.

【0017】また、冷却開始温度は、第1の方法ではT
a1=300〜450℃、第2の方法では、Tb1=450
〜700℃としたが、本発明の目的達成のためには、冷
却開始温度をこのどちらかの範囲にすればよい。すなわ
ち、本発明では、冷却開始温度を300〜700℃にす
ればよい。この冷却開始温度を300〜700℃とした
のは、300℃未満であると、内部応力が大きくなら
ず、上述した逆磁歪効果が生じにくくなり、保持力を大
きくすることができなくなるためであり、逆に、700
℃を超えると、結晶が成長して粒径が大きくなりすぎ
て、残留磁化保持力が著しく低下し、ノイズの増大を引
き起こすためである。冷却開始温度は好ましくは、34
0℃〜660℃、すなわち、第1の方法では、冷却開始
温度Ta1の好ましい範囲は340〜450℃となり、第
2の方法では、冷却開始温度Tb1の好ましい範囲は45
0〜660℃となる。
The cooling start temperature is T in the first method.
a1 = 300 to 450 ° C., T b1 = 450 in the second method
Although the temperature is set to ˜700 ° C., in order to achieve the object of the present invention, the cooling start temperature may be set to either of these ranges. That is, in the present invention, the cooling start temperature may be set to 300 to 700 ° C. The reason why the cooling start temperature is set to 300 to 700 ° C. is that if the temperature is lower than 300 ° C., the internal stress does not increase, the above-described inverse magnetostriction effect hardly occurs, and the coercive force cannot be increased. , On the contrary, 700
This is because if the temperature exceeds ℃, the crystal grows and the grain size becomes too large, and the coercive force of the residual magnetization is remarkably lowered, causing an increase in noise. The cooling start temperature is preferably 34
0 ° C to 660 ° C, that is, in the first method, the preferable range of the cooling start temperature T a1 is 340 to 450 ° C, and in the second method, the preferable range of the cooling start temperature T b1 is 45.
It becomes 0-660 degreeC.

【0018】また、第1の方法において、急冷終了の温
度Ta2を、150℃以下の温度としたが、これは、15
0℃以下で、冷却速度を小さくしても熱応力および逆磁
歪効果に対する影響力がほとんどないためである。この
ため、第1の方法において急冷終了の温度Ta2を150
℃以下の温度とする。
In the first method, the temperature T a2 at the end of quenching is set to 150 ° C. or lower.
This is because at 0 ° C. or lower, even if the cooling rate is reduced, there is almost no influence on the thermal stress and the inverse magnetostriction effect. Therefore, in the first method, the temperature T a2 at the end of quenching is set to 150.
The temperature shall be below ℃.

【0019】これに対して、第2の方法では、急冷終了
の温度Tb2は、冷却開始温度Tb1より300℃以上低い
温度とし、150℃以下と限定しなかったが、これは冷
却開始温度Tb1と急冷の終了温度Tb2との差を300℃
以上としたので、十分に大きい内部応力を得ることがで
き、保持力を大きくすることができるためである。な
お、第2の方法においても、急冷の終了の温度Tb2を1
50℃以下とすることが、より高い保持力を得る上で好
ましい。
On the other hand, in the second method, the temperature T b2 at the end of the rapid cooling is set to be a temperature lower than the cooling start temperature T b1 by 300 ° C. or more and not limited to 150 ° C. or less. The difference between T b1 and the quenching end temperature T b2 is 300 ° C.
This is because, since the above is performed, a sufficiently large internal stress can be obtained and the holding force can be increased. In the second method as well, the temperature T b2 at the end of quenching is set to 1
A temperature of 50 ° C. or lower is preferable in order to obtain higher holding power.

【0020】本発明において、基板は、前記の熱処理に
耐えることができ、また、記録層より熱膨張係数が小さ
いことが望まれる。このため、基板は、ガラス基板(ア
ルミノシリケートガラス、ソーダライムガラス、石英ガ
ラスなど)またはセラミック基板(Al2 3 系,Zr
2 系,Al2 3 −TiC(アルチック)など)が好
ましい。
In the present invention, it is desired that the substrate be able to withstand the above heat treatment and have a smaller coefficient of thermal expansion than the recording layer. Therefore, the substrate is a glass substrate (aluminosilicate glass, soda lime glass, quartz glass, etc.) or a ceramic substrate (Al 2 O 3 system, Zr).
O 2 type, Al 2 O 3 —TiC (Altic) and the like) are preferable.

【0021】また、前記基板と前記記録層との間に、C
r等からなる下地層を設けても良く、また前記記録層の
上に、カーボン、Cr、酸化珪素又は窒化珪素等からな
る保護層を設けても良い。
Further, C is provided between the substrate and the recording layer.
An underlayer made of r or the like may be provided, and a protective layer made of carbon, Cr, silicon oxide, silicon nitride or the like may be provided on the recording layer.

【0022】また、前記の熱処理工程は、記録層を設け
た後ならばいつでも良い。すなわち磁気記録媒体に保護
層を設ける場合にあっては、前記保護層を形成した後に
熱処理を行っても良く、また熱処理を行った後に保護層
を形成しても良い。
The heat treatment step may be performed any time after the recording layer is provided. That is, in the case of providing a protective layer on the magnetic recording medium, heat treatment may be performed after forming the protective layer, or the protective layer may be formed after performing heat treatment.

【0023】また、前記の積層体を前記冷却開始温度に
する方法は、前記冷却温度よりも低い温度(例えば室
温)で記録層等を積層して積層体を得た後、この積層体
を高温に保持して所定の冷却開始温度にする方法と、前
記の記録層等の積層を冷却開始温度で行い、冷却開始ま
で積層体を冷却開始温度に保持する方法とがある。
Further, the method of bringing the laminate to the cooling start temperature is as follows. After the recording layers and the like are laminated at a temperature lower than the cooling temperature (for example, room temperature) to obtain a laminate, the laminate is heated to a high temperature. And a predetermined cooling start temperature, and a method of stacking the recording layers and the like at the cooling start temperature and holding the laminated body at the cooling start temperature until the cooling starts.

【0024】前者の方法において、高温に保持する時間
は、基板が所定の冷却開始温度内に収めることができる
ような時間であればよい。なお、この時間が過度に長す
ぎると、結晶が成長して粒径が大きくなりすぎて、残留
磁化保持力の低下を招く。また、高温であればある程こ
の時間は短縮した方がよい。例えば、冷却開始温度が4
00℃であれば、通常約10分〜10時間程度この温度
に保持されるが、冷却開始温度が高くなればなる程この
時間を短縮するのが好ましい。
In the former method, the time for holding the substrate at a high temperature may be any time that the substrate can be kept within a predetermined cooling start temperature. If this time is too long, crystals grow and the grain size becomes too large, resulting in a decrease in the residual magnetization coercive force. Also, the higher the temperature, the shorter this time should be. For example, the cooling start temperature is 4
If it is 00 ° C., this temperature is usually maintained for about 10 minutes to 10 hours, but it is preferable to shorten this time as the cooling start temperature becomes higher.

【0025】[0025]

【実施例】以下、本発明の実施例について詳細に説明す
るが、本発明はこれらの実施例に限定されるものではな
い。本発明の実施例に用いたスパッタ装置は、複数のタ
ーゲットを備えたスパッタ室と、アニールを行うアニー
ル室を備えている。基板上の金属層の酸化を防ぐため、
両室はバルブを備えたチューブで連通させており、基板
を大気に曝すことなく両室間を移動させることができる
ようにしている。また、両室はそれぞれ独立に真空ポン
プ並びに窒素及びアルゴン等のガス導入装置系を備えて
いる。さらに、アニール室では、基板を保持するパレッ
トには冷却水配管が備えられており、水の温度または水
の流量を調製することによって、冷却速度を制御するこ
とができる。
EXAMPLES Examples of the present invention will now be described in detail, but the present invention is not limited to these examples. The sputtering apparatus used in the examples of the present invention includes a sputtering chamber having a plurality of targets and an annealing chamber for performing annealing. To prevent oxidation of the metal layer on the substrate,
Both chambers are connected by a tube equipped with a valve so that the substrate can be moved between the chambers without being exposed to the atmosphere. Further, both chambers are independently equipped with a vacuum pump and a system for introducing gas such as nitrogen and argon. Further, in the annealing chamber, the pallet holding the substrate is equipped with a cooling water pipe, and the cooling rate can be controlled by adjusting the temperature of the water or the flow rate of the water.

【0026】なお、本実施例において、磁気特性(保持
力および残留磁化)の測定には試料振動式磁力計(デジ
タル メジャーメント システム社製モデル880)を
使用した。
In this example, a sample vibrating magnetometer (Model 880 manufactured by Digital Measurement System Co., Ltd.) was used to measure the magnetic properties (coercive force and residual magnetization).

【0027】(実施例1〜6)アルミノシリケートガラ
ス基板をスパッタ室にセットした後、室内を4×10-7
Torrに到達するまで排気した。つづいて、Arガス
を導入した。この時のArガス圧は10mTorrであ
った。ガラス基板上にスパッタリングにより下地層とし
てCr非磁性体層を350オングストローム/分の速度
で3000オングストローム積層し、この上に記録層と
してCoNiCr強磁性体層(Co/Ni/Cr=65
/25/10)を400オングストローム/分の速度で
500オングストローム積層した。このようにして基板
上に2層構造を有する6個の積層体を得た。
(Examples 1 to 6) After setting the aluminosilicate glass substrate in the sputtering chamber, the chamber was set at 4 × 10 -7.
Evacuated until reaching Torr. Subsequently, Ar gas was introduced. At this time, the Ar gas pressure was 10 mTorr. A Cr non-magnetic material layer as a base layer was laminated on a glass substrate at a rate of 350 angstroms / minute for 3000 angstroms by sputtering, and a CoNiCr ferromagnetic material layer (Co / Ni / Cr = 65) was formed thereon as a recording layer.
/ 25/10) was laminated at a rate of 400 Å / min to 500 Å. In this way, six laminated bodies having a two-layer structure were obtained on the substrate.

【0028】これらの積層体をアニール室に移動して、
記録層の酸化を防ぐために室内を真空度2×10-5To
rrに到達するまで排気した後、アニール室を昇温速度
5℃/分で、それぞれ、表2に示すように、所定冷却開
始温度Ta1またはTb1(℃)まで昇温し、表2に示すよ
うに、その温度で所定時間t(hr)保持した後、所定
冷却速度v(℃/min)にて、所定冷却終了温度Ta2
又はTb2(℃)まで急冷し、その後放冷した。
These laminated bodies are moved to an annealing chamber,
In order to prevent the recording layer from being oxidized, the degree of vacuum in the chamber is 2 × 10 -5 To
After evacuating until reaching rr, the annealing chamber was heated at a heating rate of 5 ° C./min to a predetermined cooling start temperature T a1 or T b1 (° C.), respectively, as shown in Table 2. As shown, after holding at that temperature for a predetermined time t (hr), at a predetermined cooling rate v (° C / min), a predetermined cooling end temperature T a2
Alternatively, it was rapidly cooled to T b2 (° C.) and then left to cool.

【0029】この後それぞれの積層体をスパッタ室へ移
動し、カーボン保護層を200オングストローム/分の
速度で300オングストローム積層して磁気記録媒体を
得た。得られた磁気記録媒体の保持力及び残留磁化は、
表2の記載から明らかなように、保持力(Hc)が12
10〜1870(Oe)、残留磁化(Mr)が451〜
710emu/ccと、数値が大きく、良好なものが得
られた。すなわち、本実施例1〜6で得られた磁気記録
媒体は、高密度記録に対応できることが分かった。
After that, each laminated body was moved to a sputtering chamber, and a carbon protective layer was laminated at 300 angstrom at a rate of 200 angstrom / minute to obtain a magnetic recording medium. The coercive force and residual magnetization of the obtained magnetic recording medium are
As is clear from the description in Table 2, the holding force (Hc) is 12
10-1870 (Oe), remanent magnetization (Mr) is 451-
A large value of 710 emu / cc was obtained, which was excellent. That is, it was found that the magnetic recording media obtained in Examples 1 to 6 could be applied to high density recording.

【0030】[0030]

【表2】 (実施例7〜10)石英ガラス基板をスパッタ室にセッ
トした後、室内を4×10-7Torrに到達するまで排
気した。つづいて、Arガスを導入した。この時のAr
ガス圧は10mTorrであった。ガラス基板上にスパ
ッタリングにより下地層としてCr非磁性体層を350
オングストローム/分の速度で3000オングストロー
ム積層し、この上に記録層としてCoNiCr強磁性体
層(Co/Ni/Cr=65/25/10)を400オ
ングストローム/分の速度で500オングストローム積
層した。このようにして基板上に3層構造を有する4個
の積層体を得た。
[Table 2] (Examples 7 to 10) The quartz glass substrate was set in the sputtering chamber, and then the chamber was evacuated until it reached 4 × 10 -7 Torr. Subsequently, Ar gas was introduced. Ar at this time
The gas pressure was 10 mTorr. A Cr non-magnetic layer is formed on the glass substrate by sputtering as an underlayer.
A 3000 angstrom layer was formed at a rate of angstrom / minute, and a CoNiCr ferromagnetic layer (Co / Ni / Cr = 65/25/10) was formed as a recording layer on this layer at a rate of 400 angstrom / minute. In this way, four laminated bodies having a three-layer structure were obtained on the substrate.

【0031】これらの積層体をアニール室に移動して、
記録層の酸化を防ぐために室内を真空度2×10-5To
rrに到達するまで排気した後、アルゴンガスを導入し
てアルゴン雰囲気とした。その後、アニール室を昇温速
度5℃/分で、それぞれ、表3に示すように、所定冷却
開始温度Ta1またはTb1(℃)まで昇温し、表3に示す
ように、その温度で所定時間t(hr)保持した後、所
定冷却速度v(℃/min)にて、所定冷却終了温度T
a2又はTb2(℃)まで急冷し、その後放冷した。
These laminated bodies are moved to an annealing chamber,
In order to prevent the recording layer from being oxidized, the degree of vacuum in the chamber is 2 × 10 -5 To
After exhausting until reaching rr, an argon gas was introduced to make an argon atmosphere. After that, the annealing chamber is heated at a temperature rising rate of 5 ° C./minute to a predetermined cooling start temperature T a1 or T b1 (° C.), respectively, as shown in Table 3, and at that temperature as shown in Table 3. After holding for a predetermined time t (hr), at a predetermined cooling rate v (° C./min), a predetermined cooling end temperature T
It was rapidly cooled to a2 or Tb2 (° C) and then left to cool.

【0032】この後それぞれの積層体をスパッタ室へ移
動し、カーボン保護層を200オングストローム/分の
速度で300オングストローム積層して磁気記録媒体を
得た。得られた磁気記録媒体の保持力及び残留磁化は、
表3の記載から明らかなように、保持力(Hc)が18
10〜2100(Oe)、残留磁化(Mr)が485〜
535emu/ccと、数値が大きく、良好なものが得
られた。すなわち、本実施例7〜10で得られた磁気記
録媒体は、高密度記録に対応できることが分かった。
After that, each laminated body was moved to a sputtering chamber, and a carbon protective layer was laminated at 300 angstrom at a rate of 200 angstrom / minute to obtain a magnetic recording medium. The coercive force and residual magnetization of the obtained magnetic recording medium are
As is clear from the description in Table 3, the holding force (Hc) is 18
10 to 2100 (Oe), remanent magnetization (Mr) is 485 to
A large value of 535 emu / cc was obtained, and a good result was obtained. That is, it was found that the magnetic recording media obtained in Examples 7 to 10 could be applied to high density recording.

【0033】[0033]

【表3】 実施例7〜10において、実施例1〜6より高い保持力
が得られるのは、アルミノシリケートガラスに比べて、
石英ガラスの熱膨張係数が小さいため、大きな逆磁歪効
果が得られるためと考えらる。
[Table 3] In Examples 7 to 10, a higher holding force than Examples 1 to 6 is obtained as compared with aluminosilicate glass.
It is considered that a large inverse magnetostriction effect can be obtained because the coefficient of thermal expansion of quartz glass is small.

【0034】(実施例11〜13)ソーダライムガラス
基板をスパッタ室にセットした後、室内を4×10-7
orrに到達するまで排気した。つづいて、Arガスを
導入した。この時のArガス圧は10mTorrであっ
た。ガラス基板上にスパッタリングにより下地層として
Cr非磁性体層を350オングストローム/分の速度で
2000オングストローム積層し、この上に記録層とし
てCoCrTa強磁性体層(Co/Cr/Ta=84/
14/2)を450オングストローム/分の速度で50
0オングストローム積層し、さらに、この上に保護層と
してCr非磁性体層を350オングストローム/分の速
度で100オングストローム積層した。このようにして
基板上に3層構造を有する3個の積層体を得た。
(Examples 11 to 13) After setting a soda lime glass substrate in the sputtering chamber, the chamber was set at 4 × 10 -7 T.
Exhausted until reaching orr. Subsequently, Ar gas was introduced. At this time, the Ar gas pressure was 10 mTorr. A Cr nonmagnetic layer as a base layer was laminated on a glass substrate at a rate of 350 Å / min to 2000 Å by sputtering, and a CoCrTa ferromagnetic layer (Co / Cr / Ta = 84 /) as a recording layer was formed thereon.
14/2) 50 at a speed of 450 angstroms / minute
0 angstrom was laminated, and a Cr nonmagnetic material layer was further laminated thereon as a protective layer at 100 angstrom at a speed of 350 angstrom / min. In this way, three laminated bodies having a three-layer structure were obtained on the substrate.

【0035】これらの積層体をアニール室に移動して、
記録層の酸化を防ぐために室内を真空度2×10-5To
rrに到達するまで排気した後、窒素ガスを導入して窒
素雰囲気とした。その後、アニール室を昇温速度5℃/
分で、それぞれ、表4に示すように、所定冷却開始温度
a1またはTb1(℃)まで昇温し、表4に示すように、
その温度で所定時間t(hr)保持した後、所定冷却速
度v(℃/min)にて、所定冷却終了温度Ta2又はT
b2(℃)まで急冷し、その後放冷した。
These laminates are moved to an annealing chamber,
In order to prevent the recording layer from being oxidized, the degree of vacuum in the chamber is 2 × 10 -5 To
After exhausting until reaching rr, nitrogen gas was introduced to make a nitrogen atmosphere. After that, the annealing chamber is heated at a heating rate of 5 ° C /
In minutes, the temperature is raised to a predetermined cooling start temperature T a1 or T b1 (° C.) as shown in Table 4, respectively, and as shown in Table 4,
After holding at that temperature for a predetermined time t (hr), at a predetermined cooling rate v (° C./min), a predetermined cooling end temperature T a2 or T
It was rapidly cooled to b2 (℃) and then left to cool.

【0036】この後それぞれの積層体をスパッタ室へ移
動し、カーボン保護層を200オングストローム/分の
速度で300オングストローム積層して磁気記録媒体を
得た。得られた磁気記録媒体の保持力及び残留磁化は、
表4の記載から明らかなように、保持力(Hc)が14
40〜1876(Oe)、残留磁化(Mr)が508〜
680emu/ccと、数値が大きく、良好なものが得
られた。すなわち、本実施例11〜13で得られた磁気
記録媒体は、高密度記録に対応できることが分かった。
Thereafter, each laminated body was moved to a sputtering chamber, and a carbon protective layer was laminated at a rate of 200 angstrom / min to 300 angstrom to obtain a magnetic recording medium. The coercive force and residual magnetization of the obtained magnetic recording medium are
As is clear from the description in Table 4, the holding force (Hc) is 14
40-1876 (Oe), remanent magnetization (Mr) is 508-
A good value was obtained with a large numerical value of 680 emu / cc. That is, it was found that the magnetic recording media obtained in Examples 11 to 13 could be applied to high density recording.

【0037】[0037]

【表4】 (実施例14〜16)石英ガラス基板をスパッタ室にセ
ットした後、室内を4×10-7Torrに到達するまで
排気した。つづいて、Arガスを導入した。この時のA
rガス圧は10mTorrであった。ガラス基板上にス
パッタリングにより下地層としてCr非磁性体層を35
0オングストローム/分の速度で2000オングストロ
ーム積層し、この上に記録層としてCoPtCr強磁性
体層(Co/Pt/Cr=77/6/17)を400オ
ングストローム/分の速度で500オングストローム積
層した。さらに、この上に保護層としてCr非磁性体層
を350オングストローム/分の速度で100オングス
トローム積層した。このようにして3層構造を有する3
個の積層体を得た。
[Table 4] (Examples 14 to 16) After setting the quartz glass substrate in the sputtering chamber, the inside of the sputtering chamber was evacuated until it reached 4 × 10 -7 Torr. Subsequently, Ar gas was introduced. A at this time
The r gas pressure was 10 mTorr. A Cr non-magnetic layer is formed on the glass substrate as a base layer by sputtering.
2000 angstroms were laminated at a speed of 0 angstrom / minute, and a CoPtCr ferromagnetic layer (Co / Pt / Cr = 77/6/17) was laminated thereon as a recording layer at a speed of 400 angstroms / minute. Further, a Cr non-magnetic material layer as a protective layer was laminated thereon at 100 angstrom at a rate of 350 angstrom / minute. In this way, 3 having a three-layer structure
Individual laminates were obtained.

【0038】これらの積層体をアニール室に移動して、
記録層の酸化を防ぐために室内を真空度2×10-5To
rrに到達するまで排気した後、アニール室を昇温速度
5℃/分で、それぞれ、表5に示すように、所定冷却開
始温度Ta1またはTb1(℃)まで昇温し、表5に示すよ
うに、その温度で所定時間t(hr)保持した後、所定
冷却速度v(℃/min)にて、所定冷却終了温度Ta2
又はTb2(℃)まで急冷し、その後放冷した。
These laminated bodies were moved to the annealing chamber,
In order to prevent the recording layer from being oxidized, the degree of vacuum in the chamber is 2 × 10 -5 To
After evacuating until reaching rr, the annealing chamber was heated at a temperature rising rate of 5 ° C./minute to a predetermined cooling start temperature T a1 or T b1 (° C.), respectively, as shown in Table 5. As shown, after holding at that temperature for a predetermined time t (hr), at a predetermined cooling rate v (° C / min), a predetermined cooling end temperature T a2
Alternatively, it was rapidly cooled to T b2 (° C.) and then left to cool.

【0039】この後それぞれの積層体をスパッタ室へ移
動し、カーボン保護層を200オングストローム/分の
速度で300オングストローム積層して磁気記録媒体を
得た。得られた磁気記録媒体の保持力及び残留磁化は、
表5の記載から明らかなように、保持力(Hc)が16
05〜2130(Oe)、残留磁化(Mr)が623〜
733emu/ccと、数値が大きく、良好なものが得
られた。すなわち、本実施例1〜6で得られた磁気記録
媒体は、高密度記録に対応できることが分かった。
After that, each laminated body was moved to a sputtering chamber, and a carbon protective layer was laminated at 300 angstrom at a rate of 200 angstrom / minute to obtain a magnetic recording medium. The coercive force and residual magnetization of the obtained magnetic recording medium are
As is clear from the description in Table 5, the holding force (Hc) is 16
05-2130 (Oe), remanent magnetization (Mr) 623-
A good value was obtained with a large numerical value of 733 emu / cc. That is, it was found that the magnetic recording media obtained in Examples 1 to 6 could be applied to high density recording.

【0040】[0040]

【表5】 (比較例1〜6)比較のため、実施例1〜6と同様にし
て得た4個の積層体(比較例1〜4)と、実施例11〜
13と同様にして得た1個の積層体(比較例5)と、実
施例14〜16と同様にして得た4個の積層体(比較例
6)とを、それぞれ、表6に示すように実施例とは冷却
開始温度Ta1またはTb1(℃)、冷却速度v(℃/
分)、冷却終了温度Ta2又はTb2(℃)を変えて冷却処
理を行った。なお、実施例と同様に冷却終了温度Ta2
はTb2(℃)からは室温まで放冷した。
[Table 5] (Comparative Examples 1 to 6) For comparison, four laminates (Comparative Examples 1 to 4) obtained in the same manner as in Examples 1 to 6 and Examples 11 to 11 were used.
One laminated body obtained in the same manner as 13 (Comparative Example 5) and four laminated bodies obtained in the same manner as Examples 14 to 16 (Comparative Example 6) are shown in Table 6, respectively. The cooling start temperature T a1 or T b1 (° C.), the cooling rate v (° C. /
Min), and the cooling treatment was performed by changing the cooling end temperature T a2 or T b2 (° C.). It should be noted that, as in the example, the temperature was cooled to room temperature from the cooling end temperature T a2 or T b2 (° C.).

【0041】この後、それぞれの積層体をスパッタ室へ
移動し、カーボン保護層を200オングストローム/分
の速度で300オングストローム積層して磁気記録媒体
を得た。得られた磁気記録媒体の保持力(Hc)及び残
留磁化(Mr)を実施例と同様にして測定した。この結
果、表6の記載から明らかなように、冷却速度が5℃/
分と遅い比較例1では保持力(Hc)が945(Oe)
と小さく、また、冷却開始温度が低い比較例2でも保持
力(Hc)が920(Oe)と小さかった。さらに、冷
却開始温度が高すぎる比較例3では、残留磁化(Mr)
が90emu/ccと非常に小さくなってしまうことが
わかった。さらに冷却終了温度が高い比較例4および冷
却開始温度と冷却終了温度の差が小さい比較例5,6で
も、保持力(Hc)はそれぞれ970(Oe)、870
(Oe)、950(Oe)と小さかった。すなわち、比
較例1〜6で得られた磁気記録媒体は、高密度記録に対
応できないことが分かった。
Thereafter, each laminated body was moved to a sputtering chamber, and a carbon protective layer was laminated at a rate of 200 Å / min to 300 Å to obtain a magnetic recording medium. The coercive force (Hc) and the residual magnetization (Mr) of the obtained magnetic recording medium were measured in the same manner as in the example. As a result, as is clear from the description in Table 6, the cooling rate was 5 ° C /
In Comparative Example 1 which is slower than the above, the holding power (Hc) is 945 (Oe)
In Comparative Example 2 in which the cooling start temperature is low, the holding power (Hc) was also small as 920 (Oe). Furthermore, in Comparative Example 3 in which the cooling start temperature is too high, the residual magnetization (Mr)
Was 90 emu / cc, which was extremely small. Even in Comparative Example 4 in which the cooling end temperature is higher and Comparative Examples 5 and 6 in which the difference between the cooling start temperature and the cooling end temperature is small, the holding forces (Hc) are 970 (Oe) and 870, respectively.
(Oe) and 950 (Oe) were small. That is, it was found that the magnetic recording media obtained in Comparative Examples 1 to 6 could not support high density recording.

【0042】[0042]

【表6】 なお、上述した実施例では、スパッタ室とアニール室と
をそれぞれ別々に設けたが、スパッタ室において、温度
を制御できるように構成すれば、スパッタ室でアニール
を行うこともできる。また、スパッタのときの温度を3
00℃以上の冷却開始温度と同一の温度とし、この温度
から直ちに急冷させることもできる。
[Table 6] Although the sputtering chamber and the annealing chamber are separately provided in the above-described embodiments, the annealing can be performed in the sputtering chamber if the temperature can be controlled in the sputtering chamber. In addition, the temperature at the time of sputtering is 3
The temperature may be the same as the cooling start temperature of 00 ° C. or higher, and the temperature may be rapidly cooled from this temperature.

【0043】また、記録層に用いる強磁性体のCo含有
合金は上述の実施例のものに限らず、Co含有合金、例
えば、Co−M合金(ただしMは、Ni、Cr、Pt、
Ta、Bの内から選ばれた少なくとも1種類の元素を含
む)からなるものであれば良い。記録層は強磁性体のみ
からなるものでも良く、強磁性体を主要成分とし、その
他の材料(例えばCr,Pt,Ta,B,W,Zr,P
の内から選ばれた少なくとも一種の元素)を含むもので
も良い。
The ferromagnetic Co-containing alloy used for the recording layer is not limited to the above-mentioned examples, but Co-containing alloys such as Co-M alloys (where M is Ni, Cr, Pt,
Any material containing at least one element selected from Ta and B) may be used. The recording layer may be made of only a ferromagnetic material, and the ferromagnetic material is a main component and other materials (for example, Cr, Pt, Ta, B, W, Zr, P).
Of at least one element selected from the above).

【0044】また、下地層および保護層も上記のものに
限定されず、非磁性体の、Si、Al、Ti、Bi、V
n、Mn、Sn、Zn、Ge、Pb、In、Cu、M
n、W、Ni等や、これらの合金でもよい。
Further, the underlayer and the protective layer are not limited to those described above, and are nonmagnetic materials such as Si, Al, Ti, Bi and V.
n, Mn, Sn, Zn, Ge, Pb, In, Cu, M
It may be n, W, Ni or the like, or alloys thereof.

【0045】前記保持時間も実施例のものに何ら限定さ
れず、積層体が所定温度内に収めることができるような
時間であればよい。
The holding time is not limited to that of the embodiment, and may be any time as long as the laminate can be kept within a predetermined temperature.

【0046】[0046]

【発明の効果】以上、本発明によれば、基板上に直接又
は下地層を介して、前記基板の熱膨張係数よりも大きい
熱膨張係数を有する強磁性体を含む金属記録層を積層し
た積層体を、300℃〜450℃の冷却開始温度Ta1
ら、150℃以下の温度Ta2まで、平均10℃/分以上
の速度で冷却する工程を含むことにより、または、基板
上に直接又は下地層を介して、この基板の熱膨張係数よ
りも大きい熱膨張係数を有する強磁性体を含む金属記録
層を積層した積層体を、450℃〜700℃の冷却開始
温度Tb1から、前記冷却開始温度より300℃以上低い
温度Tb2まで、平均10℃/分以上の速度で冷却する工
程を含むことにより、高い保持力を有し、高密度記録に
対応できる磁気記録媒体の製造方法を提供することがで
きた。
As described above, according to the present invention, a metal recording layer containing a ferromagnetic material having a coefficient of thermal expansion larger than that of the substrate is laminated on the substrate directly or via an underlayer. By including a step of cooling the body from a cooling start temperature T a1 of 300 ° C. to 450 ° C. to a temperature T a2 of 150 ° C. or lower at an average rate of 10 ° C./min or more, or directly or on the substrate. From the cooling start temperature T b1 of 450 ° C. to 700 ° C., the above-mentioned cooling start is performed on the stacked body in which the metal recording layer containing the ferromagnetic material having the thermal expansion coefficient larger than that of the substrate is stacked via the formation layer. Provided is a method for producing a magnetic recording medium having a high holding power and capable of coping with high density recording by including a step of cooling at a rate of 10 ° C./min or more on average to a temperature T b2 lower than the temperature by 300 ° C. or less. I was able to.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板上に直接または下地層を介して、前
記基板の熱膨張係数よりも大きい熱膨張係数を有する強
磁性体を含む金属記録層を積層した積層体を、300℃
〜450℃の温度Ta1から、150℃以下の温度Ta2
で、平均10℃/分以上の速度で冷却する工程を含むこ
とを特徴とする磁気記録媒体の製造方法。
1. A laminate in which a metal recording layer containing a ferromagnetic material having a coefficient of thermal expansion larger than that of the substrate is laminated on a substrate directly or via an underlayer at 300 ° C.
450 from the temperature T a1 of ° C., to 0.99 ° C. below the temperature T a2, a method of manufacturing a magnetic recording medium which comprises a step of cooling at an average 10 ° C. / min or faster.
【請求項2】 基板上に直接または下地層を介して、前
記基板の熱膨張係数よりも大きい熱膨張係数を有する強
磁性体を含む金属記録層を積層した積層体を、450℃
〜700℃の温度Tb1から、前記温度Tb1より300℃
以上低い温度Tb2まで、平均10℃/分以上の速度で冷
却する工程を含むことを特徴とする磁気記録媒体の製造
方法。
2. A laminated body in which a metal recording layer containing a ferromagnetic material having a thermal expansion coefficient larger than that of the substrate is laminated on a substrate directly or via an underlayer at 450 ° C.
From temperature T b1 of up to 700 ° C., 300 ° C. from the temperature T b1
A method of manufacturing a magnetic recording medium, comprising a step of cooling to a temperature as low as above T b2 at an average rate of 10 ° C./minute or more.
【請求項3】 前記基板がガラスまたはセラミックから
なる、請求項1または2に記載の磁気記録媒体の製造方
法。
3. The method of manufacturing a magnetic recording medium according to claim 1, wherein the substrate is made of glass or ceramic.
【請求項4】 前記強磁性体がCo−M合金(MはN
i,Cr,Pt,Ta,Bから選択される少なくとも1
種である)から選択される、請求項1または2に記載の
磁気記録媒体の製造方法。
4. The Co-M alloy (M is N
At least 1 selected from i, Cr, Pt, Ta, and B
The magnetic recording medium manufacturing method according to claim 1, wherein the magnetic recording medium is selected from the following.
JP22438492A 1992-08-24 1992-08-24 Manufacturing method of magnetic recording medium Expired - Fee Related JP3210736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22438492A JP3210736B2 (en) 1992-08-24 1992-08-24 Manufacturing method of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22438492A JP3210736B2 (en) 1992-08-24 1992-08-24 Manufacturing method of magnetic recording medium

Publications (2)

Publication Number Publication Date
JPH0668465A true JPH0668465A (en) 1994-03-11
JP3210736B2 JP3210736B2 (en) 2001-09-17

Family

ID=16812908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22438492A Expired - Fee Related JP3210736B2 (en) 1992-08-24 1992-08-24 Manufacturing method of magnetic recording medium

Country Status (1)

Country Link
JP (1) JP3210736B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003022523A (en) * 2001-07-05 2003-01-24 Fuji Electric Co Ltd Perpendicular magnetic recording medium and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003022523A (en) * 2001-07-05 2003-01-24 Fuji Electric Co Ltd Perpendicular magnetic recording medium and method for manufacturing the same
JP4491768B2 (en) * 2001-07-05 2010-06-30 富士電機デバイステクノロジー株式会社 Perpendicular magnetic recording medium and manufacturing method thereof

Also Published As

Publication number Publication date
JP3210736B2 (en) 2001-09-17

Similar Documents

Publication Publication Date Title
JP3318204B2 (en) Perpendicular magnetic film, method of manufacturing the same, and perpendicular magnetic recording medium
JP2911782B2 (en) Magnetic recording medium and method of manufacturing the same
CN100578626C (en) Method for manufacturing perpedicular magnetic recording medium, perpendicular magnetic recording medium, and perpendicular magnetic recording/reproducing apparatus
JP3210736B2 (en) Manufacturing method of magnetic recording medium
JP2003123243A (en) Magnetic recording medium and method of manufacturing the same
JP4673735B2 (en) Magnetic recording medium and method for manufacturing the same
JP5981564B2 (en) Magnetic recording medium and method for manufacturing the same
JPH11213371A (en) Magnetic recording medium
US20060021871A1 (en) Method for fabricating L10 phase alloy film
JP3127075B2 (en) Soft magnetic alloy film, magnetic head, and method of adjusting thermal expansion coefficient of soft magnetic alloy film
JP2720363B2 (en) Manufacturing method of magnetic recording medium
JPS61194635A (en) Production of thin film permanent magnet
JP2853529B2 (en) Magnetic recording medium substrate and magnetic recording medium using the same
JP2842918B2 (en) Magnetic thin film, thin film magnetic head, and magnetic storage device
JPH1092640A (en) Ultra high-density magnetic recording medium and its manufacture
JPH076916A (en) Rare earth alloy hard magnetic thin film and manufacture thereof
Chang et al. Coercivity of γ-(Fe0. 74Mn0. 15Co0. 11) 2O3 thin films by dc reactive magnetron sputtering
JPH05303736A (en) Magnetic recording medium and its production
JPH03162736A (en) Production of magneto-optical recording medium
JPH04268027A (en) Production of magnetic strip having high saturating magnetization
Nakagawa et al. Improvement of soft magnetic properties of ferromagnetic Fe-Co-Ta: N/M films multilayered with paramagnetic Ti, Co/sub 67/Cr/sub 33/and Fe/sub 82/Co/sub 9/Ta/sub 9: N interlayers
JPH08329465A (en) Production of magnetic recording medium
JPH04285153A (en) Multi-layer magnetic film and its formation
JPH05325183A (en) Manufacture of magnetic disk
JPH03208321A (en) Manufacture of magnetic film

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010622

LAPS Cancellation because of no payment of annual fees