JPH0665046B2 - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH0665046B2
JPH0665046B2 JP61185746A JP18574686A JPH0665046B2 JP H0665046 B2 JPH0665046 B2 JP H0665046B2 JP 61185746 A JP61185746 A JP 61185746A JP 18574686 A JP18574686 A JP 18574686A JP H0665046 B2 JPH0665046 B2 JP H0665046B2
Authority
JP
Japan
Prior art keywords
catalyst layer
fuel
base material
bellows
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61185746A
Other languages
Japanese (ja)
Other versions
JPS6343263A (en
Inventor
憲朗 光田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61185746A priority Critical patent/JPH0665046B2/en
Publication of JPS6343263A publication Critical patent/JPS6343263A/en
Publication of JPH0665046B2 publication Critical patent/JPH0665046B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/244Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes with matrix-supported molten electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は燃料電池の新規な構造に関するものである。TECHNICAL FIELD The present invention relates to a novel structure of a fuel cell.

〔従来の技術〕[Conventional technology]

周知の通り、燃料電池は対向して配置された燃料電極と
酸化剤電極の間に電解質を保持した電解質マトリックス
を介在させ、燃料電極および酸化剤電極にそれぞれ燃料
および酸化剤を供給して運転される一種の発電装置であ
る。
As is well known, a fuel cell is operated by interposing an electrolyte matrix holding an electrolyte between a fuel electrode and an oxidant electrode, which are arranged opposite to each other, and supplying a fuel and an oxidant to the fuel electrode and the oxidant electrode, respectively. It is a kind of power generator.

燃料電池には、カルノーサイクルの制約がなく高い効
率が期待できる、電池作動温度に近い比較的高温の有
効利用が容易な廃熱が得られる、出力を変えても効率
はあまり変わらない、負荷変動の対する応答性にすぐ
れているなどの利点があり、都市内もしくは都市近郊に
配電用変電所の規模で分散配置する、あるいは火力発電
所の代替発電装置とするなどの利用形態が考えられてい
る。
Fuel cells can be expected to have high efficiency without the limitation of Carnot cycle, waste heat that can be effectively used at relatively high temperatures close to the cell operating temperature can be obtained, efficiency does not change much even if output is changed, load fluctuation It has advantages such as excellent responsiveness to power generation, and it is considered to be used in distributed forms within the city or in the suburbs at the scale of distribution substations, or as an alternative power generation device for thermal power plants. .

燃料電池は用いられる電解質の種類によってアルカリ
型、リン酸型、溶融炭酸塩型などに分類されるが、この
うちリン酸型は第一世代と呼ばれ最も開発が進んでお
り、すでに実用規模での試運転が行われている。
Fuel cells are classified into alkaline type, phosphoric acid type, molten carbonate type, etc. according to the type of electrolyte used. Among them, the phosphoric acid type is called the first generation and is the most developed, and it is already on a practical scale. The trial run of is being conducted.

ここで例えばリン酸型燃料電池について説明する。リン
酸型燃料電池で最も一般的な電池構成はリブ付セパレー
タ型と呼ばれるタイプで米国特許3,867,206号明細書
(特公昭58-152)や米国特許4,276,355号明細書(特開
昭59-66067号)に代表的な電池構成が記載されている。
第6図はリブ付セパレータ型の代表的な構成を示す断面
図であり、図において(1)は電解質保持マトリックス、
(4)は燃料電極、(2)は燃料電極基材、(3)は燃料電極触
媒層、(7)は酸化剤電極、(5)は酸化剤電極基材、(6)は
酸化剤電極触媒層、(10)はガス分離板(セパレータ,バ
イポーラ板,インターコネクターなどとも呼ばれてい
る)、(11)は酸化剤ガス流路、(12)は燃料ガス流路であ
る。ガス分離板(10)に反応ガス流路(11,12)が形成され
ていることからリブ付セパレータ型と呼ばれている。
Here, for example, a phosphoric acid fuel cell will be described. The most common cell structure of phosphoric acid fuel cells is a ribbed separator type, which is US Pat. No. 3,867,206 (JP-B-58-152) and US Pat. No. 4,276,355 (JP-A-59-66067). A typical battery configuration is described in.
FIG. 6 is a cross-sectional view showing a typical configuration of a ribbed separator type, in which (1) is an electrolyte retention matrix,
(4) is a fuel electrode, (2) is a fuel electrode substrate, (3) is a fuel electrode catalyst layer, (7) is an oxidant electrode, (5) is an oxidant electrode substrate, and (6) is an oxidant electrode. A catalyst layer, (10) a gas separation plate (also called a separator, bipolar plate, interconnector, etc.), (11) an oxidant gas flow path, and (12) a fuel gas flow path. Since the reaction gas channels (11, 12) are formed in the gas separation plate (10), it is called a ribbed separator type.

リブ付セパレータ型に次いで代表的な電池構成はリブ付
電極型である、このタイプについては米国特許4,115,62
7号、同4,165,349号及び特開昭58-68881号公報に詳しく
記載されている。第7図はリブ付電極型の代表的な構成
を示す断面図である。
Next to the ribbed separator type, a typical battery configuration is a ribbed electrode type, which is disclosed in U.S. Pat. No. 4,115,62.
No. 7, 4,165,349 and JP-A-58-68881. FIG. 7 is a sectional view showing a typical structure of an electrode type with ribs.

リブ付電極型では基材の厚さを厚くしてこれに反応ガス
流路を形成している。従ってガス分離板はフラットな薄
い不透気性の板となっている。
In the electrode type with ribs, the thickness of the base material is increased and the reaction gas flow path is formed in this. Therefore, the gas separating plate is a flat thin impermeable plate.

次に動作について説明する。燃料電極(4)では、反応ガ
ス流路(12)から供給された水素が電子を放出して水素イ
オンとなる: H→2H+2e 水素イオンは電解質保持マトリックス層(1)の電解質内
を酸化剤電極(7)の方へ移動し、酸化電極(7)では、この
水素イオンと燃料電極(4)で生じて外部回路を流れてき
た電子と反応ガス流路(11)から供給された酸素とが反応
し、水を生ずる: これらの2つの反応は、全体として次のようになり、外
部回路を流れる電子の形で発電が行われる: 〔発明が解決しようとする問題点〕 従来の燃料電池は以上のように構成されており、電池全
体の面積よりも触媒層の塗布面積を大きく出きない為に
単位面積あたりの出力密度を上げることができずコンパ
クト化が困難であるという問題点があった。
Next, the operation will be described. At the fuel electrode (4), the hydrogen supplied from the reaction gas channel (12) emits electrons to become hydrogen ions: H 2 → 2H + + 2e Hydrogen ions pass through the electrolyte of the electrolyte holding matrix layer (1). It moved to the oxidizer electrode (7), and at the oxidation electrode (7), the hydrogen ions and the electrons generated in the fuel electrode (4) and flowing through the external circuit were supplied from the reaction gas flow channel (11). Reacts with oxygen to produce water: These two reactions are as follows, with electricity being generated in the form of electrons flowing through an external circuit: [Problems to be Solved by the Invention] The conventional fuel cell is configured as described above, and the output density per unit area is increased because the coated area of the catalyst layer cannot be larger than the area of the entire cell. However, there was a problem that it was difficult to make it compact.

この発明は上記のような問題点を解消するためになされ
たもので、単位面積当たりの出力密度が上げられコンパ
クト化され、しかも構成しやすい燃料電池を得ることを
目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to obtain a fuel cell which has a high output density per unit area, is made compact, and is easy to configure.

〔問題点を解決するための手段〕[Means for solving problems]

この発明の燃料電池は、酸化材電極触媒層、電解質保持
マトリックスおよび燃料電極触媒層を密接して積層し、
これを折り畳んだ蛇腹構造とした蛇腹状体と、 前記蛇腹状体の酸化剤電極触媒層側に密接した接触面が
平面状の酸化剤電極基材と、 前記蛇腹状体の燃料電極触媒層側に密接した接触面が平
面状の燃料電極基材とを備えたものであり、 また、前記蛇腹状体の酸化剤電極触媒層側のひだの間に
密接して挿入された酸化剤電極挿入基材と、 前記蛇腹状体の燃料電極触媒層側のひだの間に密接して
挿入された燃料電極挿入基材とを備えたものである。
The fuel cell of the present invention comprises an oxidant electrode catalyst layer, an electrolyte retention matrix and a fuel electrode catalyst layer, which are closely laminated,
A bellows-shaped body having a folded bellows structure, an oxidizer electrode base material having a flat contact surface in contact with the side of the bellows-shaped oxidant electrode catalyst layer, and a side of the bellows-shaped fuel electrode catalyst layer The fuel electrode base material having a flat contact surface with the oxidizer electrode insertion base closely inserted between the folds of the bellows body on the oxidizer electrode catalyst layer side. And a fuel electrode insertion base material that is closely inserted between the pleats on the fuel electrode catalyst layer side of the bellows-shaped body.

〔作用〕[Action]

この発明における屈曲した触媒層は電池全体の面積より
も触媒層の塗布面積を大幅に増加させる。また、基材の
触媒層側が平面状であるので構成しやすく、ガス流路が
両基材の外側に設けた構造であるので、触媒層の形状に
寄らず、マニホルドが4辺使え構成しやすくなる。さら
に挿入基材を用いるとガスの拡散抵抗を小さく保つこと
ができる。
The bent catalyst layer in the present invention significantly increases the coated area of the catalyst layer over the area of the entire cell. In addition, since the catalyst layer side of the base material is flat, it is easy to configure, and since the gas flow path is provided on the outside of both base materials, the manifold can be used with four sides regardless of the shape of the catalyst layer. Become. Further, the use of the insertion base material can keep the gas diffusion resistance small.

〔実施例〕〔Example〕

第1図はこの発明の一実施例の断面図で燃料電極触媒層
(6)、電解質保持マトリックス(1)と酸化剤電極触媒層
(3)を一体化して折り畳んだ蛇腹構造の蛇腹状体とし襞
の間に多孔質電極基材から成る燃料電極挿入基材(13)と
酸化剤電極挿入基材(14)を挿入して形成したものであ
る。第2図は第1図のこの発明の一実施例の製造方法の
一例を工程順に示す工程図である。製造方法はまず、そ
れぞれシート化した燃料電極触媒層(6)、電解質保持マ
トリックス(1)と酸化剤電極触媒層(3)をはりあわせてプ
レスローラーにかけて一体化されたシート状(20)にし
(a),次に波形の金型(21)でプレスして波形に成型し
(b),さらに燃料電極挿入基材(13)と酸化剤電極挿入基
材(14)を襞の間に挿入した後(c),ホットプレスで焼成
・圧縮成型することによって(d),第1図に示す構造を
形成することができる(e)。図中矢印(A)はプレス方向、
矢印(B)はローラの回転方向である。挿入基材(14)の厚
さとしては0.1mm〜1mmが望ましい。
FIG. 1 is a sectional view of an embodiment of the present invention, which is a fuel electrode catalyst layer.
(6), electrolyte retention matrix (1) and oxidizer electrode catalyst layer
(3) is integrated and folded to form a bellows-shaped body, which is formed by inserting a fuel electrode insertion base material (13) and an oxidizer electrode insertion base material (14) consisting of a porous electrode base material between the folds. It was done. FIG. 2 is a process drawing showing an example of the manufacturing method of the embodiment of the present invention in FIG. 1 in process order. The manufacturing method is as follows.First, the sheet-shaped fuel electrode catalyst layer (6), the electrolyte holding matrix (1) and the oxidizer electrode catalyst layer (3) are laminated and pressed into a unified sheet-like (20).
(a) Next, press with a corrugated metal mold (21) to mold into a corrugated shape.
(b) Further, after inserting the fuel electrode insertion base material (13) and the oxidizer electrode insertion base material (14) between the folds (c), by firing and compression molding with hot press (d), The structure shown in FIG. 1 can be formed (e). The arrow (A) in the figure indicates the press direction,
The arrow (B) is the direction of rotation of the roller. The thickness of the insertion base material (14) is preferably 0.1 mm to 1 mm.

第1図の実施例は第3図に示すようにリブ付セパレータ
型燃料電池において適用することができるし、第4図に
示すようにリブ付電極型燃料電池において適用すること
もできる。
The embodiment of FIG. 1 can be applied to a ribbed separator type fuel cell as shown in FIG. 3 and can be applied to a ribbed electrode type fuel cell as shown in FIG.

次に動作について説明する。第5図はこの発明の一実施
例における動作の説明の為に第1図をさらに拡大して示
した動作説明図で、図中に三角印(15)で燃料ガスの流れ
をまた丸印(16)で酸化剤ガスの流れを示した。燃料ガス
はリブ付セパレータ型、リブ付電極型燃料電池のいずれ
の場合にも燃料電極基材(2)から燃料電極挿入基材(13)
(燃料電極触媒層(3)に直接接している面では燃料電極
触媒層(3)に流れ蛇腹の襞にある燃料電極触媒層(3)に到
達する。酸化剤ガスも同様にして酸化剤電極挿入基材(1
4)を経て蛇腹の襞にある酸化剤電極触媒層(3)に到達す
る。挿入基材(13,14)がなければ反応ガスは蛇腹の襞に
ある触媒層(3)に到達することが難しく挿入基材(13,14)
の存在により蛇腹の襞にある触媒層(3)への反応ガスの
拡散抵抗をできるだけ小さく保つことができ、触媒層の
いずれの部分でも電池反応を円滑に行うことができる。
従って電池全体の面積よりも触媒層の塗布面積を大きく
し、且つ触媒層の拡散抵抗を小さく保つことができる。
Next, the operation will be described. FIG. 5 is an operation explanatory view in which FIG. 1 is further enlarged to explain the operation in one embodiment of the present invention. In the drawing, a triangle mark (15) indicates a flow of fuel gas again. The flow of oxidant gas was shown in 16). The fuel gas is supplied from the fuel electrode base material (2) to the fuel electrode insertion base material (13) in both ribbed separator type and ribbed electrode type fuel cells.
(On the surface that is in direct contact with the fuel electrode catalyst layer (3), it flows into the fuel electrode catalyst layer (3) and reaches the fuel electrode catalyst layer (3) in the fold of the bellows. Insert substrate (1
It reaches the oxidant electrode catalyst layer (3) in the folds of the bellows through 4). Without the insertion substrate (13,14), it is difficult for the reaction gas to reach the catalyst layer (3) on the folds of the bellows.
By the presence of the above, the diffusion resistance of the reaction gas to the catalyst layer (3) in the folds of the bellows can be kept as small as possible, and the cell reaction can be smoothly performed in any part of the catalyst layer.
Therefore, the coated area of the catalyst layer can be made larger than the area of the entire battery, and the diffusion resistance of the catalyst layer can be kept small.

なお、燃料電極挿入基材は電解液を保持するリザーブ作
用を持たせる為に撥水処理が行われていないことが望ま
しく、酸化剤電極挿入基材に撥水処理を行わない場合に
は酸化剤ガスの拡散性を維持する為に酸化剤側挿入基材
の気孔径を燃料側挿入基材の気孔径よりも大きくするこ
とが望ましい。
In addition, it is desirable that the fuel electrode insertion base material is not subjected to water repellent treatment in order to have a reserve function for holding the electrolyte solution. In order to maintain the gas diffusibility, it is desirable that the pore size of the oxidizer side insertion base material be larger than that of the fuel side insertion base material.

なお、上記実施例では、燃料電極触媒層、電解質保持マ
トリックスおよび酸化剤電極触媒層が折り畳んだ蛇腹状
の構造のものについて述べたが、上記触媒層が少なくと
も折り畳んだ蛇腹状である部分を有しておれば所期目的
を達成することができる。
In the above examples, the fuel electrode catalyst layer, the electrolyte holding matrix, and the oxidant electrode catalyst layer had a bellows-shaped structure, but the catalyst layer had at least a folded bellows-shaped portion. If so, the intended purpose can be achieved.

〔発明の効果〕〔The invention's effect〕

以上説明したとうり、この発明は、酸化剤電極触媒層,
電解質保持マトリックスおよび燃料電極触媒層を密接し
て積層し、これを折り畳んだ蛇腹構造とした蛇腹状体
と、 前記蛇腹状体の酸化剤電極触媒層側に密接した接触面が
平面状の酸化剤電極基材と、 前記蛇腹状体の燃料電極触媒層側に密接した接触面が平
面状の燃料電極基材とを備えたものを用いることによ
り、単位面積当たりの出力密度が上げられ、コンパクト
化された燃料電池を得ることができる。
As described above, the present invention provides the oxidant electrode catalyst layer,
An electrolyte retaining matrix and a fuel electrode catalyst layer are laminated in close contact with each other, and a bellows-like body having a bellows structure is formed by folding the electrolyte holding matrix, and the contact surface of the bellows-like body which is in close contact with the oxidizer electrode catalyst layer side is a flat oxidizer. By using an electrode base material and a fuel electrode base material having a flat contact surface in contact with the side of the fuel electrode catalyst layer of the bellows-like body, the power density per unit area can be increased and the size can be reduced. Fuel cell can be obtained.

また、前記蛇腹状体の酸化剤電極触媒層側のひだの間に
密接して挿入された酸化剤電極挿入基材と、 前記蛇腹状体の燃料電極触媒層側のひだの間に密接して
挿入された燃料電極挿入基材とを備えたものを用いるこ
とにより、上記効果に加えて、さらにガスの拡散抵抗を
小さく保てる燃料電池を得ることができる。
Further, the oxidant electrode insertion base material that is closely inserted between the folds of the accordion-like body on the oxidant electrode catalyst layer side, and the folds of the accordion-like body close to the folds on the fuel electrode catalyst layer side. By using the one having the inserted fuel electrode inserting base material, it is possible to obtain a fuel cell which can keep the gas diffusion resistance small in addition to the above-mentioned effects.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例の断面図、第2図はこの発
明の一実施例の製造方法の一例を工程順に示す工程図、
第3図および第4図は各々この発明の他の実施例を示す
断面図、第5図はこの発明の一実施例の動作を示す動作
説明図、第6図、第7図はそれぞれ従来の燃料電池の断
面図である。 図中、(1)は電解質保持マトリックス、(2)は燃料電極基
材、(3)は燃料電極触媒層、(5)は酸化剤電極基材、(6)
は酸化剤電極触媒層である。 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a sectional view of an embodiment of the present invention, and FIG. 2 is a process drawing showing an example of a manufacturing method of the embodiment of the present invention in process order,
3 and 4 are sectional views showing another embodiment of the present invention, FIG. 5 is an operation explanatory view showing an operation of one embodiment of the present invention, and FIGS. 6 and 7 are conventional illustrations. It is sectional drawing of a fuel cell. In the figure, (1) is an electrolyte retention matrix, (2) is a fuel electrode substrate, (3) is a fuel electrode catalyst layer, (5) is an oxidizer electrode substrate, (6)
Is an oxidizer electrode catalyst layer. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】酸化剤電極触媒層、電解質保持マトリック
スおよび燃料電極触媒層を密接して積層し、これを折り
畳んだ蛇腹構造とした蛇腹状体と、 前記蛇腹状体の酸化剤電極触媒層側に密接した接触面が
平面状の酸化剤電極基材と、 前記蛇腹状体の燃料電極触媒層側に密接した接触面が平
面状の燃料電極基材とを備えたことを特徴とする燃料電
池。
1. A bellows-like body having a bellows structure in which an oxidant electrode catalyst layer, an electrolyte retaining matrix and a fuel electrode catalyst layer are laminated in close contact with each other, and the bellows-like body has an oxidant electrode catalyst layer side. A fuel cell comprising a flat oxidizer electrode base material having a contact surface in close contact with the fuel cell and a flat fuel electrode base material having a contact surface in contact with the fuel electrode catalyst layer side of the bellows body. .
【請求項2】前記蛇腹状体の酸化剤電極触媒層側のひだ
の間に密接して挿入された酸化剤電極挿入基材と、 前記蛇腹状体の燃料電極触媒層側のひだの間に密接して
挿入された燃料電極挿入基材とを備えたことを特徴とす
る請求項第1項記載の燃料電池。
2. An oxidant electrode insertion base material closely inserted between folds of the bellows body on the oxidant electrode catalyst layer side, and a fold of the bellows body on the fuel electrode catalyst layer side. The fuel cell according to claim 1, further comprising a fuel electrode insertion base material that is closely inserted.
JP61185746A 1986-08-06 1986-08-06 Fuel cell Expired - Fee Related JPH0665046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61185746A JPH0665046B2 (en) 1986-08-06 1986-08-06 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61185746A JPH0665046B2 (en) 1986-08-06 1986-08-06 Fuel cell

Publications (2)

Publication Number Publication Date
JPS6343263A JPS6343263A (en) 1988-02-24
JPH0665046B2 true JPH0665046B2 (en) 1994-08-22

Family

ID=16176133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61185746A Expired - Fee Related JPH0665046B2 (en) 1986-08-06 1986-08-06 Fuel cell

Country Status (1)

Country Link
JP (1) JPH0665046B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2797352B2 (en) * 1988-12-14 1998-09-17 三菱電機株式会社 Electrochemical cell and method of manufacturing the same
KR100813089B1 (en) 2003-06-09 2008-03-17 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 A solid oxide fuel cell stack, a solid oxide fuel cell, and a solid oxide fuel cell system
KR101204337B1 (en) 2006-04-05 2012-11-26 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 A sofc stack having a high temperature bonded ceramic interconnect and method for making same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217955A (en) * 1983-05-25 1984-12-08 Mitsubishi Electric Corp Phosphoric-acid-type fuel cell
JPS60136175A (en) * 1983-12-26 1985-07-19 Toshiba Corp Fuel cell power generating system

Also Published As

Publication number Publication date
JPS6343263A (en) 1988-02-24

Similar Documents

Publication Publication Date Title
EP0055016B1 (en) High temperature solid electrolyte fuel cell configurations
US4910100A (en) Solid electrolyte fuel cell
JP4585218B2 (en) Fuel cell assembly
US20070248867A1 (en) Etched interconnect for fuel cell elements
JPH09503619A (en) Electrochemical fuel cell using ambient air as oxidant and coolant
KR102107529B1 (en) Solid oxide fuel cell
KR102109057B1 (en) Solid oxide fuel cell or solid oxide electrolyzing cell and method for operating such a cell
JP2008047545A (en) Solid oxide fuel cell having gas channel
JPH07254424A (en) Collector plate for molten carbonate fuel cell
JP5156766B2 (en) Fuel cell assembly
JP3317535B2 (en) Fuel cell
JPH04267062A (en) Gas separator for fuel cell
EP0410796B1 (en) Fuel cell generator
JP2007200710A (en) Solid oxide fuel cell stack
JP2818944B2 (en) Solid oxide fuel cell module
JPH0665046B2 (en) Fuel cell
JP2797352B2 (en) Electrochemical cell and method of manufacturing the same
JPH0992308A (en) Solid polymer electrolyte fuel cell
JPH05266914A (en) Solid oxide fuel cell power generating device
JPH1140179A (en) Solid macromolecule type fuel cell
JP2783926B2 (en) Single cell of solid oxide fuel cell and power generator using the same
JP2816474B2 (en) Solid oxide fuel cell module
JP3153901B2 (en) Disc-stacked solid electrolyte fuel cell
JP2816473B2 (en) Solid oxide fuel cell module
JP3277512B2 (en) Power generator incorporating a fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees