JPH0652798B2 - Method of manufacturing thin film solar cell - Google Patents

Method of manufacturing thin film solar cell

Info

Publication number
JPH0652798B2
JPH0652798B2 JP62332372A JP33237287A JPH0652798B2 JP H0652798 B2 JPH0652798 B2 JP H0652798B2 JP 62332372 A JP62332372 A JP 62332372A JP 33237287 A JP33237287 A JP 33237287A JP H0652798 B2 JPH0652798 B2 JP H0652798B2
Authority
JP
Japan
Prior art keywords
resin
solar cell
film solar
thin film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62332372A
Other languages
Japanese (ja)
Other versions
JPH01173763A (en
Inventor
真治 西浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP62332372A priority Critical patent/JPH0652798B2/en
Priority to US07/268,904 priority patent/US4968354A/en
Publication of JPH01173763A publication Critical patent/JPH01173763A/en
Priority to US07/422,608 priority patent/US4999308A/en
Publication of JPH0652798B2 publication Critical patent/JPH0652798B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、非晶質シリコン(以下a−Siと記す)等で光
電変換のための接合を、また一方の電極を印刷電極で形
成した低コストの薄膜太陽電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] In the present invention, a junction for photoelectric conversion is formed of amorphous silicon (hereinafter referred to as a-Si) or the like, and one electrode is formed of a printed electrode. Low cost thin film solar cells.

〔従来の技術〕[Conventional technology]

非晶質シリコンを用いた従来の薄膜太陽電池は、出力電
圧を高くするために通常ユニットセルを直列接続する。
ユニットセルは、例えばガラス基板等の透明絶縁基板上
のITO(インジウム・錫酸化物),SnO2(酸化錫)を
透明電極とし、シラン,アセチレン等の炭化水素および
ジボランの混合ガスのグロー放電分解による約200Åの
厚さのp層,シランガスのグロー放電分解による約0.5
μmの厚さのノンドープ層、シラン,フォスフィンの混
合ガスのグロー放電分解による約500Åの厚さのn層か
らなるp−i−n構造のa−Si層をはさんで、1μm程
度の金属薄膜からなる裏面電極を有する。直列接続のた
めには、一つの透明絶縁基板上に透明電極膜,a−Si
膜,裏面電極膜をそれぞれ全面成膜し、その都度パター
ニングして各セル間の分離とセル間接続部の形成を行
う。透明電極のパターニングは、電子ビーム蒸着または
スパッタリングで成膜後、印刷法またはフォトマスクを
用いた露光によりレジストパターンを形成してエッチン
グ処理するフォトリソグラフィ法によって行われる。a
−Si膜のパターニングは、フォトリソグラフィ法あるい
はレーザスクライビング法によって行われる。金属電極
膜は、電子ビーム蒸着またはスパッタリング法で成膜
し、フォトリソグラフィ法でパターニングする。
In a conventional thin film solar cell using amorphous silicon, unit cells are usually connected in series to increase the output voltage.
The unit cell uses, for example, ITO (indium tin oxide) and SnO 2 (tin oxide) on a transparent insulating substrate such as a glass substrate as a transparent electrode, and glow discharge decomposition of a mixed gas of hydrocarbons such as silane and acetylene and diborane. P layer with a thickness of about 200 Å, and about 0.5 due to glow discharge decomposition of silane gas
A metal thin film of about 1 μm sandwiching an a-Si layer with a pin structure of a non-doped layer with a thickness of μm and an n layer with a thickness of about 500 Å by glow discharge decomposition of a mixed gas of silane and phosphine. It has a back electrode made of. In order to connect in series, a transparent electrode film and a-Si are formed on one transparent insulating substrate.
A film and a back electrode film are formed on the entire surface, and each time patterning is performed to separate each cell and form an inter-cell connection portion. The patterning of the transparent electrode is performed by a photolithography method in which a film is formed by electron beam evaporation or sputtering, and then a printing method or a resist pattern is formed by exposure using a photomask and etching is performed. a
The patterning of the -Si film is performed by a photolithography method or a laser scribing method. The metal electrode film is formed by electron beam evaporation or sputtering, and patterned by photolithography.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

このうち、裏面電極を金属薄膜で形成するには、高価な
蒸着装置,スパッタリング装置を用い、フォトリソグラ
フィ技術を適用するので工数の低減が困難である。そこ
で太陽電池のコスト低減のために裏面電極を成膜とパタ
ーニングが同時に行われる印刷電極により形成すること
が検討された。結晶Siまたは多結晶Si太陽電池の場合
は、Ag粒子をエポキシ樹脂に混じて作成したペーストを
塗布し、600〜700℃で焼成してSi層との電気的接触をと
り、電極を形成することができる。しかしa−Si太陽電
池に適用すると、例えば第2図の線10のような特性とな
り、フィルファクタが0.4あるいはそれ以下となってい
る。これは、a−Siの場合は温度を200℃以上にあげる
ことができないので、高分子樹脂をとばして焼結するこ
とができず、十分低い接触抵抗を確保できないのがその
原因である。従って、a−Siの電極用塗料としては、15
0℃程度の焼成で十分低い接触抵抗がとれることが必要
である。また従来の印刷電極では耐湿性が良好でなかっ
た。
Among them, in order to form the back electrode with a metal thin film, it is difficult to reduce the number of steps because an expensive vapor deposition apparatus and sputtering apparatus are used and a photolithography technique is applied. Therefore, in order to reduce the cost of the solar cell, it was considered to form the back electrode by a printed electrode on which film formation and patterning are simultaneously performed. In the case of crystalline Si or polycrystalline Si solar cells, apply a paste prepared by mixing Ag particles with epoxy resin and fire at 600-700 ° C to make electrical contact with the Si layer and form the electrode. You can However, when applied to an a-Si solar cell, for example, the characteristics shown by the line 10 in FIG. 2 are obtained, and the fill factor is 0.4 or less. This is because in the case of a-Si, the temperature cannot be raised to 200 ° C. or higher, so that the polymer resin cannot be skipped and sintered, and a sufficiently low contact resistance cannot be secured. Therefore, as a-Si electrode paint,
It is necessary to obtain a sufficiently low contact resistance by firing at about 0 ° C. In addition, the conventional printed electrode does not have good moisture resistance.

本発明の目的は、上述の問題を解決し、150℃程度で焼
成することにより、a−Si層との間に十分低い接触抵抗
が得られ、かつ高温高湿に耐える印刷電極を裏面電極と
する薄膜太陽電池を提供することにある。
The object of the present invention is to solve the above-mentioned problems, and by baking at about 150 ° C., a printed electrode which can obtain a sufficiently low contact resistance with the a-Si layer and can withstand high temperature and high humidity is used as a back electrode. To provide a thin film solar cell.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するために本発明は、透明絶縁基板上
に透明電極と接合を有するa−Si層と裏面電極が積層さ
れてなるユニットセルが直列接続される太陽電池の製造
方法において、裏面電極が導電物質としてNi粒子を含み
シリコンカップリング剤を混練した第1樹脂と、導電物
質として炭素粒子を含みシリコンカップリング剤を混練
した第2樹脂とを第1樹脂が非晶質シリコン層と接すす
ように第1樹脂,第2樹脂の順で重ねて印刷し、焼成し
てなるものとする。
In order to achieve the above object, the present invention provides a solar cell manufacturing method in which unit cells each having a transparent electrode and an a-Si layer having a junction and a back electrode are laminated in series are connected on a transparent insulating substrate. The electrode comprises a first resin containing Ni particles as a conductive substance and kneading a silicon coupling agent, and a second resin containing carbon particles as a conductive substance and kneading a silicon coupling agent. It is assumed that the first resin and the second resin are printed so as to be in contact with each other in this order and printed, and then baked.

〔作用〕[Action]

Ni粒子を混じた樹脂にシリコンカップリング剤を添加し
て印刷した裏面電極は150℃程度の温度の焼成でa−Si
層との間に低い接触抵抗を形成しフィルファクタが大き
く、特性の安定性もすぐれている。しかし長時間の放置
により樹脂表面が劣化し、はがれて来る問題があるの
で、炭素粒子を含みシリコンカップリング剤を混練した
樹脂を上に重ねて、外観および接触等の物理的安定性を
補完する。
The back electrode printed by adding a silicon coupling agent to a resin mixed with Ni particles was a-Si by firing at a temperature of about 150 ° C.
It forms a low contact resistance with the layer, has a large fill factor, and has excellent stability of properties. However, there is a problem that the resin surface deteriorates and peels off when left for a long time.Therefore, a resin that contains carbon particles and is kneaded with a silicon coupling agent is overlaid to complement the physical stability such as appearance and contact. .

〔実施例〕〔Example〕

以下図面を引用して本発明の三つの実施例について説明
する。
Three embodiments of the present invention will be described below with reference to the drawings.

実施例1: 第1図においてガラス基板1にITO(インジウム・錫
酸化物)あるいはSnO2(酸化錫)を電子ビーム蒸着また
はスパッタリングで成膜後、フォトリソグラフィ法によ
り透明電極21,22,23,24…のパターニングをする。次
いで前述のような方法でp−i−n構造のa−Si層を形
成し、フォトリソグラフィ法で一端が透明電極21,22,
23,24…の間隔の一部を埋めるパターン31,32,33,34
…を形成する。つづいて、金属電極41,42,43,44のパ
ターンをフィラーとしてNi粒子を含んだフェノール樹脂
および無定形炭素粒子を含んだフェノール樹脂を積層し
て印刷法で形成した。このフェノール樹脂は、フェノー
ル,ホルマリン,ロジン,油を反応させてグリセリンな
どでエステル化したものにアルキッド樹脂をフェノール
/アルキッド比が4/6〜2/8となるように混合した
ものを用いることもできる。アルキッド樹脂としては、
無水フタル酸とグリセリンの系に亜麻仁油,桐油,大豆
油などの乾性油,脱水ひまし油またはその構成脂肪酸を
加えて形成した。
Example 1 In FIG. 1, ITO (indium tin oxide) or SnO 2 (tin oxide) is deposited on the glass substrate 1 by electron beam evaporation or sputtering, and then transparent electrodes 21, 22, 23 are formed by photolithography. Pattern 24 ... Then, an a-Si layer having a pin structure is formed by the method described above, and one end of the transparent electrodes 21, 22,
Patterns 31, 32, 33, 34 that fill part of the space of 23, 24 ...
... to form. Subsequently, the pattern of the metal electrodes 41, 42, 43, and 44 was used as a filler, and a phenol resin containing Ni particles and a phenol resin containing amorphous carbon particles were laminated and formed by a printing method. As the phenol resin, a resin obtained by reacting phenol, formalin, rosin, and oil to esterify with glycerin and the like and mixing an alkyd resin with a phenol / alkyd ratio of 4/6 to 2/8 may be used. it can. As alkyd resin,
It was formed by adding linseed oil, tung oil, soybean oil and other drying oils, dehydrated castor oil or its constituent fatty acids to the system of phthalic anhydride and glycerin.

Ni粒子はボールミル等を用いて粒径6〜10μmの粉末に
形成したものを用い、樹脂に対して1倍ないし5倍の重
量比で混合した。さらに、0.1〜5重量%のシリコンカ
ップリッグ剤、例えば東芝シリコーン製γ−アミノプロ
ピルトリエトキシシラン、商品名TSL8331などを添加
した。この樹脂をエチレングリコール系またはディエチ
レングリコール系の溶媒等を用いて、100〜400ポワーズ
に粘度を調整し、ロール間を樹脂を通過させて粒度調整
するロール分散処理を行ったのち、180〜250メッシュの
スクリーンマスクを用いて10〜20μm厚さに塗布し、硬
化は120〜180℃で20〜60分行った。この太陽電池はフィ
ルファクタ0.61を得、60℃,90%の高温高湿放置試験に
おいては、500時間で2%程度低下し、0.06フィルファ
クタ値が得られている。ロール分散後のNi粒径は3〜20
μmであった。
The Ni particles were formed into powder having a particle size of 6 to 10 μm using a ball mill or the like, and were mixed in a weight ratio of 1 to 5 times that of the resin. Further, 0.1 to 5% by weight of a silicone coupling agent such as γ-aminopropyltriethoxysilane manufactured by Toshiba Silicone, trade name TSL8331 and the like were added. Using ethylene glycol-based or diethylene glycol-based solvent or the like for this resin, the viscosity is adjusted to 100 to 400 poise, and after performing a roll dispersion treatment of passing the resin between rolls to adjust the particle size, 180 to 250 It was applied to a thickness of 10 to 20 μm using a mesh screen mask and cured at 120 to 180 ° C. for 20 to 60 minutes. This solar cell obtained a fill factor of 0.61, and in a high temperature and high humidity storage test at 60 ° C. and 90%, it decreased by about 2% in 500 hours, obtaining a 0.06 fill factor value. Ni particle size after roll dispersion is 3 to 20
was μm.

次に上記と同じフェノール変成アルキッド樹脂にエポキ
シ樹脂を混した樹脂を形成した。この樹脂にフィラーと
して無定形炭素と黒鉛を用いてその比が0.5〜1.0となる
ようにし、樹脂がフィラーの0.3〜2.0倍、好ましくは0.
5〜1.5倍になるように混合した。またITOまたはSnO2
を粒径5〜10μmに粉砕し、これを無定形炭素,黒鉛の
量の20〜80%添加し、シリコンカップリング剤を0.1〜
5重量%混じてロール分散処理を行ったのち、Niをフィ
ラーとした膜の上に印刷,塗布した。焼成は120〜180℃
で20〜60分行った。
Next, a resin obtained by mixing the same phenol-modified alkyd resin as above with an epoxy resin was formed. Amorphous carbon and graphite are used as fillers in this resin so that the ratio is 0.5 to 1.0, and the resin is 0.3 to 2.0 times the filler, preferably 0.
The mixture was mixed to be 5 to 1.5 times. Also ITO or SnO 2
Is pulverized to a particle size of 5 to 10 μm, 20 to 80% of the amount of amorphous carbon and graphite is added, and a silicon coupling agent of 0.1 to
After 5% by weight of the mixture was mixed and subjected to a roll dispersion treatment, printing and coating were performed on the film containing Ni as a filler. Baking is 120-180 ℃
I went there for 20 to 60 minutes.

この太陽電池は、第2図に線20で示すような特性を示
し、200lxで0.66、100mW/cm2で0.63のフィルファクタ
を得た。但し、電流の絶対値は入射光に依存する。60
℃,90%の高温高湿条件のもとでも劣化はほとんどな
く、500時間後それぞれ0.65,0.61のフィルファクタを
得た。
This solar cell exhibited the characteristics shown by the line 20 in FIG. 2 , and obtained a fill factor of 0.66 at 200 lx and 0.63 at 100 mW / cm 2 . However, the absolute value of the electric current depends on the incident light. 60
Almost no deterioration under high temperature and high humidity conditions of 90 ° C and 90%, and after 500 hours, fill factors of 0.65 and 0.61 were obtained.

Niをフィラーとする樹脂を塗布後焼成せず、室温に10〜
30分放置後炭素をフィラーとする第二の層を塗布後焼成
するとフィルファクタの若干の改善が見られた。初期の
フィルファクタは200lxで0.67,100mW/cm2で0.65であ
った。
After coating the resin with Ni as filler, do not bake, but keep at room temperature for 10 ~
A slight improvement in the fill factor was observed when the second layer containing carbon as a filler was applied for 30 minutes and then baked. The initial fill factor was 0.67 at 200 lx and 0.65 at 100 mW / cm 2 .

実施例2: 実施例1の第二層の樹脂にメラミン・アルキッド樹脂を
用いて形成した。メラミン・アルキッド樹脂を、例えば
次のようにして作成できる。メラミン1モルにホルムア
ルデヒド4〜6モルとブタノールを仕込み、アンモニア
でpH6〜8とし、90〜100℃で30分間メチロール化反応
を行い、のちりん酸ブチルエステルを少量加え、pH4〜
5で約1時間ブチルエーテル化反応をさせる。次にキシ
ロールを加え、生成した水およびブタノールを留去させ
る。生成物はキシロールあるいはブタノールまたはこれ
らの混合溶剤で希釈しメラミン樹脂液を形成した。この
樹脂に、無水フタル酸とグリセリンの系に亜麻仁油,桐
油,大豆油などの乾性油,脱水ひまし油またはその構成
脂肪酸を加えて作成した短油長のアルキッド樹脂を30〜
45%混じた。メラミン対アルキッドの比率は20対80ない
し45対35とした。フィラーとして無定形炭素,黒鉛の比
を0.5〜1.0としてフィラーの0.3〜2.0倍好ましくは0.5
〜1.5倍の樹脂と混合した。またITOまたはSnO2を粒
径5〜10μmに粉砕したものを無定形炭素と黒鉛の合計
量の20〜80%添加した。さらに、シリコンカップリング
剤を0.1〜5重量%添加してロール分散処理を行ったの
ち、第二層として塗布した。この結果、200lxで0.6
5,100mW/cm2で0.61のフィルファクタを得た。60℃,90
%の高温高湿条件のもとでも劣化はなく、500時間後も
同じ値を維持した。
Example 2: A melamine alkyd resin was used as the resin for the second layer of Example 1. The melamine-alkyd resin can be prepared, for example, as follows. Formaldehyde (4-6 mol) and butanol were added to 1 mol of melamine, pH was adjusted to 6-8 with ammonia, and methylolation reaction was performed at 90-100 ° C for 30 minutes.
The butyl etherification reaction is carried out at 5 for about 1 hour. Then xylol is added and the water and butanol produced is distilled off. The product was diluted with xylol, butanol or a mixed solvent thereof to form a melamine resin liquid. A short oil length alkyd resin made by adding linseed oil, tung oil, soybean oil and other drying oils, dehydrated castor oil or its constituent fatty acids to a phthalic anhydride and glycerin system
45% mixed. The ratio of melamine to alkyd was 20:80 to 45:35. Amorphous carbon as the filler, the ratio of graphite is 0.5 to 1.0, 0.3 to 2.0 times the filler, preferably 0.5
Mix with ~ 1.5x resin. Further, ITO or SnO 2 crushed to a particle size of 5 to 10 μm was added to the amorphous carbon and graphite in an amount of 20 to 80% of the total amount. Further, 0.1 to 5% by weight of a silicon coupling agent was added to carry out a roll dispersion treatment and then applied as a second layer. As a result, 0.6 at 200 lx
A fill factor of 0.61 was obtained at 5, 100 mW / cm 2 . 60 ° C, 90
%, There was no deterioration under high temperature and high humidity conditions, and the same value was maintained after 500 hours.

実施例3: 実施例1と同じ構成で、第一層の樹脂にITOまたはSn
O2の5〜10μmの径の微粉末をNiフィラーに対し20〜60
%添加した。その結果、200lxでのフィルファクタ0.6
7,100mW/cm2でのフィルファクタ0.65を得た。
Example 3: With the same configuration as in Example 1, ITO or Sn was used as the resin for the first layer.
Fine powder of O 2 with a diameter of 5-10 μm against Ni filler 20-60
% Added. As a result, a fill factor of 0.6 at 200 lx
A fill factor of 0.65 was obtained at 7,100 mW / cm 2 .

第3図は第1図と異なる構造の薄膜太陽電池で、この場
合a−Si層は個々のユニットセル毎に切断しないで、連
続した層3となっている。各セル間の接続は、セルの配
列方向に対して側方への透明電極22,23,24…の引出し
部に裏面電極41,42,43,44…の引出し部を重ねること
により行われる。この構造の太陽電池においても上述の
ような各種の印加金属電極を裏面電極41,42,43,44…
とすことができる。
FIG. 3 shows a thin film solar cell having a structure different from that of FIG. 1, in which case the a-Si layer is a continuous layer 3 without being cut into individual unit cells. The cells are connected to each other by overlapping the lead-out portions of the rear surface electrodes 41, 42, 43, 44 ... On the lead-out portions of the transparent electrodes 22, 23, 24. Also in the solar cell having this structure, the various applied metal electrodes as described above are provided on the back electrodes 41, 42, 43, 44 ...
Can be

〔発明の効果〕〔The invention's effect〕

本発明によれば、フェノール樹脂,メラミンアルキッド
樹脂等に導電性フィラーとしてNi粒子を混入したもの
と、炭素粒子を混入したものにさらにシリコンカップリ
ング剤を混練したものをこの順で重ねて印刷することに
より低温度の焼成によりa−Si層と低抵抗で接触する裏
面電極が形成でき、フィルファクタが大きく、耐熱耐湿
性の良好な太陽電池が高価な蒸着裏面電極を用いないで
得られた。しかもNiをフィラーとした樹脂の裏面電極の
長時間放置による劣化が保護膜の塗布なしで防止でき
た。さらに両層にITO,SnO2の添加剤を加えることに
より特性をさらに向上させることができた。
According to the present invention, a phenol resin, a melamine alkyd resin, etc. mixed with Ni particles as a conductive filler, and a mixture of carbon particles mixed with a silicon coupling agent are kneaded and printed in this order. As a result, a back surface electrode that comes into contact with the a-Si layer with low resistance can be formed by firing at a low temperature, and a solar cell having a large fill factor and good heat and humidity resistance was obtained without using an expensive evaporation back surface electrode. Moreover, the deterioration of the back electrode of the resin containing Ni as a filler for a long time can be prevented without applying the protective film. Furthermore, the characteristics could be further improved by adding ITO and SnO 2 additives to both layers.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の太陽電池の断面図、第2図
は本発明の一実施例および従来例の太陽電池の出力特性
線図、第3図は本発明の異なる実施例の太陽電池の斜視
図である。 1:ガラス基板、21,22,23,24:透明電極、3,31,
32,33,34:a−Si層、41,42,43,44:印刷電極。
FIG. 1 is a sectional view of a solar cell according to one embodiment of the present invention, FIG. 2 is an output characteristic diagram of a solar cell according to one embodiment of the present invention and a conventional example, and FIG. It is a perspective view of a solar cell. 1: glass substrate, 21, 22, 23, 24: transparent electrode, 3, 31,
32, 33, 34: a-Si layers, 41, 42, 43, 44: printed electrodes.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】透明絶縁基板上に透明電極と接合を有する
非晶質シリコン層と裏面電極が積層されてなるユニット
セルが直列接続されるものの製造方法において、裏面電
極が導電物質としてNi粒子を含みシリコンカップリン
グ剤を混練した第1樹脂と、導電物質として炭素粒子を
含みシリコンカップリング剤を混練した第2樹脂を前記
第1樹脂が前記非晶質シリコン層と接するように第1樹
脂,第2樹脂の順で重ねて印刷し、焼成することを特徴
とする薄膜太陽電池の製造方法。
1. A method of manufacturing a unit cell in which an amorphous silicon layer having a junction with a transparent electrode and a back electrode are laminated in series on a transparent insulating substrate, wherein the back electrode uses Ni particles as a conductive substance. A first resin kneaded with a silicon coupling agent containing, and a second resin kneaded with a silicon coupling agent containing carbon particles as a conductive material so that the first resin is in contact with the amorphous silicon layer, A method for manufacturing a thin-film solar cell, which comprises stacking and printing a second resin in this order and then firing.
【請求項2】特許請求の範囲第1項記載の製造方法にお
いて、第1または第2の樹脂に導電物質として少なくと
もすずを成分とする酸化物を含ませることを特徴とする
薄膜太陽電池の製造方法。
2. A method of manufacturing a thin film solar cell according to claim 1, wherein the first or second resin contains at least an oxide containing tin as a conductive substance. Method.
JP62332372A 1987-11-09 1987-12-28 Method of manufacturing thin film solar cell Expired - Lifetime JPH0652798B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62332372A JPH0652798B2 (en) 1987-12-28 1987-12-28 Method of manufacturing thin film solar cell
US07/268,904 US4968354A (en) 1987-11-09 1988-11-08 Thin film solar cell array
US07/422,608 US4999308A (en) 1987-11-09 1989-10-17 Method of making thin film solar cell array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62332372A JPH0652798B2 (en) 1987-12-28 1987-12-28 Method of manufacturing thin film solar cell

Publications (2)

Publication Number Publication Date
JPH01173763A JPH01173763A (en) 1989-07-10
JPH0652798B2 true JPH0652798B2 (en) 1994-07-06

Family

ID=18254227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62332372A Expired - Lifetime JPH0652798B2 (en) 1987-11-09 1987-12-28 Method of manufacturing thin film solar cell

Country Status (1)

Country Link
JP (1) JPH0652798B2 (en)

Also Published As

Publication number Publication date
JPH01173763A (en) 1989-07-10

Similar Documents

Publication Publication Date Title
US4968354A (en) Thin film solar cell array
DE69534938T2 (en) Photovoltaic device and manufacturing process
CN1988182B (en) Paste for solar cell electrode, solar cell electrode manufacturing method, and solar cell
US8153885B2 (en) Integrated thin-film solar cell and method of manufacturing the same
KR100890866B1 (en) Electroconductive thick film compositions, electrodes, and semiconductor devices formed therefrom
EP2303957B1 (en) Polymer thick film silver electrode composition for use in thin-film photovoltaic cells
US9024179B2 (en) Solderable polymer thick film conductive electrode composition for use in thin-film photovoltaic cells and other applications
JPH07106617A (en) Transparent electrode, formation thereof and solar cell employing same
TWI599058B (en) Method of forming electrode, electrode manufactured therefrom and solar cell
US20120119163A1 (en) Solderable polymer thick film silver electrode composition for use in thin-film photovoltaic cells and other applications
JPS646534B2 (en)
KR101400133B1 (en) Silver paste composition and solar cell using the same
JPH0658968B2 (en) Method of manufacturing thin film solar cell
JPH0652798B2 (en) Method of manufacturing thin film solar cell
JPH0658969B2 (en) Method of manufacturing thin film solar cell
KR101053913B1 (en) Conductive paste composition and manufacturing method of electrode for solar cell using same
JP3732073B2 (en) Semiconductor electrode and manufacturing method thereof
JP2698401B2 (en) Thin-film photoelectric conversion element
JPH02256280A (en) Amorphous photovoltaic device and manufacture thereof
JPH0338069A (en) Thin film solar cell
JP2975751B2 (en) Photovoltaic device
JPS646535B2 (en)
JPS59115573A (en) Forming method for silicon semiconductor electrode
JPH0340471A (en) Thin film solar cell
CN111354803A (en) Method for forming solar cell electrode and solar cell