JPH0657315A - Operation of blast furnace based on hydrogen gas utilizing ratio - Google Patents

Operation of blast furnace based on hydrogen gas utilizing ratio

Info

Publication number
JPH0657315A
JPH0657315A JP21403292A JP21403292A JPH0657315A JP H0657315 A JPH0657315 A JP H0657315A JP 21403292 A JP21403292 A JP 21403292A JP 21403292 A JP21403292 A JP 21403292A JP H0657315 A JPH0657315 A JP H0657315A
Authority
JP
Japan
Prior art keywords
furnace
hydrogen gas
blast furnace
utilization rate
gas utilization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21403292A
Other languages
Japanese (ja)
Other versions
JP2668486B2 (en
Inventor
Takushi Kawamura
拓史 川村
Yoshihiro Inoue
義弘 井上
Sadaji Kugimiya
貞二 釘宮
Masaaki Naito
誠章 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP21403292A priority Critical patent/JP2668486B2/en
Publication of JPH0657315A publication Critical patent/JPH0657315A/en
Application granted granted Critical
Publication of JP2668486B2 publication Critical patent/JP2668486B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To make the length of a low temp. region proper and to improve the utilizing ratio of reducing gas by measuring furnace gas composition at plural points in the radius direction of a blast furnace, calculating a hydrogen gas utilizing ratio and adjusting the distribution of charged materials at the furnace top based on the calculation. CONSTITUTION:By using sondes 8, 9 at plural positions in the height direction of a bulky zone part 6 in the blast furnace shaft part, the composition and the quantity of the furnace gas are measured and the hydrogen gas utilizing ratio is calculated based on these measured values. By obtaining the difference between these hydrogen gas utilizing ratios and based on the difference, the distribution of the charged materials at the furnace top is adjusted to improve the gas ventilation. By this method, the length of low temp. region in the blast furnace is kept so as to be suitable and the stabilized operation can be continued.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高炉シャフト部の水素ガ
ス利用率を用いた高炉操業法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blast furnace operating method using the hydrogen gas utilization rate of a blast furnace shaft.

【0002】[0002]

【従来の技術】高炉操業において高炉々内に於ける塊状
帯部分の温度分布、特に塊状帯部分の高さ方向に於ける
500〜800℃の低温領域の長さを適正化すること
は、操業の安定化及び還元ガス利用率を向上させ燃料比
を低減する上で極めて重要である。つまり、500〜8
00℃の低温領域は炉内に装入された焼結鉱、塊鉱石等
の鉄源の還元粉化が最も発生し易い温度域であり、この
低温領域が長い程、還元粉化が助長され、高炉内通気性
悪化、炉況不調へと繋がっていくことから、前記低温領
域の長を検知し、その長を適正化する必要がある。この
ため、従来、前記塊状帯部分に於ける前記低温領域を検
知する方法としては、例えば、垂直ゾンデにより直接測
定した炉高方向の温度分布から求める方法がある。この
垂直ゾンデによる温度分布測定には大がかりな設備を要
するため多大な設備投資、運転費及び労務費がかかり、
更に1回の測定に数時間を要するため日常の高炉操業管
理に使用することは実際上困難である。
2. Description of the Related Art In blast furnace operation, optimizing the temperature distribution in the lump furnace zone in the blast furnace, especially the length of the low temperature region of 500 to 800 ° C. in the height direction of the lump furnace zone Is very important in stabilizing the fuel and improving the reducing gas utilization rate and reducing the fuel ratio. That is, 500 to 8
The low temperature region of 00 ° C is the temperature region where the reduction and pulverization of the iron source such as the sinter or lump ore charged in the furnace is most likely to occur. The longer the low temperature region, the more the reduction and pulverization is promoted. Since the air permeability in the blast furnace is deteriorated and the furnace condition is poor, it is necessary to detect the length of the low temperature region and optimize the length. Therefore, conventionally, as a method for detecting the low temperature region in the massive band portion, for example, there is a method for obtaining from the temperature distribution in the furnace height direction directly measured by a vertical sonde. Measurement of temperature distribution using this vertical probe requires a large amount of equipment, which requires a large amount of capital investment, operating costs, and labor costs.
Furthermore, since it takes several hours for one measurement, it is practically difficult to use it for daily blast furnace operation management.

【0003】そこで日常の高炉操業管理に使用するため
に、本発明者等は過去において、炉高方向の温度分布を
直接測定するのではなく、炉内における水素ガス利用率
を基に前記500〜800℃の低温領域の長さを推定す
る方法を提案した。これは、実公平1−27038号公
報に提案の高炉内反応シュミレーター(上部より鉱石を
充填すると共に下部より還元ガスを導通して、該還元ガ
スと鉱石を向流接触する炉芯管と、該炉芯管の一部を包
囲して前記還元ガス下流方向に移動自在に設けた加熱器
を有する装置)を用いて得た知見、即ち、上記充填層高
さ方向の500〜800℃の低温領域が長くなるに従い
水素ガス利用率ηH2 が低下するという現象を利用した
ものであって、例えば特公昭63−61366号公報、
特公平3−27604号公報の提案がある。
Therefore, in order to use it for daily blast furnace operation management, the present inventors did not directly measure the temperature distribution in the furnace height direction in the past, but based on the hydrogen gas utilization rate in the furnace, the above-mentioned 500- A method for estimating the length of the low temperature region of 800 ° C was proposed. This is a reaction simulator in a blast furnace proposed in Japanese Utility Model Publication No. 1-27038 (a furnace core tube in which ore is filled from the upper part and reducing gas is conducted from the lower part, and the reducing gas and the ore are countercurrently contacted, (A device having a heater surrounding a part of the furnace core tube and movably provided in the reducing gas downstream direction), that is, a low temperature region of 500 to 800 ° C. in the packed bed height direction The phenomenon that the hydrogen gas utilization rate ηH 2 decreases as the temperature becomes longer, is disclosed in Japanese Patent Publication No. 63-61366.
There is a proposal in Japanese Examined Patent Publication No. 3-27604.

【0004】この特公昭63−61366号公報は高炉
々頂部に於ける高炉ガス組成を分析し、水素ガス利用率
を算定することにより前記塊状帯部分の前記低温領域を
推定する方法である。特公平3−27604号公報は高
炉シャフト部の上部からゾンデを挿入して、塊状帯部分
における高炉半径方向の複数点において炉内ガス組成を
分析し、水素ガス利用率または水素ガス利用率/COガ
ス利用率を算定することにより、上記各測定点における
高炉炉高方向の低温領域を推定する方法である。
Japanese Patent Publication No. 63-61366 discloses a method of estimating the low temperature region of the massive zone by analyzing the blast furnace gas composition at the top of the blast furnace and calculating the hydrogen gas utilization rate. According to Japanese Examined Patent Publication No. 3-27604, a sonde is inserted from the upper part of the shaft portion of the blast furnace to analyze the gas composition in the furnace at a plurality of points in the lump furnace zone in the radial direction of the blast furnace, and the hydrogen gas utilization rate or the hydrogen gas utilization rate / CO This is a method of estimating the low temperature region in the blast furnace height direction at each of the above measurement points by calculating the gas utilization rate.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記特公昭6
3−61366号公報で提案の方法では、上記炉頂水素
ガス利用率が高炉全体の指標であるため、低温領域の長
さの異常部位が炉内の何れかの位置に存在することの検
知はできるが、その部位を特定することが出来ないもの
である。また、特公平3−27604号公報で提案の方
法では、ある特定の高さ位置における高炉半径方向の水
素ガス利用率を指標とするため、塊状帯より下方部位に
於ける水素ガス利用率の変化による外乱を避けられな
い。このため、水素ガス利用率の低下が塊状帯部分に起
因しているものか、塊状帯より下方部分に起因している
ものかを判定することが困難であった。
[Problems to be Solved by the Invention]
In the method proposed in Japanese Patent Application No. 3-61366, since the above-described furnace top hydrogen gas utilization rate is an index of the entire blast furnace, it is not possible to detect that an abnormal portion of the length of the low temperature region exists at any position in the furnace. It is possible, but the part cannot be specified. Further, in the method proposed in Japanese Examined Patent Publication No. 3-27604, since the hydrogen gas utilization rate in the blast furnace radial direction at a specific height position is used as an index, the change of the hydrogen gas utilization rate in the region below the massive zone is changed. Inevitably caused by disturbance. Therefore, it is difficult to determine whether the decrease in the hydrogen gas utilization rate is caused by the lump zone portion or the lower portion of the lump zone.

【0006】本発明は高炉々内の塊状帯部分での水素ガ
ス利用率の低下部位を精度良く推定することにより、該
塊状帯部分に於ける500〜800℃の低温領域の長さ
が異常である部位を求めて、炉頂装入物分布調整を行う
ことにより低温領域の長さを適正化し、高炉操業の安定
化及び還元ガス利用率を向上させ燃料比を低減すること
を課題とするものである。
According to the present invention, the length of the low temperature region of 500 to 800 ° C. in the lump furnace zone is abnormal by accurately estimating the site where the hydrogen gas utilization rate is reduced in the lump furnace zone. It is an object to optimize the length of the low temperature region by finding a certain part and adjusting the distribution of the top charge, stabilizing the blast furnace operation, improving the reducing gas utilization rate and reducing the fuel ratio. Is.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
するためになされたものであり、その手段は、高炉シャ
フトの塊状帯部分高さ方向における所定の複数箇所の各
々において、高炉半径方向における所定の複数箇所で炉
内ガスの成分とその量を測定すると共にこの測定値に基
づいて水素ガス利用率を算定し、且つ、前記塊状帯部分
の高さ方向所定位置間における前記水素ガス利用率の差
を求め、この水素ガス利用率の差に基づいて炉頂装入物
分布調整を行って該差を所定範囲内に維持する高炉操業
方法である。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and the means is to provide a radial direction of a blast furnace at each of a plurality of predetermined positions in the height direction of a lump zone portion of a blast furnace shaft. In the furnace, the composition and amount of the gas in the furnace are measured at a plurality of predetermined locations, and the hydrogen gas utilization rate is calculated based on the measured values, and the hydrogen gas utilization between the predetermined positions in the height direction of the massive zone is performed. This is a blast furnace operating method in which the difference in the rate is obtained, and the distribution of the top charge is adjusted based on the difference in the hydrogen gas utilization rate to maintain the difference within a predetermined range.

【0008】前記、該高炉々径方向の装入物分布調整は
公知の方式、例えば、ベル式高炉においてはアーマープ
レートの調整、ベルレス高炉においては炉内旋回シュー
トの旋回速度の調整が最も効果的であるが、その他、装
入物の性状の変更、装入物の装入量の変更等を各々単
独、或いはいずれかを組み合わせて行ってもよい。又、
水素ガス利用率の算定は下記(1)式、又は、特公平3
−27604号公報で記載のように各シャフトゾンデ
8,9で測定した水分濃度、水素濃度を使用したH2
%/(H2 %+H2 O%)で算定してもよいが、本発明
はこれに限定されるものではなく、公知の方式のいずれ
の算定方式でもよい。
The distribution of the charged material in the radial direction of the blast furnace is adjusted by a known method, for example, the adjustment of the armor plate in the bell type blast furnace and the adjustment of the turning speed of the turning chute in the bellless blast furnace are most effective. However, in addition to the above, the property of the charged material, the amount of the charged material, and the like may be changed individually or in combination. or,
Calculation of hydrogen gas utilization rate is given by the following formula (1) or special fair 3
H 2 O using the water concentration and hydrogen concentration measured by each shaft probe 8 and 9 as described in JP-A-27604.
% / Or may be calculated by (H 2% + H 2 O %) , but the present invention is not limited thereto, may be any calculation method known manner.

【0009】 100 −(100−炉頂水素ガス利用率)×(各部位における水素濃度)/ (炉頂ガス中水素濃度)[%]・・・(1) 但し、 (a)炉頂水素ガス利用率は(供給水素量−炉頂ガス中
水素濃度)×100/供給水素量〔%〕で算定した値で
ある。 (b)炉頂水素ガス利用率は炉頂に設けたガス分析計1
0で測定した炉頂ガス中の水素濃度である。 (c)供給水素量は装入物中の水素量、羽口から吹込む
熱風中の水素量及び微粉炭中の水素量等の高炉々内に供
給される水素量の合計である。
100− (100− furnace top hydrogen gas utilization rate) × (hydrogen concentration at each part) / (hydrogen concentration in furnace top gas) [%] (1) where (a) furnace top hydrogen gas The utilization rate is a value calculated by (amount of supplied hydrogen-hydrogen concentration in furnace top gas) × 100 / amount of supplied hydrogen [%]. (B) Furnace top hydrogen gas utilization rate is the gas analyzer 1 installed at the furnace top
It is the hydrogen concentration in the furnace top gas measured at 0. (C) The amount of hydrogen supplied is the total amount of hydrogen supplied to the blast furnaces, such as the amount of hydrogen in the charge, the amount of hydrogen in the hot air blown from the tuyere, and the amount of hydrogen in the pulverized coal.

【0010】[0010]

【作用】本発明の作用を図1から図4を参照して説明す
る。図1中に示す実機高炉に設置した剛体型垂直ゾンデ
7を用いて測定した高炉高さ方向の500℃から800
℃領域の長さと、塊状帯6の上部に当たるシャフト上部
より挿入したゾンデ(以下、単にシャフト上部ゾンデと
称す)8及び塊状帯6の下部に当たるシャフト中部より
挿入したゾンデ(以下、単にシャフト中部ゾンデと称
す)9を用いて測定した炉内ガス組成から求めたシャフ
ト中部ゾンデ位置とシャフト上部ゾンデ位置間の{(水
素分圧PH2 ×二酸化炭素分圧PCO2)/(水分分圧
PH2 O×一酸化炭素分圧PCO)}の関係を図2に示
す。この図は、高炉高さ方向、つまり、炉内ガス流れ方
向に500℃から800℃の低温領域が発達して長くな
る程、炉内ガス中の水分と一酸化炭素が反応する水性ガ
スシフト反応(H2 O+CO=CO2 +H2 )が進行す
ることを示す。そして、この水性ガスシフト反応が進行
につれて、高炉ガス中の水素濃度が順次濃くなって水素
ガス利用率が低下する。
The operation of the present invention will be described with reference to FIGS. 500 to 800 in the height direction of the blast furnace measured using the rigid vertical probe 7 installed in the actual blast furnace shown in FIG.
° C region length, and a sonde inserted from the upper part of the shaft corresponding to the upper part of the massive band 6 (hereinafter simply referred to as the upper shaft sonde) 8 and a sonde inserted from the middle part of the shaft corresponding to the lower part of the massive band 6 (hereinafter simply referred to as the central shaft sonde). 9) between the position of the central sonde of the shaft and the position of the upper sonde of the shaft obtained from the gas composition in the furnace measured using (9) ((hydrogen partial pressure PH 2 × carbon dioxide partial pressure PCO 2 ) / (water partial pressure PH 2 O × The relationship of carbon monoxide partial pressure PCO)} is shown in FIG. This figure shows a water-gas shift reaction in which water in the furnace gas reacts with carbon monoxide as the low temperature region of 500 ° C. to 800 ° C. develops and becomes longer in the blast furnace height direction, that is, in the furnace gas flow direction. H 2 O + CO = CO 2 + H 2 ) is progressing. Then, as the water gas shift reaction proceeds, the hydrogen concentration in the blast furnace gas gradually increases and the hydrogen gas utilization rate decreases.

【0011】従って、本発明は炉内ガスの組成を測定
し、これを基にして塊状帯部分での水素ガス利用率を演
算し、この演算水素ガス利用率と予め求めておいた目標
とする所定範囲値と比較し、500〜800℃の低温領
域長さの異常(基準長さ範囲内に有るか否か)を判定す
るものである。この塊状帯部分に於ける炉高方向の温度
分布を推定する手段として、高炉シャフト上部、中部に
設置した2種のゾンデ8、9を用いて高炉半径方向複数
位置の水素ガス利用率を測定し、その差を求めること
が、ゾンデ9より下方における水素ガス利用率の変動に
よる外乱を除外して、推定精度を向上することが可能に
なる。つまり、高炉シャフト上部ゾンデ8により高炉半
径方向7点について水素ガス利用率ηH2-8 を測定した
例を図3に示す。図中の上部ゾンデ位置における水素ガ
ス利用率ηH2-8 のみを考慮すると、該水素ガス利用率
ηH2-8 の最低部位が無次元半径(炉中心から測定位置
までの距離/高炉半径)0.4付近にある。
Therefore, according to the present invention, the composition of the gas in the furnace is measured, the hydrogen gas utilization rate in the lump zone is calculated based on the composition, and the calculated hydrogen gas utilization rate is set as the previously determined target. By comparing with a predetermined range value, the abnormality of the low temperature region length of 500 to 800 ° C. (whether it is within the reference length range) is determined. As a means for estimating the temperature distribution in the blast furnace height direction in this massive zone, the hydrogen gas utilization rate at multiple positions in the blast furnace radial direction was measured using two types of sondes 8 and 9 installed in the upper and middle parts of the blast furnace shaft. It is possible to improve the estimation accuracy by determining the difference by excluding the disturbance due to the fluctuation of the hydrogen gas utilization rate below the sonde 9. That is, FIG. 3 shows an example in which the hydrogen gas utilization ratio ηH 2-8 was measured at seven points in the blast furnace radial direction by the blast furnace shaft upper sonde 8. Considering only the hydrogen gas utilization rate ItaH 2-8 in the upper probe position in the drawing, (Distance / blast radius to the measuring position from the furnace center) 0 lowest site of the hydrogen gas utilization rate ItaH 2-8 dimensionless radius It is around 0.4.

【0012】しかし、これは前記のように、融着帯又は
それより下方部の影響が含まれていることがあり、これ
を排除するため、シャフト中部からゾンデ9を挿入し、
このシャフト中部位置の無次元半径0.4〜1.0の範
囲における7点の炉内ガス組成を測定し、これを基に水
素ガス利用率ηH2-9 を求め、これを図3に示す。そし
て、この炉内ガス流れに対応した所定位置間、つまり、
同一無次元半径位置の水素ガス利用率との差(ηH2-9
−ηH2-8 =ΔH2a )、即ち、ゾンデ8、9間の塊状帯
部分における水素ガス利用率を算出した結果を図4に示
す。尚、このシャフト中部位置の水素ガス利用率ηH
2-8 とシャフト上部位置の水素ガス利用率ηH2-9 の差
を求める位置を同一無次元半径位置とするのは、炉下部
から上昇する炉内ガスの内で、シャフト中部位置で測定
した炉内ガスと同一のガスをシャフト上部位置で測定す
るためである。
However, this may include the influence of the cohesive zone or the lower part thereof as described above, and in order to eliminate this, the sonde 9 is inserted from the center of the shaft,
The in-furnace gas composition at seven points in the dimensionless radius of 0.4 to 1.0 at the center of the shaft was measured, and the hydrogen gas utilization rate ηH 2-9 was determined based on this measurement, which is shown in FIG. . Then, between predetermined positions corresponding to the gas flow in the furnace, that is,
Difference with hydrogen gas utilization at the same dimensionless radial position (ηH 2-9
−ηH 2-8 = ΔH 2a ), that is, the result of calculating the hydrogen gas utilization rate in the massive zone between the sondes 8 and 9 is shown in FIG. In addition, the hydrogen gas utilization rate ηH at the central position of this shaft
The position where the difference between the hydrogen gas utilization ratio ηH 2-9 between 2-8 and the upper shaft position is determined to be the same dimensionless radial position is measured in the middle position of the shaft in the furnace gas rising from the lower furnace. This is because the same gas as the gas in the furnace is measured at the upper position of the shaft.

【0013】前記図3より塊状帯において高炉炉径方向
で中部ゾンデ位置から上部ゾンデ位置にかけて水素ガス
利用率の差ΔηH2 が最も大きい、つまり、水素ガス利
用率が最も低下している部位は無次元半径0.6付近に
あることが判別できる。このようにシャフト上部ゾンデ
8のみで判断した水素ガス利用率が炉下部(融着帯、又
は、これより下方)における外乱を含む場合において
も、シャフト中部ゾンデ9で検知した水素ガス利用率と
の差を求めることによって塊状帯部分に於ける水素ガス
利用率を精度良く判別することができる。
As shown in FIG. 3, the hydrogen gas utilization difference ΔηH 2 between the central sonde position and the upper sonde position is the largest in the blast furnace radial direction in the lump zone, that is, there is no region where the hydrogen gas utilization ratio is the lowest. It can be determined that the dimension radius is around 0.6. As described above, even when the hydrogen gas utilization rate judged only by the upper shaft sonde 8 includes the disturbance in the lower portion of the furnace (cohesive zone or below), the hydrogen gas utilization rate detected by the central shaft sonde 9 By obtaining the difference, it is possible to accurately determine the hydrogen gas utilization rate in the massive zone.

【0014】かくして、上記のようにして求めた水素ガ
ス利用率の差ΔηH2 を所定範囲値と比較し、高炉半径
方向での何れかにおける部位の水素ガス利用率の差Δη
2が管理値外になる、即ち、前記500〜800℃の
低温領域が所定長さ以上となると、その部位の通気性が
悪化する事から、装入物の分布調整を行って通気性を改
善し、高炉半径方向での温度分布を調整して、前記低温
領域の長さを所定長さ以上になる事を防止する。このよ
うな操業アクションを行うことによって高炉内の低温領
域の長さを適正に保ち安定した操業を継続するものであ
る。なお、前記水素ガス利用率の差ΔηH2 の所定範囲
値は対象とする高炉、焼結鉱品質及び操業条件によって
異なるため、予め操業試験によって求めるものである。
Thus, the difference ΔηH 2 in the hydrogen gas utilization rate obtained as described above is compared with a predetermined range value, and the difference Δη in the hydrogen gas utilization rate at any part in the radial direction of the blast furnace is compared.
When H 2 is out of the control value, that is, when the low temperature region of 500 to 800 ° C. is longer than a predetermined length, the air permeability of the part deteriorates. By improving the temperature distribution in the radial direction of the blast furnace, the length of the low temperature region is prevented from exceeding a predetermined length. By performing such an operation action, the length of the low temperature region in the blast furnace is properly maintained and stable operation is continued. The predetermined range of the hydrogen gas utilization difference ΔηH 2 varies depending on the target blast furnace, the quality of the sinter and the operating conditions, and is thus obtained by an operating test in advance.

【0015】[0015]

【実施例】次に、本発明の一実施例を図1、3、4を参
照して詳細に説明する。図1中、1は大ベル、2は大ベ
ル上の装入物、4はアーマープレート、5は高炉の側壁
に設けた鉱石受け金物、6は炉内に堆積した装入物の塊
状帯、8は装入物のストックラインから4.5m下方に
設けた上部ゾンデ、9は融着帯3の直近で、上部ゾンデ
8から7m下方に設けた中部ゾンデである。そして、こ
の高炉は内容積:5245m3 、送風量:8100Nm
3 /分、送風湿分:41g/Nm3 、酸素付加量:15
000Nm3 /時間、微分炭吹込み量:80kg/t-pig、
出銑量:12000トン/日、装入物の装入モード:C
(コークス)C(コークス)O(鉱石)O(鉱石)であ
る。更に、この高炉の水素ガス利用率の差の目標とする
所定範囲値は−5%以上であり、これは過去の操業デー
ター等を解析して求めた値である。
Next, an embodiment of the present invention will be described in detail with reference to FIGS. In FIG. 1, 1 is a large bell, 2 is a charge on the large bell, 4 is an armor plate, 5 is an ore receiver provided on the side wall of the blast furnace, 6 is a massive band of the charge accumulated in the furnace, Reference numeral 8 is an upper sonde provided 4.5 m below the stock line of the charge, and 9 is a central sonde provided immediately adjacent to the cohesive zone 3 and 7 m below the upper sonde 8. And this blast furnace has an internal volume of 5245 m 3 and an air flow of 8100 Nm.
3 / min, blast humidity: 41 g / Nm 3 , oxygen addition: 15
000Nm 3 / hour, differential coal injection rate: 80kg / t-pig,
Amount of tapping: 12000 tons / day, charging mode of charging: C
(Coke) C (coke) O (ore) O (ore). Further, the target predetermined range value of the difference in hydrogen gas utilization rate of the blast furnace is -5% or more, which is a value obtained by analyzing past operation data and the like.

【0016】実施例1 アーマープレート4のモードを(0000)<前記装入
物の装入モードのCCOOに対応してアーマープレート
4の各ノッチ数を示す値であり、その値が大きくなる
程、これで蹴られて装入される装入物の落下位置は炉中
心に近くなる>で高炉操業している際、炉況が不安定に
なった。この状態における上部ゾンデ8とガス分析計1
0で測定して求めた炉径方向の水素ガス利用率η
2-8 、中部ゾンデ9とガス分析計10で測定して求め
た炉径方向の水素ガス利用率ηH2-9 を図3に示し、そ
の差(ηH2-9 −ηH2-8 =ΔηH2a)を図4に示す。
この図4から分かるように、水素ガス利用率のΔηH 2a
が最も小さいのは無次元半径0.6付近で、その値は−
16%で、水素ガス利用率の差の所定範囲値ηH20(−
5%以上)外である。このためアーマープレート4の使
用モードを(1204)と(0009)の併用(使用度
合は2:1)して、炉中心部へのコークス及び鉱石の蹴
り量を促進した。
Example 1 The mode of the armor plate 4 is set to (0000) <the above-mentioned charging
Armor plate corresponding to CCOO in charging mode
It is a value that indicates the number of each notch of 4, and the value increases
About this, the falling position of the charge kicked and charged is in the furnace
Being closer to your heart> When the blast furnace is operating, the furnace conditions become unstable
became. Upper sonde 8 and gas analyzer 1 in this state
Hydrogen gas utilization ratio η obtained by measuring at 0
H2-8, Measured by the central sonde 9 and gas analyzer 10
Hydrogen gas utilization rate in the radial direction ηH2-9Is shown in Fig. 3.
Difference (ηH2-9-ΗH2-8= ΔηH2a) Is shown in FIG.
As can be seen from FIG. 4, the hydrogen gas utilization rate ΔηH 2a
Has the smallest dimensionless radius around 0.6, and its value is −
16%, a predetermined range value ηH of the difference in hydrogen gas utilization rate20(-
5% or more) outside. For this reason, the armor plate 4
Use mode for both (1204) and (0009)
2: 1) and then kick coke and ore into the center of the furnace.
Promoted the amount.

【0017】この結果、無次元半径0.6付近である炉
中間部における鉱石/コークスが相対的に低下して通気
性が良好になって、通気改善効果が現れ数時間後、中部
ゾンデ9とガス分析計10で高炉ガス中の水素濃度を測
定し、上記(1)式で演算した水素ガス利用率η
2-9 、上部ゾンデ8とガス分析計10で高炉ガス中の
水素濃度測定し、上記(1)式で測定演算した水素ガス
利用率ηH2-8 の差(ηH2- 9 −ηH2-8 =ΔηH2b
は無次元半径0.6付近で−4%程度となり、上記所定
範囲値ηH02内(−5%以上)となり炉況が安定し、燃
料比は498kg/t-pigから487kg/t-pigに低減した。
As a result, the ore / coke in the middle part of the furnace, which has a dimensionless radius of about 0.6, is relatively lowered to improve the air permeability, and the effect of improving the air permeability appears. Hydrogen concentration in the blast furnace gas was measured with the gas analyzer 10, and the hydrogen gas utilization rate η calculated by the above equation (1) was calculated.
H 2-9, the hydrogen concentration measured in the blast furnace gas at the top sonde 8 and the gas analyzer 10, the (1) the difference between the hydrogen gas utilization rate ItaH 2-8 measured calculated by equation (ηH 2- 9 -ηH 2 -8 = ΔηH 2b )
Is around -4% around a dimensionless radius of 0.6, within the above specified range value ηH 02 (-5% or more), the furnace condition is stable, and the fuel ratio is changed from 498 kg / t-pig to 487 kg / t-pig. Reduced.

【0018】実施例2 アーマープレート4のモードを(1204)と(000
9)を併用(使用度合は2:1)しつつ長期の間操業し
ていると、再び、炉況が不安定になりつつあった。この
状態で、上部ゾンデ8とガス分析計10で高炉ガス中の
水素濃度を測定して求めた炉径方向の水素ガス利用率η
2-8 、中部ゾンデ9ガス分析計10で高炉ガス中の水
素濃度を測定して求めた炉径方向の水素ガス利用率ηH
2-9 を各々図5に示し、その差(ηH2-9 −ηH2-8
ΔηH2c)を図6に示す。この図6から分かるように、
水素ガス利用率の差ΔηHc が最も小さいのは無次元半
径0.4付近で、その値は−8%で、水素ガス利用率の
差の所定範囲値ηH02(−5%以上)外である。このた
めアーマープレート4の使用モードを(2406)と
(00011)の併用(使用度合は2:1)して、炉中
心部へのコークス及び鉱石の蹴り量を促進した。
Embodiment 2 The modes of the armor plate 4 are (1204) and (000
When operating for a long time while using 9) together (the degree of use was 2: 1), the reactor conditions were becoming unstable again. In this state, the hydrogen gas utilization ratio η in the furnace radial direction obtained by measuring the hydrogen concentration in the blast furnace gas with the upper sonde 8 and the gas analyzer 10
H 2-8 , hydrogen gas utilization rate ηH in the furnace radial direction obtained by measuring the hydrogen concentration in the blast furnace gas with a central sonde 9 gas analyzer 10
2-9 are shown in FIG. 5, and the difference (ηH 2-9 −ηH 2-8 =
Δη H 2c ) is shown in FIG. As you can see from this Figure 6,
The difference in hydrogen gas utilization rate ΔηH c is the smallest in the vicinity of the dimensionless radius of 0.4, and the value is -8%, outside the predetermined range value ηH 02 (-5% or more) of the difference in hydrogen gas utilization rate. is there. For this reason, the usage mode of the armor plate 4 was used in combination with (2406) and (00011) (the degree of usage was 2: 1) to promote the amount of coke and ore kicked into the center of the furnace.

【0019】この結果、無次元半径0.4付近である炉
中間部の鉱石/コークスが相対的に一段と低下して通気
性が良好になって、通気改善効果が現れ数時間後、中部
ゾンデ9とガス分析計10で高炉ガス中の水素濃度を測
定し、上記(1)式で演算した水素ガス利用率η
2-9 、上部ゾンデ8とガス分析計10で高炉ガス中の
水素濃度を測定し、上記(1)式で演算した水素ガス利
用率ηH2-8 は図7に示すようになり、その差(ηH
2-9 −ηH2-8 =ΔηH2d)を図6に示す。この図6か
ら水素ガス利用率の差ΔηH2dは0〜−4%となり上記
所定範囲値ηH20内(−5%以上)となり炉況が安定
し、燃料比を487kg/t-pigから483kg/t-pigに
低減出来た。
As a result, the ore / coke in the middle part of the furnace, which has a dimensionless radius of about 0.4, is further lowered relatively to improve the air permeability, and the effect of improving the air flow appears. And the gas analyzer 10 were used to measure the hydrogen concentration in the blast furnace gas, and the hydrogen gas utilization rate η calculated by the above equation (1) was calculated.
H 2-9 , the upper sonde 8 and the gas analyzer 10 were used to measure the hydrogen concentration in the blast furnace gas, and the hydrogen gas utilization rate η H 2-8 calculated by the above equation (1) was as shown in FIG. 7. Difference (ηH
2-9 −ηH 2-8 = ΔηH 2d ) is shown in FIG. From FIG. 6, the difference in hydrogen gas utilization rate ΔηH 2d is 0 to -4%, which is within the predetermined range value ηH 20 (-5% or more), the furnace condition is stable, and the fuel ratio is 487 kg / t-pig to 483 kg / It could be reduced to t-pig.

【0020】尚、本実施例では、高炉シャフト上部と中
部に各々ゾンデ8、9を挿入して、炉内ガス組成を測定
するようにしたが、本発明はこれに限ることなく、シャ
フト上部ゾンデ8とシャフト中部ゾンデ9との間に、更
に、中間ゾンデを挿入し、シャフト上部ゾンデ8と中間
ゾンデ、シャフト中間ゾンデ9と中間ゾンデの組み合わ
せにより、上記同様に水素ガス利用率の差を求め、この
2つから塊状帯での500〜800℃の低温領域の長さ
を推定することが、推定精度が向上して好ましい。又、
上記実施例においては、水素ガス利用率の差ΔηH2
〔ηH2-9 −ηH2-8 〕として求め、更に、目標とする
所定範囲値ηH20を−5%以上としたが、本発明はこれ
に限ることはなく、水素ガス利用率の差ΔηH2 を〔η
2-8 −ηH2-9 〕として求めてもよい、しかし、この
場合における上記所定範囲値ηH 20は−5%以下とす
る。
In this embodiment, the upper and middle parts of the blast furnace shaft are
Insert the sondes 8 and 9 into each part and measure the gas composition in the furnace
However, the present invention is not limited to this.
Between the upper upper sonde 8 and the shaft middle sonde 9
Insert the intermediate sonde into the middle of the shaft upper sonde 8
Sonde, Shaft Intermediate Sonde 9 and Intermediate Sonde
Then, the difference in hydrogen gas utilization is calculated in the same manner as above,
Length of low temperature zone from 500 to 800 ° C in 2 to massive zones
Is preferable because the estimation accuracy is improved. or,
In the above embodiment, the difference in hydrogen gas utilization rate ΔηH2To
[ΗH2-9-ΗH2-8] As the goal
Predetermined range value ηH20Was set to -5% or more, but the present invention
The hydrogen gas utilization rate difference ΔηH is not limited to2
H2-8-ΗH2-9], But this
In the above case, the predetermined range value ηH 20Is -5% or less
It

【0021】[0021]

【発明の効果】本発明により塊状帯部分に形成される5
00〜800℃の低温領域の長さを精度良く推定し、こ
の長さが異常に長くなることを高炉々内に装入する装入
物の分布調整を行うことによって防止し、前記低温領域
の長さを適正に保つことが可能となり、低燃料比で安定
した高炉操業を継続して行うことができる等の多大な効
果を奏するものである。
EFFECTS OF THE INVENTION According to the present invention, 5 is formed in a lumpy band portion.
The length of the low temperature region of 00 to 800 ° C. is accurately estimated, and an abnormally long length is prevented by adjusting the distribution of the charge to be charged into the blast furnaces. The length can be properly maintained, and the blast furnace operation can be continuously performed with a low fuel ratio, which is a great effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施するための高炉の縦断面図、FIG. 1 is a vertical sectional view of a blast furnace for carrying out the present invention,

【図2】塊状帯で500〜800℃領域の長さと{(水
素分圧PH2 ×二酸化炭素分圧PCO2 )/(水分分圧
PH2 O×一酸化炭素分圧PCO)}の関係を示す図、
FIG. 2 shows the relationship between {(hydrogen partial pressure PH 2 × carbon dioxide partial pressure PCO 2 ) / (water partial pressure PH 2 O × carbon monoxide partial pressure PCO)} and the length of the 500 to 800 ° C. region in the massive zone. Figure showing,

【図3】高炉の無次元半径と水素ガス利用率の関係を示
す図、
FIG. 3 is a diagram showing a relationship between a dimensionless radius of a blast furnace and a hydrogen gas utilization rate,

【図4】高炉の無次元半径と水素ガス利用率の差の関係
を示す図、
FIG. 4 is a diagram showing a relationship between a dimensionless radius of a blast furnace and a difference between hydrogen gas utilization rates;

【図5】高炉の他の実施例による無次元半径と水素ガス
利用率の関係を示す図、
FIG. 5 is a diagram showing a relationship between a dimensionless radius and a hydrogen gas utilization rate according to another embodiment of a blast furnace,

【図6】高炉の他の実施例による無次元半径と水素ガス
利用率の差の関係を示す図、
FIG. 6 is a diagram showing the relationship between the dimensionless radius and the difference in hydrogen gas utilization rate according to another embodiment of the blast furnace;

【図7】高炉の更に他の実施例による無次元半径と水素
ガス利用率の関係を示す図である。
FIG. 7 is a diagram showing a relationship between a dimensionless radius and a hydrogen gas utilization rate according to still another embodiment of a blast furnace.

【符号の説明】[Explanation of symbols]

1 大ベル 2 大ベル上の装入物 3 融着帯 4 アーマープレート 5 鉱石受け金物 6 塊状帯 7 剛体型垂直ゾンデ 8 上部ゾンデ 9 中部ゾンデ 10 ガス分析計 1 Large Bell 2 Charge on Large Bell 3 Cohesive Zone 4 Armor Plate 5 Ore Receiving Metal 6 Bulk Zone 7 Rigid Vertical Sonde 8 Upper Sonde 9 Middle Sonde 10 Gas Analyzer

フロントページの続き (72)発明者 内藤 誠章 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内Front Page Continuation (72) Inventor Seisho Naito 20-1 Shintomi, Futtsu City, Chiba Shin Nippon Steel Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高炉シャフトの塊状帯部分高さ方向にお
ける所定の複数箇所の夫々において、高炉半径方向にお
ける所定の複数箇所で炉内ガスの成分とその量を測定す
ると共にこの測定値に基づいて水素ガス利用率を算定
し、且つ、前記塊状帯部分の高さ方向所定位置間におけ
る前記水素ガス利用率の差を求め、この水素ガス利用率
の差に基づいて炉頂装入物分布調整を行って該差を所定
範囲内に維持することを特徴とする水素ガス利用率を用
いた高炉操業方法。
1. At each of a plurality of predetermined locations in the height direction of the lump furnace zone of the blast furnace shaft, the components and amounts of the gas in the furnace are measured at a plurality of predetermined locations in the radial direction of the blast furnace, and based on the measured values. The hydrogen gas utilization rate is calculated, and the difference in the hydrogen gas utilization rate between the predetermined positions in the height direction of the massive zone is obtained, and the distribution of the top charge is adjusted based on the difference in the hydrogen gas utilization rate. A method of operating a blast furnace using hydrogen gas utilization, characterized in that the difference is maintained within a predetermined range.
JP21403292A 1992-08-11 1992-08-11 Blast furnace operation method using hydrogen gas utilization rate Expired - Fee Related JP2668486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21403292A JP2668486B2 (en) 1992-08-11 1992-08-11 Blast furnace operation method using hydrogen gas utilization rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21403292A JP2668486B2 (en) 1992-08-11 1992-08-11 Blast furnace operation method using hydrogen gas utilization rate

Publications (2)

Publication Number Publication Date
JPH0657315A true JPH0657315A (en) 1994-03-01
JP2668486B2 JP2668486B2 (en) 1997-10-27

Family

ID=16649150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21403292A Expired - Fee Related JP2668486B2 (en) 1992-08-11 1992-08-11 Blast furnace operation method using hydrogen gas utilization rate

Country Status (1)

Country Link
JP (1) JP2668486B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021107091A1 (en) * 2019-11-29 2021-06-03

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021107091A1 (en) * 2019-11-29 2021-06-03
WO2021107091A1 (en) * 2019-11-29 2021-06-03 日本製鉄株式会社 Blast furnace operation method
TWI758977B (en) * 2019-11-29 2022-03-21 日商日本製鐵股份有限公司 How the blast furnace works
AU2020393659B2 (en) * 2019-11-29 2023-07-20 Jfe Steel Corporation Blast furnace operation method

Also Published As

Publication number Publication date
JP2668486B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
JPH0657315A (en) Operation of blast furnace based on hydrogen gas utilizing ratio
US4121922A (en) Method and apparatus for measuring percentage reduction in a metal ore reduction reactor
JP2021080556A (en) Method and device for judging furnace conditions in blast furnace, and program for judging furnace conditions in blast furnace
JPH07305105A (en) Method for evaluating raceway condition of blast furnace
US8192521B2 (en) Method of suppressing slag foaming in continuous melting furnace
Staib et al. On-line computer control for the blast furnace: Part II. Control of furnaces with sinter and complex burdens
AU714898B2 (en) Production method of iron carbide
US4150973A (en) Method of controlling molten steel temperature and carbon content in oxygen converter
JPH03170607A (en) Method for operating blast furnace
JP3238037B2 (en) Blast furnace operation
CA1086956A (en) Method and apparatus for gaseous reduction of metal ores
JPH0913110A (en) Method for evaluating ventilation of charged material layer in vertical type furnace
JP2897363B2 (en) Hot metal production method
JP2003306708A (en) Method for stably operating blast furnace
JPS626721B2 (en)
RU98117566A (en) DEVICE FOR MAINTAINING AN OPTIMUM DEPTH OF PENETRATION OF THE FRONT END OF OXYGEN LASER, AND ALSO WAY OF ITS SUPPORT
JPS6184308A (en) Detection of fusion zone root in blast furnace
JPH08188808A (en) Method for operating blast furnace
SU883180A1 (en) Method of control of blast furnace thermal conditions
JPH0327604B2 (en)
JPS6112806A (en) Operating method of blast furnace
RU2335548C2 (en) Method of estimation of optimal radial gas distriution in blast furnace
JPH01142007A (en) Method for controlling amount of reduced powder from sintered ore in blast furnace
JPS6277413A (en) Method for controlling position of welded zone of blast furnace
JPH0978111A (en) Operation of blast furnace

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970603

LAPS Cancellation because of no payment of annual fees