JPH0658838B2 - Induction plasma device - Google Patents

Induction plasma device

Info

Publication number
JPH0658838B2
JPH0658838B2 JP63095213A JP9521388A JPH0658838B2 JP H0658838 B2 JPH0658838 B2 JP H0658838B2 JP 63095213 A JP63095213 A JP 63095213A JP 9521388 A JP9521388 A JP 9521388A JP H0658838 B2 JPH0658838 B2 JP H0658838B2
Authority
JP
Japan
Prior art keywords
plasma
induction coil
carrier gas
induction
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63095213A
Other languages
Japanese (ja)
Other versions
JPH01265499A (en
Inventor
邦夫 四方
勉 新川
藤原 エミリオ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sansha Electric Manufacturing Co Ltd
Original Assignee
Sansha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sansha Electric Manufacturing Co Ltd filed Critical Sansha Electric Manufacturing Co Ltd
Priority to JP63095213A priority Critical patent/JPH0658838B2/en
Publication of JPH01265499A publication Critical patent/JPH01265499A/en
Publication of JPH0658838B2 publication Critical patent/JPH0658838B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 <産業上の利用分野> 誘導結合型プラズマ内でセラミックや金属等の粉末を効
率よく加熱して溶解させて噴射でき、主に溶射に使用さ
れるインダクションプラズマ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to an induction plasma apparatus which is capable of efficiently heating and melting powders of ceramics, metals, etc. in an inductively coupled plasma for injection, and is mainly used for thermal spraying.

<従来の技術> 従来この種の技術としては、株式会社学会出版センター
1983年10月10日発行の書籍、日本分光学会測定法シリー
ズ5の「液体試料の発光分光分析」に誘導結合型プラズ
マ発光分光分析における光源部として誘導結合型プラズ
マ装置が開示されている。その概略の構成は、第2図に
示すように、透明石英で形成された、外側管1、中間管
2、キャリアガス導入管3からなる三重構造のトーチに
水冷誘導コイル4を設けてある。外側管1は上端が開口
し、下端が中間管2の下部外周に接合することで閉じら
れ、その下端部内に外側ガス供給部5が接線方向に開口
している。中間管2は上端が外側管1の上端よりも下方
に位置しその上端部外径が拡大形成されていて外側管1
の内周面との間に環状の小間隙6を形成しており、下端
がキャリアガス導入管3の下部外周に結合することで閉
じられ、その下端部内に中間ガス供給路7が前記外側ガ
ス供給路5と同じ周方向に沿うように接線方向に開口し
ている。キャリアガス導入管3は上端部が小径に形成さ
れて中間管2内の上端近くに開口しており、下端部がキ
ャリアガス供給路8とされている。図中9はプラズマ
炎、10は分光器で光軸である。
<Conventional technology> Conventional technology of this kind is the Society Publication Center
An inductively coupled plasma apparatus is disclosed as a light source unit in inductively coupled plasma optical emission spectrometry in a book “Atomic emission spectrometry of liquid samples” of the Spectroscopical Society of Japan method 5 published on October 10, 1983. As shown in FIG. 2, the schematic structure is that a water-cooling induction coil 4 is provided in a torch having a triple structure composed of an outer tube 1, an intermediate tube 2 and a carrier gas introducing tube 3 formed of transparent quartz. The outer pipe 1 has an upper end opened and a lower end joined to the outer periphery of the lower part of the intermediate pipe 2 to be closed, and an outer gas supply unit 5 is tangentially opened in the lower end thereof. The upper end of the intermediate pipe 2 is located lower than the upper end of the outer pipe 1, and the outer diameter of the upper end portion is enlarged to form the outer pipe 1.
An annular small gap 6 is formed between the lower end of the carrier gas introducing pipe 3 and the inner peripheral surface of the carrier gas introducing pipe 3, and the lower end of the carrier gas introducing pipe 3 is closed. It opens in the tangential direction along the same circumferential direction as the supply path 5. The carrier gas introducing pipe 3 has an upper end formed to have a small diameter and opens near the upper end in the intermediate pipe 2, and the lower end serves as a carrier gas supply passage 8. In the figure, 9 is a plasma flame, and 10 is a spectroscope, which is the optical axis.

このプラズマ装置は、外側ガス供給路5から外側ガスと
してアルゴン又は窒素を供給し、中間ガス供給路7から
中間ガスとしてアルゴンを供給し、キャリアガス供給路
8からキャリアガス(アルゴン)と試料霧を供給し、誘
導コイル4を作動させて使用する。外側ガスは主として
外側管1を冷却するために供給され、外側管1の外径が
約20mmのもので外側ガスを毎分10〜15流す。この外側
ガスは外側管1内に接線方向に導入されるから、ら旋状
に回転しながら流出する。小間隙6は1mm程度であり、
これによってガスの線速度が増して冷却効率を高くして
いる。中間ガスは毎分1〜2流すのが普通であり、プ
ラズマをわずかに上方に浮かせるという補助的な作用が
ある。キャリアガスは試料をエアロゾルにしてプラズマ
に導入するためのものであり、キャリアガス導入管3の
先端内径は 1.5〜2mmで、毎分 0.5〜1.5 を流す。
This plasma device supplies argon or nitrogen as an outer gas from the outer gas supply passage 5, supplies argon as an intermediate gas from an intermediate gas supply passage 7, and supplies a carrier gas (argon) and a sample mist from a carrier gas supply passage 8. It is supplied and the induction coil 4 is operated and used. The outer gas is supplied mainly for cooling the outer pipe 1, and the outer pipe 1 has an outer diameter of about 20 mm, and the outer gas flows at 10 to 15 min / min. This outer gas is introduced into the outer tube 1 in the tangential direction, and therefore flows out while rotating in a spiral shape. The small gap 6 is about 1 mm,
As a result, the linear velocity of the gas is increased and the cooling efficiency is increased. The intermediate gas usually flows at 1 to 2 minutes per minute, and has an auxiliary effect of floating the plasma slightly upward. The carrier gas is for making the sample into an aerosol and introducing it into the plasma, and the inner diameter of the tip of the carrier gas introducing pipe 3 is 1.5 to 2 mm, and 0.5 to 1.5 per minute is passed.

キャリアガスを流さない状態でプラズマを点火すると、
プラズマは内部が均一で底がやや平らなフレーム状をし
ている。ここにキャリアガスを流してその流量を徐々に
増していくと、毎分約 0.5程度になったときプラズマ
の中心に輝度の低い部分が現われ、上部から見るとドー
ナッ状の穴11があいていることが肉眼で確認できる。こ
の中心の穴はキャリアガスの供給によるもので、プラズ
マ発光分光分析においてはこの穴を利用しており、プラ
ズマ内に試料粒子が効率よく導入され、高温のトンネル
を通る間に完全な原子化と励起発光が起こる。なお、プ
ラズマに穴のない状態で試料が供給されると、試料はプ
ラズマの中心に入ることができず、周辺部の比較的低温
の部分を通り、難解離性化合物を完全に原子化発光させ
ることは困難である。
When plasma is ignited without carrier gas flowing,
The plasma has a frame shape with a uniform inside and a slightly flat bottom. When the carrier gas is flown here and the flow rate is gradually increased, a low brightness part appears in the center of the plasma when it reaches about 0.5 per minute, and there is a donut-shaped hole 11 when viewed from above. Can be confirmed with the naked eye. This hole at the center is due to the supply of carrier gas, and this hole is used in plasma emission spectroscopy, so that sample particles are efficiently introduced into the plasma, and complete atomization occurs while passing through the tunnel at high temperature. Excitation light emission occurs. If the sample is supplied in a state where there are no holes in the plasma, the sample cannot enter the center of the plasma and passes through the relatively low temperature part in the peripheral part, causing the hardly dissociable compound to completely atomize and emit light. Is difficult.

<発明が解決しようとする課題> 前記発光分光分析におけるプラズマ装置は、きわめて少
量の試料がプラズマの高温のトンネル内に導入されるよ
うになっているから、試料を高温に加熱して原子化発光
させる点で目的を達成している。しかし、この発明はイ
ンダクションプラズマ装置により、発光分光分析におけ
る試料よりも格段と多量のセラミックあるいは金属など
の材料を溶融状態として噴射することにより、素材表面
に被膜を形成する溶射を行うことを目的とするものであ
る。従って、従来の発光分光分析におけるプラズマ装置
を溶射に適用しようとすると、溶射材料が前述したプラ
ズマの穴を通ることになり、この穴はプラズマ炎全体か
らすれば比較的低温の部分であるから、溶射材料の加熱
効率が必ずしも良くない。また、この穴のないプラズマ
に対して溶射材料を供給すると、前述したように穴より
もさらに低温のプラズマ周辺部を通過することになり、
なおさら加熱効率は悪くなる。
<Problems to be Solved by the Invention> Since the plasma device in the emission spectroscopic analysis is designed so that a very small amount of sample is introduced into a high-temperature tunnel of plasma, the sample is heated to a high temperature to generate atomic emission. The purpose is achieved by making it. However, an object of the present invention is to perform thermal spraying for forming a coating film on a material surface by injecting a much larger amount of material such as ceramic or metal than a sample in an emission spectroscopic analysis in a molten state by an induction plasma device. To do. Therefore, when trying to apply the plasma device in the conventional optical emission spectroscopy to thermal spraying, the thermal spraying material will pass through the hole of the plasma described above, and this hole is a relatively low temperature portion from the whole plasma flame, The heating efficiency of the thermal spray material is not always good. Also, when the thermal spray material is supplied to the plasma without holes, as described above, it will pass through the plasma peripheral portion having a temperature lower than that of the holes,
Furthermore, the heating efficiency becomes worse.

この発明は、溶射材料が効率良く加熱されるようにプラ
ズマ内を通るようにしたインダクションプラズマ装置を
提供することを課題とする。
It is an object of the present invention to provide an induction plasma device in which a thermal spray material is passed through the inside of a plasma so that it can be efficiently heated.

<課題を解決するための手段> この発明の手段は、前述した従来のインダクションプラ
ズマ装置において、前記誘導コイルがコイルピッチを変
更できるように設けられていることを特徴とする。
<Means for Solving the Problem> The means of the present invention is characterized in that, in the above-described conventional induction plasma apparatus, the induction coil is provided so that the coil pitch can be changed.

前記コイルピッチの変更は、前記誘導コイルの前端と後
端とが夫々別の支持部に支持されており、少なくとも誘
導コイルの前端支持部が誘導コイルの軸線に平行な方向
に移動調節できるように設けられているのがよい。
The change of the coil pitch is such that the front end and the rear end of the induction coil are supported by different support portions, respectively, and at least the front end support portion of the induction coil can be moved and adjusted in a direction parallel to the axis of the induction coil. It is good that it is provided.

<作 用> 従来の発光分光分析におけるプラズマ装置と略同様にし
てプラズマを点火し、次にキャリアガスを流してプラズ
マ中心に比較的低温の前記穴を形成した後に、誘導コイ
ルの後端をそのままの位置として誘導コイルの前端を前
方へ移動させることにより誘導コイルの全長を引伸ばす
形でピッチを変更すると、磁界の領域が前方に拡大する
から、この変化によってプラズマの形状が全体的に前方
へ引伸ばされた形となる。この状態は輝度の高い高温部
も前方へ伸びた状態であり、前記穴が長くなった状態で
ある。従って、この状態でキャリアガスウ中に粉状の溶
射材料を供給すると、溶射材料はキャリアガスと共にプ
ラズマの比較的長い穴を通り、効率よく加熱され、溶融
状態となって前方へ噴射される。
<Operation> A plasma is ignited in the same manner as the plasma device in the conventional emission spectroscopic analysis, and then a carrier gas is caused to flow to form the hole at a relatively low temperature in the center of the plasma, and then the rear end of the induction coil is left unchanged. If the pitch is changed in such a way that the front end of the induction coil is moved forward as the position of, the length of the induction coil is extended and the pitch of the magnetic field expands forward, this change causes the plasma shape to move forward as a whole. It becomes a stretched shape. In this state, the high-temperature part having high brightness also extends forward, and the hole is long. Therefore, when powdery thermal spray material is supplied into the carrier gas in this state, the thermal spray material passes through the relatively long holes of the plasma together with the carrier gas, is efficiently heated, is melted, and is jetted forward.

<実施例> この発明の1実施例の概略の構成を第1図 (a)乃至(d)
に示す。図において、20は石英製のトーチであり、外側
管21、中間管22、キャリアガス導入管23からなり、24は
誘導コイルである。誘導コイル24は水冷式であり、断面
の端面の片側を図示してある。これらは第2図に示した
従来の発光分光分析用の装置と略同じ構成であるが、誘
導コイル24が第1図 (a)の右側に実線で示すようなコイ
ルピッチの小さい状態から、同図左側に仮想線で示すよ
うなコイルピッチの大きい状態に変更できるようにした
点が異なっている。この変更のために、誘導コイル24を
トーチ20と同軸的に位置するように誘導コイル24の前端
と後端とを支持している支持部を各別に形成して、前端
支持部を誘導コイル24の軸線の方向に移動可能に設け、
これを定位置で回転するようにした雄ねじに螺合させ
て、その雄ねじを回転操作することにより前端支持部を
進退移動させるようにしてある。この前端支持部を前方
へ移動させると誘導コイルは引伸ばされて仮想線線で示
すようになる。この実施例では約10mm移動する。図中、
25は外側ガス供給路、26は環状の小間隙、27は中間ガス
供給路、28はキャリアガス供給路である。
<Embodiment> FIG. 1 (a) to (d) shows a schematic configuration of an embodiment of the present invention.
Shown in. In the figure, 20 is a quartz torch, which is composed of an outer tube 21, an intermediate tube 22, and a carrier gas introduction tube 23, and 24 is an induction coil. The induction coil 24 is water-cooled, and one side of the end face of the cross section is shown. These have substantially the same configuration as the conventional apparatus for emission spectroscopy analysis shown in FIG. 2, but the induction coil 24 has the same configuration from the state where the coil pitch is small as shown by the solid line on the right side of FIG. 1 (a). The difference is that the coil pitch can be changed to a large state as indicated by a virtual line on the left side of the figure. For this change, a support portion that supports the front end and the rear end of the induction coil 24 is separately formed so that the induction coil 24 is positioned coaxially with the torch 20, and the front end support portion is used as the induction coil 24. Movably in the direction of the axis of
This is screwed into a male screw that rotates at a fixed position, and the male screw is rotated to move the front end support portion forward and backward. When the front end support portion is moved forward, the induction coil is stretched to be indicated by a virtual line. In this embodiment, it moves about 10 mm. In the figure,
25 is an outer gas supply passage, 26 is a small annular gap, 27 is an intermediate gas supply passage, and 28 is a carrier gas supply passage.

各部の寸法構成をmm単位で例示すると、外側管21の内径
が24、環状小間隙26が、 0.5、キャリアガス導入管23の
内径が2、外側管21と中間管22の軸方向先端間寸法aが
30、中間管22とキャリアガス導入管23の先端間寸法bが
5、外側管21の全長cが106 、誘導コイル24(巻線4)
の内径が32、同コイルの軸方向長さdが20、プラズマ点
火時の誘導コイル24の先端から外側管21の先端までの距
離eが15である。
When the dimensional configuration of each part is exemplified in mm, the inner diameter of the outer pipe 21 is 24, the small annular gap 26 is 0.5, the inner diameter of the carrier gas introduction pipe 23 is 2, and the dimension between the axial tip of the outer pipe 21 and the intermediate pipe 22. a is
30, the dimension b between the tips of the intermediate tube 22 and the carrier gas introduction tube 23 is 5, the total length c of the outer tube 21 is 106, the induction coil 24 (winding 4)
Has an inner diameter of 32, the axial length d of the coil is 20, and the distance e from the tip of the induction coil 24 to the tip of the outer tube 21 during plasma ignition is 15.

このインダクションプラズマ装置は次のようにして使用
する。外側ガス(アルゴン又は窒素)を5/min 、中
間ガス(アルゴン)を3/min くらい供給しながら、
誘導コイル24には1KW程度の電力を供給し、テスラーコ
イルの放電を使うか接地したカーボン棒を使って従来と
同様にプラズマを点火する。点火後、電源部のマッチン
グ操作によりプラズマの安定状態を維持しながら、外側
ガス及び中間ガスの供給量を徐々に増大させ、外側ガス
を15〜20/min 、中間ガスを5/min 程度とすると
共に誘導コイル24へ供給する高周波電力を3KW程度に徐
々に上げる。
This induction plasma device is used as follows. While supplying outer gas (argon or nitrogen) at 5 / min and intermediate gas (argon) at about 3 / min,
Electric power of about 1 KW is supplied to the induction coil 24, and the plasma is ignited in the same manner as in the conventional case by using the discharge of the Tessler coil or the grounded carbon rod. After ignition, the supply amount of the outer gas and the intermediate gas is gradually increased while maintaining the stable state of plasma by the matching operation of the power supply unit, and the outer gas is set to 15 to 20 / min and the intermediate gas is set to about 5 / min. At the same time, the high frequency power supplied to the induction coil 24 is gradually increased to about 3 KW .

次に、キャリアガスの供給を少量から始めて1〜3/
min まで上げてプラズマに前記穴を形成する。この間も
プラズマの安定のためにマッチング操作を行う。
Next, start the carrier gas supply from a small amount and start 1 to 3 /
Raise to min to form the holes in the plasma. During this time, a matching operation is performed to stabilize the plasma.

そして、マッチング操作と共に誘導コイル24の先端支持
部を前方へ約10mm移動させて、第1図(a) に仮想線で示
すように、ピッチが大きくなるように引伸ばす。これに
よってプラズマは第1図(e) に示す状態から第1図(f)
に示す状態に変化する。すなわち、プラズマ全体の長さ
が20〜30mm長くなり、輝度の高い高温部も10〜15mm長く
なり、その比較的低温のトンネル状の穴も長くなる。同
図中、30a、30b はプラズマ、31a、31b はプラズマの輝
度の高い部分、32a、32b は穴であり、矢印33は外側ガ
ス、矢印34は中間ガス、矢印35はキャリアガスの夫々の
移動方向を示す。
Then, along with the matching operation, the tip end supporting portion of the induction coil 24 is moved forward by about 10 mm and stretched so that the pitch becomes larger as shown by a virtual line in FIG. 1 (a). As a result, the plasma changes from the state shown in Fig. 1 (e) to Fig. 1 (f).
The state changes to. That is, the length of the entire plasma is increased by 20 to 30 mm, the high-temperature part having high brightness is also increased by 10 to 15 mm, and the tunnel-shaped hole of relatively low temperature is also elongated. In the figure, 30a and 30b are plasmas, 31a and 31b are high-brightness portions of plasma, 32a and 32b are holes, and arrow 33 is the outer gas, arrow 34 is the intermediate gas, and arrow 35 is the movement of the carrier gas. Indicates the direction.

実験によれば、このプラズマ中に、キャリアガスを介し
て溶射材料、例えば、ニッケルクロム、ジルコニア、ア
ルミナ等を粉末の状態で毎分数グラム供給すると、溶射
材料が溶融状態となって噴射され、外側管21の先端から
30〜50mmの位置に置いた鋼板に溶射材料による皮膜の形
成されることが確認された。
According to experiments, when a spraying material such as nickel chrome, zirconia, alumina, etc. is supplied into the plasma in a powder state through a carrier gas at a rate of several grams per minute, the spraying material is injected in a molten state and the outside From the tip of tube 21
It was confirmed that a film of thermal spray material was formed on the steel plate placed at a position of 30 to 50 mm.

また、別の実験によれば、前記実施例の誘導コイルを前
方へ伸ばした時の低温の穴の長いプラズマを使用して平
坦な素材表面に対して位置を変えないで一定時間溶射し
た場合に、中心部で厚く周辺部で薄くなった凸形の被膜
が形成されるのに対して、誘導コイル24を前方へ伸ばさ
ない、点火時のままの位置で、低温の穴のあるプラズマ
を使用して同じ素材表面に同様に溶射した場合に、中心
部で薄く周辺部でわずかに盛上った凹形の被膜が形成さ
れることが認められた。これはプラズマの穴の長い場合
と短い場合とでは、穴の長いプラズマを用いた方が、溶
射材料のプラズマ中を通過する時間が長くなるために効
率よく加熱されてより多くの粒子が溶融状態となり、穴
の短いプラズマを用いた方が、溶射材料のプラズマ中を
通過する時間が短くなるために溶融状態に至らない粒子
が相当量存在し、従って粉末のまま飛散していることを
示すものである。
In addition, according to another experiment, when the induction coil of the above-mentioned embodiment was sprayed forward, it was sprayed for a certain period of time without changing its position on a flat material surface using low temperature long plasma of holes. In contrast to the convex coating that is thicker at the center and thinner at the periphery, the induction coil 24 is not extended forward, and the plasma with a cold hole is used at the same position as when ignited. It was found that when the same material was sprayed on the surface of the same material, a concave coating that was thin at the center and slightly raised at the periphery was formed. This is because when the plasma hole is long and when the plasma hole is short, it is more efficient to use plasma with long holes because it takes longer to pass through the plasma of the thermal spray material and more particles are melted. It means that using a plasma with short holes, there is a considerable amount of particles that do not reach the molten state because the time for the thermal spray material to pass through the plasma is shorter, and therefore it is scattered as a powder. Is.

なお、前述した実験はトーチ20は図時のように下向きに
使用したが、必ずしもこの方向に限る必要はない。
In the above experiment, the torch 20 was used in the downward direction as shown in the figure, but it is not necessarily limited to this direction.

<発明の効果> この発明によれば、中心部にキャリアガスを流して比較
的低温の穴のあるプラズマを、従来よりも長く変形させ
ることができるから、キャリアガスを介して溶射材料を
供給するときは溶射材料を効率よく加熱できる効果が得
られる。従ってインダクションプラズマ装置を使用し
て、効率のよい溶射装置の製作が可能となる。
<Effects of the Invention> According to the present invention, a carrier gas can be caused to flow in the center portion to deform plasma having holes at a relatively low temperature longer than in the conventional case. Therefore, the thermal spray material is supplied via the carrier gas. In this case, the effect of efficiently heating the thermal spray material can be obtained. Therefore, it becomes possible to manufacture an efficient thermal spraying apparatus by using the induction plasma apparatus.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の1実施例を示し(a) はそのトーチ及
び誘導コイルの概略縦断側面図、(b) は(a) のB−B断
面図、(c) は (a)のC−C断面図、(d) は (a)のD−D
断面図、(e) はコイルピッチの小さいときのプラズマの
状態を示す概略縦断側面図、(f) はコイルピッチを引伸
ばしたときのプラズマの状態を示す概略縦断側面図、第
2図は従来のインダクションプラズマ装置の1例を示し
(a) はそのトーチ及び誘導コイルの概略縦断側面図、
(b) は (a)のA−A断面図である。 20……トーチ、21……外側管、22……中間管、23……キ
ャリアガス導入管、24……誘導コイル、25……外側ガス
供給路、26……環状小間隙、27……中間ガス供給路、28
……キャリアガス供給路。
FIG. 1 shows an embodiment of the present invention. (A) is a schematic longitudinal side view of the torch and induction coil, (b) is a sectional view taken along line BB of (a), and (c) is C of (a). -C sectional view, (d) is DD of (a)
Sectional view, (e) is a schematic vertical sectional side view showing the state of plasma when the coil pitch is small, (f) is a schematic vertical sectional side view showing the state of plasma when the coil pitch is stretched, and FIG. An example of the induction plasma device of
(a) is a schematic vertical side view of the torch and induction coil,
(b) is an AA sectional view of (a). 20 ... Torch, 21 ... Outer tube, 22 ... Intermediate tube, 23 ... Carrier gas introduction tube, 24 ... Induction coil, 25 ... Outer gas supply passage, 26 ... Small annular gap, 27 ... Intermediate Gas supply channel, 28
...... Carrier gas supply channel.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一端から外側ガスを接線方向に導入され他
端の開口から放出する外側管、その外側管内に同軸的に
設けられ一端から中間ガスを外側管と同じ接線方向に導
入され他端の開口から放出する中間管、及びその中間管
内に同軸的に設けられ一端から供給されるキャリアガス
を他端の開口から放出するキャリアガス導入管からなる
三重構造のトーチと、そのトーチの開口側外周に設けら
れた誘導コイルと、その誘導コイルの高周波電源部とか
らなるインダクションプラズマ装置において、前記誘導
コイルがコイルピッチを変更できるように設けられてい
ることを特徴とするインダクションプラズマ装置。
1. An outer tube which is introduced tangentially from one end and is discharged from an opening at the other end, and an outer tube which is coaxially provided in the outer tube and introduces intermediate gas from one end in the same tangential direction as the outer tube and the other end. And a torch having a triple structure including an intermediate tube for discharging from the opening of the intermediate tube and a carrier gas introducing tube coaxially provided in the intermediate tube for discharging the carrier gas supplied from one end from the opening at the other end, and the opening side of the torch. An induction plasma device comprising an induction coil provided on the outer periphery and a high-frequency power source part of the induction coil, wherein the induction coil is provided so that the coil pitch can be changed.
【請求項2】請求項(1) に記載のインダクションプラズ
マ装置において、前記誘導コイルの前端と後端とが夫々
別の支持部に支持されており、少なくとも誘導コイルの
前端支持部が誘導コイルの軸線に平行な方向に移動調節
できるように設けられていることを特徴とするインダク
ションプラズマ装置。
2. The induction plasma device according to claim 1, wherein the front end and the rear end of the induction coil are supported by different support portions, and at least the front end support portion of the induction coil is the induction coil. An induction plasma device provided so as to be movable and adjusted in a direction parallel to an axis.
JP63095213A 1988-04-18 1988-04-18 Induction plasma device Expired - Lifetime JPH0658838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63095213A JPH0658838B2 (en) 1988-04-18 1988-04-18 Induction plasma device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63095213A JPH0658838B2 (en) 1988-04-18 1988-04-18 Induction plasma device

Publications (2)

Publication Number Publication Date
JPH01265499A JPH01265499A (en) 1989-10-23
JPH0658838B2 true JPH0658838B2 (en) 1994-08-03

Family

ID=14131473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63095213A Expired - Lifetime JPH0658838B2 (en) 1988-04-18 1988-04-18 Induction plasma device

Country Status (1)

Country Link
JP (1) JPH0658838B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521194A (en) * 1991-07-08 1993-01-29 Sansha Electric Mfg Co Ltd Induction plasma thermal spraying device
JPH06116704A (en) * 1992-10-01 1994-04-26 Sansha Electric Mfg Co Ltd Formation of silicon film
JPH06145947A (en) * 1992-11-02 1994-05-27 Sansha Electric Mfg Co Ltd Powder and granular material of superconducting material and formation of film
AU2006223254B2 (en) * 2005-03-11 2012-04-26 Perkinelmer U.S. Llc Plasmas and methods of using them
JP2009259530A (en) * 2008-04-15 2009-11-05 Shibaura Mechatronics Corp Plasma generating device, plasma treatment device, and method for manufacturing electronic device

Also Published As

Publication number Publication date
JPH01265499A (en) 1989-10-23

Similar Documents

Publication Publication Date Title
US20210205885A1 (en) Process And Apparatus For Producing Powder Particles By Atomization Of A Feed Material In The Form Of An Elongated Member
US4853250A (en) Process of depositing particulate material on a substrate
JP2593405B2 (en) Torch equipment for chemical processes
JPH03150341A (en) Conjugate torch type plasma generator and plasma generating method using the same
JP2004534241A (en) Plasma torch
US20230110818A1 (en) Device for melting metals
JPH0658838B2 (en) Induction plasma device
JPH0658839B2 (en) Induction plasma device
Fauchais et al. Plasma spraying: from plasma generation to coating structure
Cao et al. A torch nozzle design to improve plasma spraying techniques
Boulos Visualization and diagnostics of thermal plasma flows
JP4719877B2 (en) Microwave plasma torch and microwave plasma spraying device
JP2595365B2 (en) Thermal plasma jet generator
RU2206964C1 (en) Electric-arc plasma generator
JPH04333556A (en) Method for thermal-spraying chromia and sprayed deposit
JPH04341552A (en) Induction plasma spraying device
Zhang et al. Excitation temperature of smart spraying plasmas produced from modulated arc discharge
JPH0389498A (en) Induction plasma device
JPS61275652A (en) Elemental analysis device and method during process of molten metal, etc.
JPH0521194A (en) Induction plasma thermal spraying device
JPH0263549A (en) Process and apparatus for plasma reaction
JPH02112200A (en) Induction plasma application device
JPH05229895A (en) Synthesis of diamond utilizing arc discharge