JPH0660406B2 - Vapor growth method of hafnium oxide film - Google Patents

Vapor growth method of hafnium oxide film

Info

Publication number
JPH0660406B2
JPH0660406B2 JP7128987A JP7128987A JPH0660406B2 JP H0660406 B2 JPH0660406 B2 JP H0660406B2 JP 7128987 A JP7128987 A JP 7128987A JP 7128987 A JP7128987 A JP 7128987A JP H0660406 B2 JPH0660406 B2 JP H0660406B2
Authority
JP
Japan
Prior art keywords
oxide film
gas
hafnium oxide
film
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7128987A
Other languages
Japanese (ja)
Other versions
JPS63236335A (en
Inventor
昌伸 善家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7128987A priority Critical patent/JPH0660406B2/en
Publication of JPS63236335A publication Critical patent/JPS63236335A/en
Publication of JPH0660406B2 publication Critical patent/JPH0660406B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はハフニウム酸化膜の気相成長法に関し、特に半
導体装置の容量素子に用いるハフニウム酸化膜の気相成
長法に関する。
TECHNICAL FIELD The present invention relates to a vapor phase growth method for a hafnium oxide film, and more particularly to a vapor phase growth method for a hafnium oxide film used for a capacitive element of a semiconductor device.

〔従来の技術〕[Conventional technology]

半導体基板、特にシリコン半導体基板上に形成される集
積回路は高集積化・大容量化の一途をたどり、メモリー
素子の様な集積回路では4Mビットまたはそれ以上へと
集積度が増大している。ダイナミックランダムアクセス
メモリー(RAM)の様に基本セルとして1つのトランジ
スタと1つの容量素子とから構成されるICメモリーを
高集積化するには特に容量素子部面積の縮小が最も有効
な手段になる。
An integrated circuit formed on a semiconductor substrate, particularly a silicon semiconductor substrate, is becoming highly integrated and has a large capacity, and the degree of integration of an integrated circuit such as a memory device is increasing to 4 Mbits or more. In order to highly integrate an IC memory composed of one transistor and one capacitance element as a basic cell such as a dynamic random access memory (RAM), reduction of the capacitance element area is the most effective means.

しかし、容量素子部の面積を縮小し容量値が低下する
と、α線等によるソフトエラー(メモリの誤動作)に対
する信頼性が劣化することから、容量値は50fF以上
にする必要がある。そのため従来は、面積縮小による容
量値の減少を容量絶縁膜の薄膜化で補ってきた。しか
し、従来用いられているシリコン酸化膜は100 Å以下に
なると絶縁耐圧は電源電圧5Vに耐えらず、使用不可能
になる。
However, when the area of the capacitive element portion is reduced and the capacitance value is reduced, the reliability against a soft error (memory malfunction) due to α rays or the like is deteriorated, so the capacitance value needs to be 50 fF or more. Therefore, conventionally, the reduction of the capacitance value due to the area reduction has been compensated by thinning the capacitance insulating film. However, when the silicon oxide film used in the past is less than 100 Å, the withstand voltage cannot withstand the power supply voltage of 5 V and cannot be used.

このため、基板に溝を形成し、この溝の内壁部に容量素
子を形成したり、容量素子を積層構造(スタックト構
造)にしたりする方法で、従来と同じ容量値を維持しな
がらも平面的には容量素子部の面積を縮小し高集積化を
行うことが検討されている。また、シリコン酸化膜の代
わりにTa2O5,TiO2,HfO2,ZrO2等の高誘電率材料を
容量膜に用いることも検討されている。
Therefore, by forming a groove on the substrate and forming a capacitive element on the inner wall portion of the groove, or by forming the capacitive element into a laminated structure (stacked structure), the same capacitance value as the conventional one can be maintained while being planar. In order to achieve high integration, the area of the capacitive element portion is being reduced. Further, it is also considered to use a high dielectric constant material such as Ta 2 O 5 , TiO 2 , HfO 2 , ZrO 2 for the capacitance film instead of the silicon oxide film.

16Mビット以上の大容量ダイナミックRAMでは、容
量素子を溝構造あるいは積層構造にしかつ高誘電材料を
容量膜に用いることが必須の技術である。Ta25,Ti
2,HfO2等の高誘電率材料を薄膜で溝内部あるいは積
層にして形成するためには凹凸部の被服性が優れている
必要があり、従って膜形成方法としては、気相成長法が
優れた方法である。また、Ta25,TiO2,HfO2
ZrO2等の高誘電率材料の中で、熱力学的に安定な性質
をもつHfO2が、容量膜としては有望である。
In a large-capacity dynamic RAM of 16 Mbits or more, it is indispensable to have a capacitive element with a groove structure or a laminated structure and to use a high dielectric material for a capacitive film. Ta 2 O 5 , Ti
O 2, to a high dielectric constant material such as HfO 2 is formed in the groove inside or laminated with a thin film, it is necessary to clothing of uneven portions are good, as the thus film formation method, vapor deposition method An excellent method. In addition, Ta 2 O 5 , TiO 2 , HfO 2 ,
Among high dielectric constant materials such as ZrO 2, HfO 2 having thermodynamically stable properties is promising as a capacitance film.

従来の化学気相成長によるHfO2膜形成の方法は、Hf
(OC49)4等のアルコラートやHf(OC(CH3)=CH
COCH3)4等のβ−ジケトナートを原料に用いて常圧
で成長するのが一般的である。例えばProc. 2nd Int. C
onf. on CVD, LosAngeles, P619(1970)やThin Solid Fi
lms, 41, 247(1977)に記述されている。
The conventional method for forming an HfO 2 film by chemical vapor deposition is
Alcoholates such as (OC 4 H 9 ) 4 and Hf (OC (CH 3 ) = CH
Generally, β-diketonate such as COCH 3 ) 4 is used as a raw material and grown at normal pressure. For example Proc. 2nd Int. C
onf.on CVD, LosAngeles, P619 (1970) and Thin Solid Fi
lms, 41, 247 (1977).

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上述した従来の気相成長法により形成したHfO2膜は、
例えば電界強度1MV/cm印加時に電流密度10-2A/
cm2流れるように、非常にクリーク電流が多いという欠
点を有する。そのため、従来の気相成長法によるHfO2
膜は、半導体装置の容量膜としては未だ実用化されてい
ない。
The HfO 2 film formed by the conventional vapor phase growth method described above is
For example, when an electric field strength of 1 MV / cm is applied, a current density of 10 -2 A /
It has a drawback that it has a very large clique current, such as flowing cm 2 . Therefore, HfO 2 produced by the conventional vapor deposition method is used.
The film has not yet been put to practical use as a capacitor film of a semiconductor device.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のハフニウム酸化膜の気相成長法はHf(OC3
7)を原料とし、減圧下で成長を行なう。原料として用
いるHf(OC37)は室温で固体であり、この原料を
100〜200℃に加熱し液体状態にしてAr,N2等の
不活性ガスを当該原料中に吹き込みバブリングを行うこ
とにより原料を反応炉内に導入する。0.1〜10torr
の減圧下、400〜600℃の成長温度でHfO2膜を気
相成長することが好ましい。
The vapor phase epitaxy method of the hafnium oxide film of the present invention is Hf (OC 3 H
7 ) Using 4 as a raw material, grow under reduced pressure. Hf (OC 3 H 7 ) 4 used as a raw material is a solid at room temperature, and this raw material is heated to 100 to 200 ° C. to be in a liquid state and an inert gas such as Ar or N 2 is blown into the raw material for bubbling. Thus, the raw material is introduced into the reaction furnace. 0.1-10 torr
It is preferable to vapor-deposit the HfO 2 film at a growth temperature of 400 to 600 ° C. under reduced pressure.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be described with reference to the drawings.

第1図は、本発明の気相成長法の第1の実施例に用いる
気相成長装置の構造模式断面図である。この装置はガス
の導入管11,12,キャリヤーガスの導入管13,真
空ポンプ15,排気口16,バルブ21,22,23,
24,反応炉5,ヒータ6,7,ウェハー8,原料Hf
(OC37)を充てんした気化室9を有している。
FIG. 1 is a schematic sectional view of the structure of a vapor phase growth apparatus used in the first embodiment of the vapor phase growth method of the present invention. This device includes gas introduction pipes 11 and 12, carrier gas introduction pipe 13, vacuum pump 15, exhaust port 16, valves 21, 22, and 23.
24, reactor 5, heaters 6, 7, wafer 8, raw material Hf
It has a vaporization chamber 9 filled with (OC 3 H 7 ) 4 .

本発明の気相成長法によりハウニウム酸化膜をシリコン
基板上に気相成長する手順を説明する。まず、気化室9
に充てんされた室温で固体である原料のHf(OC37)
をヒーター7で100〜200℃に加熱し液体状態に
する。また、反応炉内のウェハー8もヒータ6で400
〜600℃に真空中で加熱する。
A procedure for vapor-phase growing a hanium oxide film on a silicon substrate by the vapor-phase growth method of the present invention will be described. First, vaporization chamber 9
Hf (OC 3 H 7 ) as a starting material that is solid at room temperature and is filled with
4 is heated to 100 to 200 ° C. by the heater 7 to be in a liquid state. Also, the wafer 8 in the reaction furnace is heated to 400 by the heater 6.
Heat to ~ 600 ° C in vacuum.

Hf(OC37)及びウェハー8が充分に加熱されたな
らば、原料を運ぶキャリヤーガスとしてArを用い、ガ
ス導入管13から気化室9の液体状態にされているHf
(OC37)にキャリヤーガスArを吸き込みバブリン
グすることによりHf(OC37)を含むガス(以後原
料ガスと略す)を反応炉5内に導入し、反応炉5内の圧
力は0.1〜10Torrに、ウェハー8の温度は400〜
600℃に保った状態でウェハー8上にハフニウム酸化
膜を成長させる。
When the Hf (OC 3 H 7 ) 4 and the wafer 8 are sufficiently heated, Ar is used as a carrier gas for carrying the raw material, and the Hf in the vaporization chamber 9 is brought into a liquid state from the gas introduction pipe 13.
By introducing the carrier gas Ar into (OC 3 H 7 ) 4 and performing bubbling, a gas containing Hf (OC 3 H 7 ) 4 (hereinafter abbreviated as raw material gas) is introduced into the reaction furnace 5 and Pressure is 0.1-10 Torr, and the temperature of the wafer 8 is 400-
A hafnium oxide film is grown on the wafer 8 while maintaining the temperature at 600 ° C.

この時、ハフニウム酸化膜の成長速度や膜質の向上のた
めOガスをガス導入管12により反応炉5内に導入し
ても良い。さらに膜成長時の反応炉内の圧力を0.1〜
10torrに調節するためにベースガスArをガス導入管
11から反応炉内に導入しても良い。これらガスの流量
の一例として、原料輸送のキャリアガスが100〜20
0cc/分,Oガスが1/分,ベースArガスが1
/分である。全ガス流量は気相成長装置の排気能力によ
り異なるので反応炉内の圧力が0.1〜10torrになる
ように調節すればよい。なお、ベースArガスを用いず
にOガスで圧力を調節してもよい。
At this time, O 2 gas may be introduced into the reaction furnace 5 through the gas introduction pipe 12 in order to improve the growth rate and film quality of the hafnium oxide film. Furthermore, the pressure in the reaction furnace during film growth is set to 0.1 to
The base gas Ar may be introduced into the reaction furnace through the gas introduction pipe 11 in order to adjust the pressure to 10 torr. As an example of the flow rate of these gases, the carrier gas for raw material transportation is 100 to 20.
0 cc / min, O 2 gas 1 / min, base Ar gas 1
/ Min. Since the total gas flow rate varies depending on the exhaust capacity of the vapor phase growth apparatus, it may be adjusted so that the pressure in the reaction furnace is 0.1 to 10 torr. The pressure may be adjusted with O 2 gas without using the base Ar gas.

以上説明した本発明の気相成長法で形成されたハフニウ
ム酸化膜のリーク電流特性を第2図に示す。図におい
て、横軸はハフニウム酸化膜に印加されている電界強度
を、縦軸はハフニウム酸化膜中を流れる電流密度を示
す。また従来の気相成長法で形成された膜のリーク電流
特性も合わせて第2図に示す。本発明の気相成長法によ
り形成されたハフニウム酸化膜は、従来法に比較してリ
ーク電流を数桁以上大巾に低減させることができた。
FIG. 2 shows the leak current characteristics of the hafnium oxide film formed by the vapor phase epitaxy method of the present invention described above. In the figure, the horizontal axis represents the electric field intensity applied to the hafnium oxide film, and the vertical axis represents the current density flowing in the hafnium oxide film. The leakage current characteristics of the film formed by the conventional vapor deposition method are also shown in FIG. The hafnium oxide film formed by the vapor phase epitaxy method of the present invention was able to greatly reduce the leakage current by several orders of magnitude as compared with the conventional method.

また、得られたハフニウム酸化膜の比誘電率は20〜2
5であり、これは従来法による膜の比誘電率とほぼ同じ
値である。
The relative permittivity of the obtained hafnium oxide film is 20 to 2
5, which is almost the same as the relative permittivity of the film obtained by the conventional method.

このように本発明の気相成長法により高誘電率でかつリ
ーク電流の少ないハフニウム酸化膜が形成できる。
Thus, the vapor phase growth method of the present invention can form a hafnium oxide film having a high dielectric constant and a small leak current.

次に、本発明の第2の実施例として、シリコン基板上に
設けられた高融点金属電極上にハフニウム酸化膜を気相
成長する場合の成膜手順を説明する。第2の実施例に用
いる気相成長装置も、第1図に示す気相成長装置と同じ
ものを用いる。
Next, as a second embodiment of the present invention, a film forming procedure for vapor phase growing a hafnium oxide film on a refractory metal electrode provided on a silicon substrate will be described. The vapor phase growth apparatus used in the second embodiment is the same as the vapor phase growth apparatus shown in FIG.

第1の実施例と同様に、まず気化室9に充てんされてい
る原料のHf(OC37)をヒーター7で100〜20
0℃に加熱し液体状態にする。また反応炉内のウェハー
8もヒーター6で400〜600℃に真空中で加熱する。Hf
(OC37)及びウェハー8が充分に加熱されたなら
ば、原料を運ぶキャリヤーガスとしてArを用い、ガス
導入管13から気化室9内の液体状態にされているHf
(OC37)にキャリヤーガスArを吹き込みバブリン
グすることにより原料ガスを反応炉5内に導入し、反応
炉5内の圧力は0.1〜10Torrに、ウェハー8の温度
は400〜600℃に保った状態でウェハー8上の高融
点金属電極上にハフニウム酸化膜を成長させる。
Similar to the first embodiment, first, the raw material Hf (OC 3 H 7 ) 4 filled in the vaporization chamber 9 is heated to 100 to 20 by the heater 7.
Heat to 0 ° C. to make it liquid. The wafer 8 in the reaction furnace is also heated by the heater 6 to 400 to 600 ° C. in vacuum. Hf
When the (OC 3 H 7 ) 4 and the wafer 8 are sufficiently heated, Ar is used as a carrier gas for carrying the raw material, and Hf which is in a liquid state in the vaporization chamber 9 from the gas introduction pipe 13 is used.
A carrier gas Ar is blown into (OC 3 H 7 ) 4 to bubble the raw material gas into the reaction furnace 5. The pressure in the reaction furnace 5 is 0.1 to 10 Torr, and the temperature of the wafer 8 is 400 to 600. A hafnium oxide film is grown on the refractory metal electrode on the wafer 8 while maintaining the temperature at ℃.

本実施例では反応炉内にOガスが含まれていると高融
点金属がOガスで酸化されやすいため、第1の実施例
と異なり、Oガスを反応炉内に導入しないで膜成長を
行う。即ち、膜成長時の反応炉内の圧力を0.1〜10
torrに調節するためにベースガスArをガス導入管11
から導入すると共に原料ガスを反応炉内に導入して膜成
長を行う。
In the present embodiment, when O 2 gas is contained in the reaction furnace, the refractory metal is easily oxidized by O 2 gas, so unlike the first embodiment, the O 2 gas is not introduced into the reaction furnace to form a film. Grow. That is, the pressure in the reaction furnace at the time of film growth is 0.1 to 10
Base gas Ar is introduced into the gas introduction pipe 11 to adjust torr.
And the raw material gas is introduced into the reaction furnace to grow the film.

本実施例では、Oガスを膜成長に用いないため、膜の
成長速度や膜質が第1の実施例に比較するとやや落ちる
が、従来の気相成長法による膜のリーク電流に比較する
と、本実施例の膜のリーク電流は大巾に小さい。
In this embodiment, since O 2 gas is not used for film growth, the growth rate and film quality of the film are slightly lower than those of the first embodiment, but compared with the leak current of the film by the conventional vapor phase growth method, The leak current of the film of this example is extremely small.

本発明の気相成長法により第1の実施例と同様なリーク
電流の少なくかつ高誘電率のハフニウム酸化膜を高融点
金属電極上に形成できる。
By the vapor phase growth method of the present invention, a hafnium oxide film having a small leak current and a high dielectric constant can be formed on the refractory metal electrode as in the first embodiment.

また、高融点金属電極上にハフニウム酸化膜を形成する
場合、本実施例ではOガスを用いない気相成長法を説
明したが、高融点金属電極が酸化するのを防止するた
め、膜の成長初期にはOガスを反応炉には導入せずに
ベースArガスと原料ガスのみ導入することにより、ハ
フニウム酸化膜を50〜100Å程度気相成長後、前記
ガスに加えてOガスも反応炉に導入し膜質の良いハフ
ニウム酸化膜を気相成長することも一法である。さら
に、Oガスを反応炉に導入するタイミングを原料ガス
の導入タイミングより数秒遅らせても本発明の効果は変
わらない。
Further, in the case of forming a hafnium oxide film on the refractory metal electrode, the vapor phase growth method which does not use O 2 gas has been described in this embodiment, but in order to prevent the refractory metal electrode from being oxidized, By introducing only the base Ar gas and the raw material gas without introducing O 2 gas into the reactor at the initial stage of growth, after vapor phase growth of the hafnium oxide film by about 50 to 100 Å, O 2 gas is also added in addition to the above gas. It is also one method to introduce a hafnium oxide film with good film quality into a reaction furnace and vapor-phase grow it. Furthermore, the effect of the present invention does not change even if the timing of introducing the O 2 gas into the reaction furnace is delayed by several seconds from the timing of introducing the raw material gas.

なお、第1及び第2の実施例ではハフニウム酸化膜をシ
リコン基板あるいは高融点金属上に形成したが、他の半
導体基板や多結晶シリコン,シリサイド,ポリサイド上
に形成しても、本発明の効果は同じである。また、本発
明の気相成長法ではキャリヤーガスとしてArを用いた
が、N2やHe等の不活性ガスを用いてもよい。また本発
明に用いる気相成長装置は、コールド・ウォール型及び
ホット・ウォール型のどちらの型でもよい。
Although the hafnium oxide film is formed on the silicon substrate or the refractory metal in the first and second embodiments, the effect of the present invention can be obtained even if the hafnium oxide film is formed on another semiconductor substrate, polycrystalline silicon, silicide or polycide. Are the same. Further, although Ar was used as the carrier gas in the vapor phase growth method of the present invention, an inert gas such as N 2 or He may be used. The vapor phase growth apparatus used in the present invention may be either a cold wall type or a hot wall type.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、原料としてHf(OC3
7を用い、当該原料を100〜200℃に加熱
し、ArやN2等の不活性ガスを当該原料中に吹き込みバ
ブリングすることにより原料を反応炉内に導入し、0.
1〜10torrの減圧下で400〜600℃の成長温度でハフニ
ウム酸化膜を気相成長することで、ハフニウム酸化膜の
リーク電流を大巾に低減させ、低リーク電流でかつ高誘
電率の容量膜を形成できる効果がある。
As described above, the present invention uses Hf (OC 3
Using H 7) 4, and heating the material to 100 to 200 ° C., an inert gas such as Ar and N 2 by introducing a material into the reactor by bubbling blowing in the in the raw material, 0.
By vapor-depositing a hafnium oxide film at a growth temperature of 400 to 600 ° C. under a reduced pressure of 1 to 10 torr, the leakage current of the hafnium oxide film can be greatly reduced, and a low leakage current and high dielectric constant capacitance film. There is an effect that can be formed.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の気相成長法に用いる気相成長装置の模
式縦断面図,第2図は本発明の気相成長法により形成さ
れたハフニウム酸化膜のリーク電流特性を示す図であ
る。11,12……ガスの導入管、13……キャリヤー
ガスの導入管、15……真空ポンプ、16……排気口、
21,22,23,24……バルブ、5……反応炉、
6,71……ヒーター、8……ウェハー、91……1原
料Hf(OC37)4を充てんした気化室。
FIG. 1 is a schematic vertical sectional view of a vapor phase growth apparatus used in the vapor phase growth method of the present invention, and FIG. 2 is a diagram showing leak current characteristics of a hafnium oxide film formed by the vapor phase growth method of the present invention. . 11, 12 ... Gas inlet pipe, 13 ... Carrier gas inlet pipe, 15 ... Vacuum pump, 16 ... Exhaust port,
21, 22, 23, 24 ... Valve, 5 ... Reactor,
6, 71 ... Heater, 8 ... Wafer, 91 ... 1 Vaporization chamber filled with Hf (OC 3 H 7 ) 4 raw material.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Hf(OC37)を原料とし、減圧下で成
長を行なうことを特徴とするハフニウム酸化膜の気相成
長法。
1. A vapor phase growth method for a hafnium oxide film, which comprises using Hf (OC 3 H 7 ) 4 as a raw material and performing growth under reduced pressure.
JP7128987A 1987-03-24 1987-03-24 Vapor growth method of hafnium oxide film Expired - Lifetime JPH0660406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7128987A JPH0660406B2 (en) 1987-03-24 1987-03-24 Vapor growth method of hafnium oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7128987A JPH0660406B2 (en) 1987-03-24 1987-03-24 Vapor growth method of hafnium oxide film

Publications (2)

Publication Number Publication Date
JPS63236335A JPS63236335A (en) 1988-10-03
JPH0660406B2 true JPH0660406B2 (en) 1994-08-10

Family

ID=13456385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7128987A Expired - Lifetime JPH0660406B2 (en) 1987-03-24 1987-03-24 Vapor growth method of hafnium oxide film

Country Status (1)

Country Link
JP (1) JPH0660406B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2721222B2 (en) * 1989-01-19 1998-03-04 古河電気工業株式会社 Source gas supply device for plasma CVD
KR100531464B1 (en) * 2000-06-30 2005-11-28 주식회사 하이닉스반도체 A method for forming hafnium oxide film using atomic layer deposition
US6969539B2 (en) 2000-09-28 2005-11-29 President And Fellows Of Harvard College Vapor deposition of metal oxides, silicates and phosphates, and silicon dioxide
KR100463633B1 (en) * 2002-11-12 2004-12-29 주식회사 아이피에스 Method for depositing thin film on wafer using Hafnium compound
US6884685B2 (en) * 2003-02-14 2005-04-26 Freescale Semiconductors, Inc. Radical oxidation and/or nitridation during metal oxide layer deposition process
TW200526804A (en) 2003-10-30 2005-08-16 Tokyo Electron Ltd Method of manufacturing semiconductor device, film-forming apparatus, and storage medium

Also Published As

Publication number Publication date
JPS63236335A (en) 1988-10-03

Similar Documents

Publication Publication Date Title
US5552337A (en) Method for manfacturing a capacitor for a semiconductor memory device having a tautalum oxide film
KR100222455B1 (en) Semiconductor device and method of fabricating method
US6130451A (en) High dielectric constant material containing tantalum, process for forming high dielectric constant film containing tantalum, and semiconductor device using the same
US5438012A (en) Method of fabricating capacitor element in super-LSI
US6348420B1 (en) Situ dielectric stacks
JP3611392B2 (en) Capacitor and high-capacitance capacitor manufacturing method
JP3152859B2 (en) Method for manufacturing semiconductor device
US5376593A (en) Method for fabricating stacked layer Si3 N4 for low leakage high capacitance films using rapid thermal nitridation
EP0474140B1 (en) Process of forming capacitive insulating film
JPH10303368A (en) Manufacture of integrated circuit capacitor with improved electrode and dielectric layer property and capacitor produced thereby
IE914500A1 (en) Process for producing a smooth, polycrystalline silicon¹layer doped with arsenic for highly integrated circuits
TW455949B (en) Epitaxially grown lead germanate film and deposition method
JP2778451B2 (en) Method for manufacturing semiconductor device
JP2001053253A (en) Capacitor of semiconductor memory element and its manufacture
JPH0660406B2 (en) Vapor growth method of hafnium oxide film
JP2001203339A (en) Method of manufacturing capacitor of semiconductor element
JPH05243524A (en) Manufacture of semiconductor device
US6640403B2 (en) Method for forming a dielectric-constant-enchanced capacitor
JP3137004B2 (en) Method for manufacturing capacitor structure of semiconductor device
US20070031981A1 (en) Method for forming ferroelectric film and semiconductor device
KR20000041394A (en) Manufacturing method of capacitor of memory device
JPH0982666A (en) Formation of thin film, semiconductor device and manufacture thereof
JPH06163519A (en) Formation of tantalum oxide thin film
JPH06163527A (en) Formation of tantalum oxide thin film
JPH0660407B2 (en) Vapor growth method of tantalum oxide film