JPH0654252B2 - Switching control type thermal flow sensor - Google Patents

Switching control type thermal flow sensor

Info

Publication number
JPH0654252B2
JPH0654252B2 JP63314230A JP31423088A JPH0654252B2 JP H0654252 B2 JPH0654252 B2 JP H0654252B2 JP 63314230 A JP63314230 A JP 63314230A JP 31423088 A JP31423088 A JP 31423088A JP H0654252 B2 JPH0654252 B2 JP H0654252B2
Authority
JP
Japan
Prior art keywords
circuit
temperature
differential amplifier
flow rate
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63314230A
Other languages
Japanese (ja)
Other versions
JPH02159519A (en
Inventor
考司 谷本
三樹生 別所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63314230A priority Critical patent/JPH0654252B2/en
Priority to KR1019890002176A priority patent/KR920006388B1/en
Priority to US07/315,747 priority patent/US4934188A/en
Priority to KR1019890016663A priority patent/KR900010358A/en
Priority to US07/446,088 priority patent/US5156046A/en
Publication of JPH02159519A publication Critical patent/JPH02159519A/en
Publication of JPH0654252B2 publication Critical patent/JPH0654252B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、エンジンの吸入空気量などを測定する熱式
流量センサに関するものである。
Description: TECHNICAL FIELD The present invention relates to a thermal type flow sensor for measuring an intake air amount of an engine and the like.

〔従来の技術〕[Conventional technology]

熱式流量センサは吸入空気中に配設した感温抵抗体から
なる発熱素子から吸入空気中への伝熱現象を利用したも
のであり、検出回路としては応答性に優れた定温度測定
法によるものが一般的に用いられている。定温度測定法
では発熱素子の温度が常に吸気温より一定温度高くなる
ようにブリッジ回路と差動増幅器を構成しており、ブリ
ッジ回路に電流を供給するトランジスタの電力損失が大
きいために、トランジスタをデューテイ制御して電力損
失を低減させ、かつ同様な温度測定法を得る断続制御方
式が提案されている。
The thermal type flow sensor uses the heat transfer phenomenon from a heating element consisting of a temperature sensitive resistor arranged in the intake air to the intake air, and the detection circuit uses a constant temperature measurement method with excellent responsiveness. Things are commonly used. In the constant temperature measurement method, the bridge circuit and the differential amplifier are configured so that the temperature of the heating element is always higher than the intake air temperature by a constant temperature.Since the power loss of the transistor that supplies the current to the bridge circuit is large, An intermittent control method has been proposed in which duty control is performed to reduce power loss and a similar temperature measurement method is obtained.

この断続制御方式の従来例を第2図及び第5図に示す。
第2図において、吸気管1の中に発熱用感温素子2及び
吸気温検出用感温素子3が設けられており、感温素子
2,3は温度により抵抗値が変化する例えば白金,タン
グステン,ニッケル等からなる細線、または薄膜抵抗素
子によって構成されている。これらの感温素子2,3及
び固定抵抗4〜6によりホイーストンブリッジを構成
し、固定抵抗6と感温素子2の接続点と固定抵抗4,5
の接続点を差動増幅回路に入力してブリッジの不平衡電
圧と直流不平衡電源17の電圧との差を増幅している。
差動増幅回路は固定抵抗7〜9と差動増幅器10で構成
され、この差動増幅回路の出力電圧はパルス幅変換回路
12でパルス信号に変換される。三角波発生器11はパ
ルス幅変換のための信号源となり、パルス幅変換回路1
2で差動増幅回路の出力に比例した時比率を有するパル
ス信号に変換され、このパルス信号によってスイッチン
グトランジスタ13がオンオフ制御される。トランジス
タ13により断続化された直流電源18の電力はインダ
クタ15とコンデンサ16からなる平滑回路とダイオー
ド14により連続化され、ブリッジ回路に電流を供給し
ている。発熱用感温素子2の温度が吸気温より一定温度
高いときブリッジが平衡するように各抵抗値を設定し、
以上のような帰還回路を構成することにより定温度回路
が実現できる。
A conventional example of this intermittent control system is shown in FIGS. 2 and 5.
In FIG. 2, a temperature sensing element 2 for heat generation and a temperature sensing element 3 for detecting intake air temperature are provided in the intake pipe 1, and the temperature sensing elements 2 and 3 are made of, for example, platinum or tungsten whose resistance value changes with temperature. , A thin wire made of nickel or the like, or a thin film resistance element. These temperature sensitive elements 2 and 3 and the fixed resistors 4 to 6 form a Wheatstone bridge, and the connection point between the fixed resistor 6 and the temperature sensitive element 2 and the fixed resistors 4 and 5 are connected.
The connection point is input to the differential amplifier circuit to amplify the difference between the unbalanced voltage of the bridge and the voltage of the DC unbalanced power supply 17.
The differential amplifier circuit includes fixed resistors 7 to 9 and a differential amplifier 10. The output voltage of the differential amplifier circuit is converted into a pulse signal by the pulse width conversion circuit 12. The triangular wave generator 11 serves as a signal source for pulse width conversion, and the pulse width conversion circuit 1
At 2, the pulse signal is converted into a pulse signal having a duty ratio proportional to the output of the differential amplifier circuit, and the switching transistor 13 is on / off controlled by this pulse signal. The electric power of the DC power supply 18 which is intermittent by the transistor 13 is made continuous by the smoothing circuit including the inductor 15 and the capacitor 16 and the diode 14, and supplies the current to the bridge circuit. Each resistance value is set so that the bridge is balanced when the temperature of the heat-generating temperature sensor 2 is higher than the intake air temperature by a certain temperature.
A constant temperature circuit can be realized by configuring the feedback circuit as described above.

次に、上記構成の感熱式流量センサの動作について説明
する。今、吸気管1内の空気流量が増大したとすると、
発熱用感温素子2の温度が下がり、抵抗値が小さくな
る。これに伴い発熱用感温素子2と固定抵抗6の接続点
における電位が下がり、差動増幅器10の出力電圧が増
大する。さらに、パルス幅変換回路12のデイジタル出
力の時比率が変化し、電圧のHigh時間が増大する。よっ
て、トランジスタ13のオン時間が増加し、平滑回路で
平滑化されるブリッジへの加熱電流も増大し、発熱用感
温素子2の温度が下がるのを防いでいる。この結果、発
熱用感温素子2の温度は一定に保たれる。
Next, the operation of the heat-sensitive flow rate sensor having the above configuration will be described. Now, assuming that the air flow rate in the intake pipe 1 has increased,
The temperature of the heat-generating temperature sensitive element 2 decreases, and the resistance value decreases. Along with this, the potential at the connection point between the heat-generating temperature sensitive element 2 and the fixed resistor 6 decreases, and the output voltage of the differential amplifier 10 increases. Further, the duty ratio of the digital output of the pulse width conversion circuit 12 changes, and the high time of the voltage increases. Therefore, the ON time of the transistor 13 increases, the heating current to the bridge smoothed by the smoothing circuit also increases, and the temperature of the heat-generating temperature sensitive element 2 is prevented from decreasing. As a result, the temperature of the heat-generating temperature sensitive element 2 is kept constant.

このとき、スイッチングトランジスタ13のスイッチン
グ信号の時比率Dは となる。ただし、Iは加熱電流、Vinは直流電源18の
電圧、Rhは発熱用感温素子2の抵抗値、R6は固定抵
抗6の抵抗値を示す。
At this time, the duty ratio D of the switching signal of the switching transistor 13 is Becomes Here, I is the heating current, Vin is the voltage of the DC power supply 18, Rh is the resistance value of the heat-generating temperature sensing element 2, and R6 is the resistance value of the fixed resistor 6.

一方、定温度制御が行われている時の加熱電流Iと空気
流量Qとの関係は となる。ただし、A,Bは定数である。従って、時比率
Dは となる。RhとR6は一定であるため、電源電圧Vinが
変化しないと仮定すると、時比率DはQの関数となる。
よって、スイッチングトランジスタ13の制御信号のオ
時間又はオフ時間を計測することにより、流量Qを求め
ることができる。しかも、センサとしての出力信号がデ
イジタルであるため、マイクロプロセッサとのインタフ
ェースを必要としないという利点を有する。
On the other hand, the relationship between the heating current I and the air flow rate Q during constant temperature control is Becomes However, A and B are constants. Therefore, the duty D is Becomes Since Rh and R6 are constant, the duty D is a function of Q, assuming that the power supply voltage Vin does not change.
Therefore, the flow rate Q can be obtained by measuring the off time or the off time of the control signal of the switching transistor 13. Moreover, since the output signal of the sensor is digital, there is an advantage that no interface with the microprocessor is required.

次に、直流不平衡電源17の効果について述べる。この
直流不平衡電圧を考慮した場合、発熱用感温素子2の抵
抗値Rhは次式で与えられる。
Next, the effect of the DC unbalanced power supply 17 will be described. When this DC unbalanced voltage is taken into consideration, the resistance value Rh of the temperature sensing element 2 for heat generation is given by the following equation.

ただし、Rkは吸気温検出用感温素子3の抵抗値、R
4,R5は固定抵抗4,5の抵抗値を示す。直流不平衡
電源17を設けたことにより、Rhはブリッジを平衡さ
せる値より△Rhだけ大きい抵抗値をとる。この△Rh
は直流不平衡電源17の電圧を△Eとすると、 となる。ただし、Aは直流差動ゲインである。この直流
差動ゲインAは となり、R8,R9は抵抗8,9の抵抗値を示す。上式
より明らかなように、発熱用感温素子2の抵抗値は加熱
電流Iに依存し、即ち流量によって変化し、流量が大き
いほどRhは小さくなる。そして、この変化は差動ゲイ
ンが小さいほど大きい。理想的な定温度回路を実現する
ためには、直流差動ゲインが大きいほど良い。
Where Rk is the resistance value of the temperature sensor 3 for detecting the intake air temperature, R
4 and R5 represent the resistance values of the fixed resistors 4 and 5. Since the DC unbalanced power source 17 is provided, Rh has a resistance value larger by ΔRh than the value for balancing the bridge. This △ Rh
Let ΔE be the voltage of the DC unbalanced power supply 17, Becomes However, A is a DC differential gain. This DC differential gain A is And R8 and R9 represent the resistance values of the resistors 8 and 9. As is clear from the above equation, the resistance value of the heat-generating temperature-sensitive element 2 depends on the heating current I, that is, changes with the flow rate, and the larger the flow rate, the smaller Rh. Then, this change becomes larger as the differential gain becomes smaller. In order to realize an ideal constant temperature circuit, the larger the DC differential gain, the better.

第3図は差動増幅回路の周波数特性22を示し、平滑回
路の共振周波数まで平坦な周波数特性を示す。なお、2
1は差動増幅器10のオープンループ特性を示す。又、
第4図の24は平均流量Qが一定の時の微小流量変化に
対するセンサ出力の周波数特性を示す。この特性24で
は共振周波数近辺にピークが見られるが、これは平滑回
路の共振周波数の影響であり、位相遅れが180deg を
越える共振周波数での差動増幅回路の差動ゲインが大き
すぎるためである。このピークは平均流量が大きくなる
ほど、また直流差動ゲインの増大に伴い大きくなり、不
安定になる特性を示す。このため、直流差動ゲインを大
きく設定できず、理想的な定温度回路が実現できなかっ
た。又、流量が大きくなるほど共振的な周波数応答を呈
するため、測定可能な流量範囲も狭くなり、測定可能な
最大流量範囲は約50g/sec に制限されていた。この
流量は2000ccの自然吸気エンジンの最大吸入空気量
の3分の1程度であるため、全流量域をカバーすること
ができなかった。
FIG. 3 shows a frequency characteristic 22 of the differential amplifier circuit, which shows a flat frequency characteristic up to the resonance frequency of the smoothing circuit. 2
Reference numeral 1 denotes the open loop characteristic of the differential amplifier 10. or,
Reference numeral 24 in FIG. 4 shows a frequency characteristic of the sensor output with respect to a minute flow rate change when the average flow rate Q is constant. In this characteristic 24, a peak is seen near the resonance frequency, which is due to the resonance frequency of the smoothing circuit, and the differential gain of the differential amplifier circuit is too large at the resonance frequency with a phase delay exceeding 180 deg. . This peak becomes larger and unstable as the average flow rate increases and as the DC differential gain increases. For this reason, the DC differential gain cannot be set large, and an ideal constant temperature circuit cannot be realized. Further, as the flow rate increases, the resonance frequency response is exhibited, so that the measurable flow rate range becomes narrow and the maximum measurable flow rate range is limited to about 50 g / sec. Since this flow rate is about one-third of the maximum intake air volume of a 2000cc naturally aspirated engine, it was not possible to cover the entire flow rate range.

第5図は従来のスイッチング制御形熱式流量センサの他
の例を示し、差動増幅回路は差動増幅器10と抵抗7〜
9,19で構成され、定電流回路20と固定抵抗19で
構成された直流不平衡電源の電圧とブリッジ回路の出力
の差を増幅している。他の構成は第2図の従来例と同じ
である。
FIG. 5 shows another example of the conventional switching control type thermal flow sensor, and the differential amplifier circuit includes a differential amplifier 10 and resistors 7 to 7.
9 and 19, the difference between the voltage of the DC unbalanced power source composed of the constant current circuit 20 and the fixed resistor 19 and the output of the bridge circuit is amplified. Other configurations are the same as those of the conventional example shown in FIG.

上記構成の動作も第2図の場合と同様であり、直流不平
衡電圧はセンサの交流特性の調整に必要となる。第7図
は差動ゲインが一定の時のセンサの周波数特性を示し、
平均流量Qが一定((a)図では2g/s,(b)図では10
0g/s)のときの微小流量変化に対するセンサ出力の
周波数特性を示す。図より明らかなように、流量Qが大
きいほど周波数帯域が広く、また(a)図の場合のように
流量が小さいときは平滑回路の共振周波数周辺でピーク
が表われ、直流不平衡電圧△Eが大きいほどそのピーク
も大きくなっている。一方、(b)図のように平均流量Q
が大きい場合は、直流不平衡電圧△Eが小さいほど共振
的な特性を示す。よって、小流量域で系か共振的になら
ないように△Eを小さくすると大流量域で共振的にな
り、測定可能な最大流量範囲は約50g/sec に制限さ
れ、やはりセンサとして全流量域をカバーすることがで
きなかった。
The operation of the above configuration is the same as in the case of FIG. 2, and the DC unbalanced voltage is necessary for adjusting the AC characteristics of the sensor. FIG. 7 shows the frequency characteristics of the sensor when the differential gain is constant,
The average flow rate Q is constant (2 g / s in the (a) diagram, 10 in the (b) diagram.
The frequency characteristic of the sensor output with respect to the minute flow rate change at 0 g / s) is shown. As is clear from the figure, the larger the flow rate Q, the wider the frequency band, and when the flow rate is small as in the case of (a), a peak appears around the resonance frequency of the smoothing circuit, and the DC unbalance voltage ΔE The larger is, the larger the peak is. On the other hand, as shown in (b), average flow rate Q
Is larger, the smaller the DC unbalanced voltage ΔE, the more resonant characteristics. Therefore, if ΔE is reduced so that the system does not become resonant in the small flow rate range, it becomes resonant in the large flow rate range and the maximum measurable flow rate range is limited to about 50 g / sec. Couldn't cover.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

従来のスイッチング制御形熱式流量センサは上記のよう
に構成されており、流量が大きくなるほど著しく共振的
な周波数応答を示し、また直流不平衡電圧と周波数特性
との関係が流量の大きい場合と小さい場合で異るため、
測定流量範囲が狭くなった。
The conventional switching control type thermal flow sensor is configured as described above, and exhibits a resonating frequency response as the flow rate increases, and the relationship between the DC unbalance voltage and the frequency characteristics is small when the flow rate is large. Because it depends on the case
The measured flow rate range has become narrow.

この発明は上記のような課題を解決するために成された
ものであり、広い流量範囲にわたって最適な周波数応答
を有するスイッチンう制御形熱式流量センサを得ること
を目的とする。
The present invention has been made to solve the above problems, and an object thereof is to obtain a switch type controlled thermal flow sensor having an optimum frequency response over a wide flow range.

〔課題を解決するための手段〕[Means for Solving the Problems]

この発明の第1の発明に係るスイッチング制御形熱式流
量センサは、ブリッジ回路の出力を増幅する差動増幅回
路にその位相遅れを補償する位相遅れ補償回路を設けた
ものである。
In the switching control type thermal flow sensor according to the first aspect of the present invention, a differential delay circuit for amplifying the output of the bridge circuit is provided with a phase delay compensating circuit for compensating for the phase delay.

又、第2の発明は、差動増幅回路に印加する直流不平衡
電圧を吸気流量の増大とともに大きくする手段を設けた
ものである。
A second aspect of the invention provides a means for increasing the DC unbalanced voltage applied to the differential amplifier circuit as the intake flow rate increases.

〔作 用〕[Work]

第1の発明においては、差動増幅回路で位相遅れを補償
することによりその直流差動ゲインを維持したまま交流
差動ゲインが低減され、位相が急激に遅れる平滑回路の
共振周波数でのゲイン余裕が大きくなり、周波数応答が
減衰気味に調整される。
In the first aspect of the invention, the differential amplifier circuit compensates the phase delay to reduce the AC differential gain while maintaining the DC differential gain, and the gain margin at the resonance frequency of the smoothing circuit in which the phase is abruptly delayed. Becomes larger, and the frequency response is adjusted to be slightly damped.

第2の発明においては、差動増幅回路に印加される直流
不平衡電圧が流量と伴に増大する。このため、全流量域
で共振現象が抑制される。
In the second invention, the DC unbalanced voltage applied to the differential amplifier circuit increases with the flow rate. Therefore, the resonance phenomenon is suppressed in the entire flow rate range.

〔実施例〕〔Example〕

以下、この発明の実施例を図面とともに説明する。第1
図はこの発明の第1の実施例を示し、この実施例では帰
還抵抗9と並列に抵抗21とコンデンサ22の直列回路
を接続している。抵抗21の抵抗値は抵抗9より小さく
設定される。他の構成は第2図と同様である。
Embodiments of the present invention will be described below with reference to the drawings. First
The drawing shows a first embodiment of the present invention, in which a series circuit of a resistor 21 and a capacitor 22 is connected in parallel with a feedback resistor 9. The resistance value of the resistor 21 is set smaller than that of the resistor 9. Other configurations are the same as those in FIG.

上記構成において、抵抗9,21とコンデンサ22によ
り位相遅れ補償回路が構成される。このため、差動増幅
回路の交流差動ゲインの周波数特性は、抵抗18とコン
デンサ19の値を適切に選択することにより第3図の2
3に示すように従来より高い直流差動ゲインで高周波ゲ
インが低い周波数応答特性となる。従って、センサとし
ての微小流量変動に対する周波数応答特性は第4図の2
5に示すようになり、差動増幅回路の交流ゲインを下げ
たことにより最適な減衰特性を有する周波数特性が得ら
れる。
In the above configuration, the resistors 9 and 21 and the capacitor 22 constitute a phase delay compensation circuit. Therefore, the frequency characteristic of the AC differential gain of the differential amplifier circuit can be adjusted by appropriately selecting the values of the resistor 18 and the capacitor 19.
As shown in FIG. 3, the DC response gain is higher than the conventional one, and the high frequency gain is a low frequency response characteristic. Therefore, the frequency response characteristic to the minute flow rate fluctuation as a sensor is 2 in FIG.
5, the frequency characteristic having the optimum attenuation characteristic can be obtained by reducing the AC gain of the differential amplifier circuit.

第6図はこの発明の第2の実施例を示し、28は固定抵
抗6の両端間電圧に比例した電流を出力する電圧電流変
換器で、その出力を抵抗8,19間に供給する。固定抵
抗6,19は固定抵抗8,9に比べて十分小さくなるよ
うに設定される。又、電圧電流交流器28の出力電流は
抵抗6を流れる加熱電流に比べて十分小さく、かつ抵抗
8,9を流れる電流より大きい値になるように設定す
る。この時、電圧電流変換器28の出力電流は抵抗1
9,6を通ってグランドに流れる。よって、差動増幅回
路の直流ゲインは固定抵抗8,9の抵抗値で決定され、
直流不平衡電圧は電圧電流変換器28の出力電流と固定
抵抗19により決定される。流量の検出、定温度制御及
び直流不平衡電圧の周波数応答に及ぼす影響などは従来
と基本的に同じである。この結果、直流不平衡電圧は加
熱電流に比例するため、小流量域では小さく、流量が増
大するに伴い大きくなる。従って、第7図に示すように
全流量域で最適な周波数応答が得られる。
FIG. 6 shows a second embodiment of the present invention, in which a voltage-current converter 28 outputs a current proportional to the voltage across the fixed resistor 6, and its output is supplied between the resistors 8 and 19. The fixed resistors 6 and 19 are set to be sufficiently smaller than the fixed resistors 8 and 9. Further, the output current of the voltage / current alternator 28 is set to be sufficiently smaller than the heating current flowing through the resistor 6 and larger than the current flowing through the resistors 8 and 9. At this time, the output current of the voltage-current converter 28 is the resistance 1
It flows through 9 and 6 to the ground. Therefore, the DC gain of the differential amplifier circuit is determined by the resistance values of the fixed resistors 8 and 9,
The DC unbalanced voltage is determined by the output current of the voltage-current converter 28 and the fixed resistor 19. The flow rate detection, constant temperature control, and influence of the DC unbalanced voltage on the frequency response are basically the same as the conventional ones. As a result, since the DC unbalanced voltage is proportional to the heating current, it is small in the small flow rate range and increases as the flow rate increases. Therefore, as shown in FIG. 7, the optimum frequency response is obtained in the entire flow rate range.

なお、上記した第2の実施例では電圧電流変換器28の
入力電圧として抵抗6の両端間電圧を選択したが、流量
に応じて単調増加特性を示す例えば感温素子2,3の接
続点の電圧を選択しても同様な効果を奏する。
Although the voltage across the resistor 6 is selected as the input voltage of the voltage-current converter 28 in the above-described second embodiment, for example, the connection point of the temperature sensitive elements 2 and 3 that exhibits a monotonically increasing characteristic according to the flow rate. The same effect can be obtained even if the voltage is selected.

〔発明の効果〕〔The invention's effect〕

以上のようにこの発明の第1の発明によれば、差動増幅
回路の交流ゲインを下げたことにより、共振的であった
センサの周波数特性が減衰的になり、測定流量範囲が拡
大した。又、直流差動ゲインを従来よりも増大すること
が可能となり、理想的な定温度回路が実現し、測定精度
も向上した。
As described above, according to the first aspect of the present invention, by reducing the AC gain of the differential amplifier circuit, the frequency characteristic of the sensor, which was resonant, is attenuated, and the measurement flow rate range is expanded. Moreover, the DC differential gain can be increased more than before, an ideal constant temperature circuit was realized, and the measurement accuracy was improved.

又、第2の発明によれば、センサの周波数応答に影響を
及ぼす直流不平衡電圧が流量に依存して変化するように
したので、全流量域で最適な周波数応答特性が得られ、
また測定可能な流量範囲が拡大した。
According to the second aspect of the invention, the DC unbalance voltage that affects the frequency response of the sensor is changed depending on the flow rate, so that the optimum frequency response characteristic is obtained in the entire flow rate range.
Moreover, the measurable flow rate range has been expanded.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の第1の実施例による流量センサの構
成図、第2図は従来の流量センサの構成図、第3図は第
1図及び第2図に示す流量センサの差動増幅回路の周波
数特性図、第4図は第1図及び第2図に示す流量センサ
の周波数応答特性図、第5図は従来の他の流量センサの
構成図、第6図はこの発明の第2の実施例による流量セ
ンサの構成図、第7図(a),(b)は第5図及び第6図に示
す流量センサの周波数応答特性図である。 1……吸気管、2,3……感温素子、4〜9,19,2
6……固定抵抗、10……差動増幅器、11……三角波
発生器、12……パルス幅変換回路、13……スイッチ
ングトランジスタ、14……ダイオード、15……イン
ダクタ、16,27……コンデンサ、17……直流不平
衡電源、18……直流電源、28……電圧電流変換器。 なお、図中同一符号は同一又は相当部分を示す。
FIG. 1 is a block diagram of a flow sensor according to a first embodiment of the present invention, FIG. 2 is a block diagram of a conventional flow sensor, and FIG. 3 is a differential amplification of the flow sensor shown in FIGS. 1 and 2. FIG. 4 is a frequency characteristic diagram of the circuit, FIG. 4 is a frequency response characteristic diagram of the flow sensor shown in FIGS. 1 and 2, FIG. 5 is a configuration diagram of another conventional flow sensor, and FIG. 6 is a second diagram of the present invention. FIGS. 7 (a) and 7 (b) are frequency response characteristic diagrams of the flow rate sensor shown in FIGS. 5 and 6, respectively. 1 ... Intake pipe, 2, 3 ... Temperature sensing element, 4-9, 19, 2
6 ... Fixed resistance, 10 ... Differential amplifier, 11 ... Triangular wave generator, 12 ... Pulse width conversion circuit, 13 ... Switching transistor, 14 ... Diode, 15 ... Inductor, 16, 27 ... Capacitor , 17 ... DC unbalanced power supply, 18 ... DC power supply, 28 ... Voltage-current converter. The same reference numerals in the drawings indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】吸入空気中に配設され、温度によって抵抗
値が変化する特性を有する感温素子と、この感温素子と
固定抵抗により構成されたブリッジ回路と、ブリッジ回
路の出力を増幅するとともに位相遅れを補償する位相遅
れ補償回路を有する差動増幅回路と、差動増幅回路の出
力に対応した時比率を有するパルスを発生する制御パル
ス発生回路と、電源とブリッジ回路の間に設けられ、上
記時比率に対応して通電時間を制御する断続制御回路
と、断続制御回路の不連続の出力を連続化させてブリッ
ジ回路に電流を供給する平滑回路を備えたことを特徴と
するスイッチング制御形熱式流量センサ。
1. A temperature-sensitive element which is arranged in intake air and has a characteristic that its resistance value changes with temperature, a bridge circuit composed of this temperature-sensitive element and a fixed resistor, and an output of the bridge circuit is amplified. A differential amplifier circuit having a phase delay compensating circuit for compensating the phase delay, a control pulse generating circuit for generating a pulse having a duty ratio corresponding to the output of the differential amplifier circuit, and a power amplifier and a bridge circuit are provided. , A switching control characterized by comprising an intermittent control circuit for controlling an energization time corresponding to the duty ratio, and a smoothing circuit for making a discontinuous output of the intermittent control circuit continuous and supplying a current to a bridge circuit. Type thermal flow sensor.
【請求項2】吸入空気中に配設され、温度によって抵抗
値が変化する特性を有する感温素子と、この感温素子と
固定抵抗により構成されたブリッジ回路と、吸気流量の
増大とともに大きくなる直流不平衡電圧を発生する直流
不平衡電圧発生手段と、ブリッジ回路の出力と上記直流
不平衡電圧の差を増幅する差動増幅回路と、差動増幅回
路の出力に対応した時比率を有するパルスを発生する制
御パルス発生回路と、電源とブリッジ回路の間に設けら
れ、上記時比率に対応して通電時間を制御する断続制御
回路と、断続制御回路の不連続の出力を連続化させてブ
リッジ回路に電流を供給する平滑回路を備えたことを特
徴とするスイッチング制御形熱式流量センサ。
2. A temperature sensing element, which is arranged in intake air and has a characteristic that its resistance value changes with temperature, a bridge circuit composed of this temperature sensing element and a fixed resistor, and increases with an increase in intake flow rate. DC unbalanced voltage generating means for generating a DC unbalanced voltage, a differential amplifier circuit for amplifying a difference between the output of the bridge circuit and the DC unbalanced voltage, and a pulse having a duty ratio corresponding to the output of the differential amplifier circuit A control pulse generation circuit that generates a power supply, a power supply and a bridge circuit that are provided between the power supply and the bridge circuit, and control the energization time according to the duty ratio, A switching control type thermal flow sensor, which is provided with a smoothing circuit for supplying a current to the circuit.
JP63314230A 1988-02-26 1988-12-12 Switching control type thermal flow sensor Expired - Fee Related JPH0654252B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63314230A JPH0654252B2 (en) 1988-12-12 1988-12-12 Switching control type thermal flow sensor
KR1019890002176A KR920006388B1 (en) 1988-02-26 1989-02-24 Thermal type water volume sensor
US07/315,747 US4934188A (en) 1988-02-26 1989-02-27 Temperature sensing flow sensor
KR1019890016663A KR900010358A (en) 1988-12-12 1989-11-17 Switching controlled thermal flow sensor
US07/446,088 US5156046A (en) 1988-12-12 1989-12-05 Switching control type thermal flow sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63314230A JPH0654252B2 (en) 1988-12-12 1988-12-12 Switching control type thermal flow sensor

Publications (2)

Publication Number Publication Date
JPH02159519A JPH02159519A (en) 1990-06-19
JPH0654252B2 true JPH0654252B2 (en) 1994-07-20

Family

ID=18050852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63314230A Expired - Fee Related JPH0654252B2 (en) 1988-02-26 1988-12-12 Switching control type thermal flow sensor

Country Status (1)

Country Link
JP (1) JPH0654252B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4161078B2 (en) * 2005-11-22 2008-10-08 三菱電機株式会社 Thermal flow sensor

Also Published As

Publication number Publication date
JPH02159519A (en) 1990-06-19

Similar Documents

Publication Publication Date Title
US4934189A (en) Temperature sensing flow sensor
JPH0443284B2 (en)
US4162379A (en) Apparatus for deriving a feedback control signal in a thermal system
JPS6116026B2 (en)
KR920006388B1 (en) Thermal type water volume sensor
JPH06105176B2 (en) Thermal air flow meter
JPH0690062B2 (en) Thermal flow velocity detector
JPH0694495A (en) Air flowmeter and method for detecting air flow rate
US5150611A (en) Flow sensor
JPH07141039A (en) Temperature compensating voltage generating circuit
US5156046A (en) Switching control type thermal flow sensor
US5184509A (en) Method and apparatus for measuring the air flow in the air intake passage of an internal combustion engine
JPH0654252B2 (en) Switching control type thermal flow sensor
US2832924A (en) Electrical measuring and/or control servosystem
Handschy A general purpose temperature controller
US7013725B1 (en) System and method for regulating bridge voltage in a discontinuous-time hot-wire anemometer
Oliveira et al. Compensation of the fluid temperature variation in a hot-wire anemometer
JP2953950B2 (en) Output signal generator
JP3153787B2 (en) Heat conduction parameter sensing method and sensor circuit using resistor
JPH041528A (en) Switching control type thermal flow rate sensor
JPH065635Y2 (en) Flow velocity sensor
JPH0663800B2 (en) Heater temperature control circuit
JP2000258216A (en) Thermosensitive flowmeter
JPS5826346Y2 (en) Karman vortex flow meter or current meter
JPH09218065A (en) Thermal flowrate sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees