JPH0650889A - Near-infrared analytical apparatus - Google Patents

Near-infrared analytical apparatus

Info

Publication number
JPH0650889A
JPH0650889A JP4224996A JP22499692A JPH0650889A JP H0650889 A JPH0650889 A JP H0650889A JP 4224996 A JP4224996 A JP 4224996A JP 22499692 A JP22499692 A JP 22499692A JP H0650889 A JPH0650889 A JP H0650889A
Authority
JP
Japan
Prior art keywords
light
measuring
measurement
sample
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4224996A
Other languages
Japanese (ja)
Inventor
Osamu Ando
修 安藤
Yasuro Tsukuda
康郎 佃
Atsuhiro Iida
敦宏 飯田
Kan Nakamura
完 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP4224996A priority Critical patent/JPH0650889A/en
Priority to US08/088,453 priority patent/US5422483A/en
Publication of JPH0650889A publication Critical patent/JPH0650889A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/065Integrating spheres

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To achieve a high-speed measurement by a near-infrared analytical apparatus, to increase the measuring accuracy of the apparatus and to increase the stability of the apparatus. CONSTITUTION:An analytical system wherein a tungsten halogen light source 1, a diaphragm 2 which narrows a measuring light flux from the light source, a condensing optical system 3 which condenses the measuring light flux and which guides it to a measuring part and an integrating sphere 6 for the measuring part on which a sample is placed is arranged on a base 11. An entrance slit 15 for a spectroscope part 40 is arranged on the bottom face of the integrating sphere 6 for the measuring part. A diffraction grating 12 which diffracts and disperses a light flux incident from the entrance slit 15, an array-shaped detector 14 and a reflecting mirror 13 which bends the light flux diffracted and dispersed by the diffraction grating 12 and which forms the image of the light flux, in a dispersed manner, on the face of the array- shaped detector 14 are installed in the spectroscope part 40. When signals from the array-shaped detector 14 are accessed sequentially, a wavelength can be scanned electrically, the high accuracy of the wavelength can be maintained for a long time, and a measurement can be performed at high speed. When the measurement is repeated and its data are integrated, a measuring noise is reduced and the measuring accuracy of the title apparatus can be enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は近赤外域における試料の
透過光や反射光の光学特性を測定して試料の定量的及び
/又は定性的な分析を行なう近赤外分析装置に関するも
のである。近赤外分析装置は、例えば農産物、加工食
品、化学物質、薬品などの光に対する分光学的特性を測
定する装置として利用されている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a near-infrared analyzer for quantitatively and / or qualitatively analyzing a sample by measuring optical characteristics of transmitted light and reflected light of the sample in the near infrared region. . The near-infrared analyzer is used as an apparatus for measuring the spectroscopic characteristics of agricultural products, processed foods, chemical substances, drugs, etc. with respect to light.

【0002】[0002]

【従来の技術】近赤外分析装置は、当初小麦中の蛋白質
や水分などの分析用として装置と分析手法が開発され、
その後測定対象が加工食品、酒類、化学工業製品、薬品
などの分野に拡大されてきた。近赤外分析装置による分
析方法では、一般に被測定試料を化学的に前処理するこ
となく、すなわち非破壊の状態で試料を測定装置に装着
して測定する。定量的分析法の一例では、主として近赤
外波長域におけるある波長範囲にわたって又は少なくと
も近赤外波長域での複数の波長点において、吸収スペク
トル又は反射スペクトルを測定し、そのデータに重回帰
分析などの統計的な処理を加え、予め成分既知の試料か
ら同様の手法によって作成した検量線データを基にして
未知試料中の複数成分の量を同時に定量する。
2. Description of the Related Art A near-infrared analyzer was originally developed for analysis of protein and moisture in wheat,
Since then, measurement targets have expanded to fields such as processed foods, alcoholic beverages, chemical products, and chemicals. In the analysis method using the near-infrared analyzer, generally, the sample to be measured is not chemically pretreated, that is, the sample is attached to the measuring device in a non-destructive state for measurement. In an example of the quantitative analysis method, an absorption spectrum or a reflection spectrum is measured mainly over a certain wavelength range in the near infrared wavelength range or at a plurality of wavelength points in at least the near infrared wavelength range, and multiple regression analysis is performed on the data. Then, the amounts of a plurality of components in the unknown sample are simultaneously quantified based on the calibration curve data prepared in advance from a sample of known components by the same method.

【0003】このような目的に使用される装置は、その
使用目的が主として農産物の選別や加工食品の品質管理
など、同種の測定を連日多数回繰り返す分析が大半を占
めること、またその測定結果が被測定試料の品質管理や
価格設定などに重要な意味をもつことから、測定が迅速
であること、従来行なわれていた化学的分析法に匹敵す
る精度を有すること、また短期的及び長期的な安定性が
高いことなど要求されている。
The apparatus used for such a purpose mainly has an analysis purpose in which the same type of measurement is repeated many times every day, such as selection of agricultural products and quality control of processed foods, and the measurement results are Since it has important meaning in quality control and price setting of the sample to be measured, the measurement should be quick, and the accuracy should be comparable to the conventional chemical analysis method, and short-term and long-term It is required to have high stability.

【0004】このような目的及び要求性能を満たすため
に従来用いられている装置では、その分光器部の構成を
基準に考えると、測定光の波長を走査する方式と、固定
波長によって測定する方式とが採用されている。後者の
固定波長による方式は、狭帯域のバンドパスフィルタを
複数枚用意してそれを光路中に切り替えて挿入し、複数
の波長による吸光度を測定する方式である。この方式の
装置は、構成が簡単で、安価であるという利点をもつ反
面、測定波長を任意に選択することができず、測定でき
る試料が装置によって制限されるなどの欠点をもってい
る。
In the apparatus conventionally used for satisfying the above purpose and required performance, considering the structure of the spectroscope section as a reference, the method of scanning the wavelength of the measuring light and the method of measuring with a fixed wavelength are used. And have been adopted. The latter method using a fixed wavelength is a method in which a plurality of narrow-band bandpass filters are prepared, they are switched and inserted in the optical path, and the absorbance at a plurality of wavelengths is measured. This type of device has the advantages of simple structure and low cost, but has the drawback that the measurement wavelength cannot be arbitrarily selected and the measurable sample is limited by the device.

【0005】一方、前者の波長走査方式は、回折格子分
光器を備え、回折格子を回転又は揺動させて分光器出口
スリットから出射される測定光の波長を走査するもので
ある。この構成の装置によれば、測定波長を自由に選択
することが可能となり、装置の応用分野が広がるため、
研究目的まで含んだ幅広い用途での使用が可能になる。
回折格子分光器を用いた近赤外分析装置によって前述の
要求性能、すなわち高速高精度の測定、短期及び長期の
安定性などを確保するためには、分光器を含む光学系を
明るく設計すること、回折格子の走査を高速高精度化す
ること、装置各部の温度変化や振動などを軽減又は補償
することなどが必要である。このような要求を満たすた
めに開発された装置として、例えば以下のようなものが
知られている。特殊なカムによって回折格子を揺動させ
る方式(例えば米国特許第4285596号)、復帰バ
ネ、逆起電力の検出及び制御されたDCモータの組合わ
せにより回折格子を調和振動させる方式(米国特許第4
540282号)、ポテンショメータによってDCモー
タの回転角を検出制御する方式(米国特許第46645
22号)、DCモータと光学エンコーダの組合わせによ
り、モータの回転を定速制御して回折格子を揺動させる
方法(EPO378108)、さらには従来から可視紫
外分光光度計や赤外分光光度計に利用されているよう
に、モータの回転を送りネジで直進運動に変換し、これ
をサインバーによって回折格子の回転に再変換する方式
などがある。
On the other hand, the former wavelength scanning system is provided with a diffraction grating spectroscope and rotates or oscillates the diffraction grating to scan the wavelength of the measurement light emitted from the spectroscope exit slit. According to the device having this configuration, it is possible to freely select the measurement wavelength, and the application field of the device is widened.
It can be used for a wide range of purposes including research purposes.
In order to ensure the above-mentioned required performance, that is, high-speed and high-accuracy measurement, short-term and long-term stability, by a near-infrared analyzer using a diffraction grating spectrometer, design the optical system including the spectrometer bright. It is necessary to speed up the scanning of the diffraction grating with high accuracy and to reduce or compensate for temperature changes and vibrations of various parts of the device. The following devices are known as devices developed to meet such requirements. A method of swinging the diffraction grating by a special cam (for example, US Pat. No. 4,285,596), a method of harmonically vibrating the diffraction grating by a combination of a return spring, detection of a counter electromotive force, and a controlled DC motor (US Pat.
540282), a method of detecting and controlling the rotation angle of a DC motor by a potentiometer (US Pat. No. 4,665,645).
No. 22), a method of oscillating the diffraction grating by controlling the rotation of the motor at a constant speed by the combination of the DC motor and the optical encoder (EPO378108), and further to the conventional visible ultraviolet spectrophotometer or infrared spectrophotometer. As used, there is a method in which the rotation of a motor is converted into a linear motion by a feed screw, and this is converted into the rotation of a diffraction grating by a sine bar.

【0006】[0006]

【発明が解決しようとする課題】従来の近赤外分析装
置、特に回折格子分光器を用いた分析装置で、回折格子
の回転又は揺動によって波長走査を行なう装置には、次
のような問題がある。前述の従来の装置はそのいずれも
が回折格子を機械的に走査するものであり、したがって
カムのような複雑な動力伝達機構を必要とし、かつ測定
時間短縮の要請からその回転速度は相当に速くしなけれ
ばならないため、長期の機械的信頼性や精度維持の点で
問題がある。
A conventional near-infrared analyzer, particularly an analyzer using a diffraction grating spectroscope, which performs wavelength scanning by rotating or swinging a diffraction grating, has the following problems. There is. Each of the above-mentioned conventional devices mechanically scans the diffraction grating, and therefore requires a complicated power transmission mechanism such as a cam, and its rotation speed is considerably high due to the demand for shortening the measurement time. Therefore, there is a problem in long-term mechanical reliability and accuracy maintenance.

【0007】また、DCモータとエンコーダなどを組み
合わせた方式では、高精度のエンコーダのように振動や
衝撃に対して脆弱な部品を使用しているので、農産物測
定のように騒音や温度変化の激しい室外で測定する場合
などの短期的信頼性に問題がある。また、モータやエン
コーダはともに回転運動する機械部品であり、その軸受
け部等には機械的な寿命が存在し、長期間の使用による
摩耗、劣化などによる測定精度低下の問題も併せもって
いる。本発明は、高速測定を可能で、測定精度を高める
ことができ、短期的にも長期的にも安定した近赤外分析
装置を提供することを目的とするものである。
Further, in the method of combining the DC motor and the encoder, since the parts which are vulnerable to vibrations and shocks such as the high precision encoder are used, the noise and the temperature change are remarkable like the agricultural product measurement. There is a problem with short-term reliability when measuring outdoors. Further, both the motor and the encoder are mechanical parts that rotate in rotation, and the bearings and the like thereof have a mechanical life, and there is also the problem of deterioration of measurement accuracy due to wear and deterioration due to long-term use. An object of the present invention is to provide a near-infrared analyzer capable of high-speed measurement, capable of enhancing measurement accuracy, and stable in the short term and the long term.

【0008】[0008]

【課題を解決するための手段】本発明は、近赤外域の連
続スペクトル光を発する光源と、前記光源から発生した
光を集光して後記測定部に導入する集光光学系と、前記
集光光学系を経て導入された光源からの光を試料に照射
する測定部と、回折格子を備え前記測定部通過後の光を
ほぼ平面上に分散して結像させる分光器部と、前記分光
器部の結像面に配置され近赤外域に感度をもつアレー状
検出器と、前記検出器の出力信号を処理する信号処理回
路と、を備えている。
The present invention is directed to a light source that emits continuous spectrum light in the near infrared region, a condensing optical system that condenses the light generated from the light source and introduces the light into a measuring unit, which will be described later. A measuring unit for irradiating a sample with light from a light source introduced through an optical optical system, a spectroscope unit for providing light after passing through the measuring unit with a diffraction grating to form a dispersed image on a substantially flat surface, and the spectroscopic unit. An array detector having sensitivity in the near-infrared region, which is arranged on the image plane of the container portion, and a signal processing circuit which processes an output signal of the detector are provided.

【0009】[0009]

【作用】分光器部は回折格子を備えて測定波長を任意に
選べる構成であり、かつ機械的駆動部分がないため短期
及び長期の信頼性に優れる。アレー状検出器を電気的に
走査して波長毎の測定データが得られるため、走査の高
速化が可能であり、また、そのために繰返し走査による
積算効果による精度の向上も図れる。
The spectroscope section is provided with a diffraction grating so that the measurement wavelength can be arbitrarily selected, and since it has no mechanical driving section, it has excellent short-term and long-term reliability. Since the array-shaped detector is electrically scanned to obtain the measurement data for each wavelength, the scanning speed can be increased, and therefore, the accuracy can be improved by the integration effect by the repeated scanning.

【0010】[0010]

【実施例】図1及び図2により一実施例を説明する。図
1は平面図、図2は図1のX−X’線位置での断面図で
ある。1は光源であり、楕円面反射鏡1aと光源ランプ
1bを備え、光源ランプ1bは楕円面反射鏡1aの第1
焦点に配置されている。光源ランプ1bは少なくとも近
赤外波長域、より詳しくは約1000〜2600nmの
波長範囲の連続スペクトル光を放射する光源であって、
さらに装置の拡張性を考慮すれば可視域の波長の光も放
射するものであることが望ましい。そのような光源ラン
プ1bの一例としてタングステンハロゲンランプを使用
する。光源ランプ1bの発光点、すなわちフィラメント
の位置が楕円面鏡1aの第1焦点に重なるように組み立
てられ、フィラメントの像が楕円面鏡1aの第2焦点に
結像するように構成されている。楕円面鏡1aの第2焦
点には光学絞り2が設置されており、フィラメント像の
位置に所定寸法の開孔を位置させることにより、以後の
光学系における光束寸法の制限を行なっている。また、
場合によっては試料面や回折格子面などに光源のフィラ
メント像が結像して照度分布が不均一になるような好ま
しくない状態を避けるためには、楕円面鏡1aの第2焦
点からややずれた位置に光学絞り2を設置し、ぼけたフ
ィラメント像を第2光源として利用することも可能であ
る。
Embodiment An embodiment will be described with reference to FIGS. 1 is a plan view, and FIG. 2 is a sectional view taken along the line XX 'in FIG. Reference numeral 1 denotes a light source, which includes an elliptical reflecting mirror 1a and a light source lamp 1b, and the light source lamp 1b is the first elliptic reflecting mirror 1a.
It is located at the focal point. The light source lamp 1b is a light source that emits continuous spectrum light in at least a near infrared wavelength range, more specifically, a wavelength range of about 1000 to 2600 nm,
Further, considering the expandability of the device, it is desirable that the device also emits light having a wavelength in the visible range. A tungsten halogen lamp is used as an example of such a light source lamp 1b. The light source lamp 1b is assembled so that the light emitting point, that is, the position of the filament, overlaps the first focal point of the ellipsoidal mirror 1a, and the filament image is formed at the second focal point of the ellipsoidal mirror 1a. An optical diaphragm 2 is installed at the second focal point of the ellipsoidal mirror 1a, and an aperture having a predetermined size is positioned at the position of the filament image to limit the size of the light flux in the optical system thereafter. Also,
In some cases, in order to avoid an undesired state in which the filament image of the light source is imaged on the sample surface or the diffraction grating surface and the illuminance distribution becomes uneven, the ellipsoidal mirror 1a is slightly displaced from the second focus. It is also possible to install the optical diaphragm 2 at the position and use the blurred filament image as the second light source.

【0011】光学絞り2を通過した光束を測定部に集光
して導入するために、集光光学系3が設置されている。
集光光学系3としては2枚の平凸レンズを備えている。
測定波長域がおよそ1000〜2600nm程度である
ことから、レンズを用いるとレンズ自身の吸収による光
の損失があるため、レンズ材質として無水の石英ガラス
を用いる。集光光学系3は実施例の構成に限定されるも
のではなく、例えば球面又は非球面の反射鏡を利用して
もよく、その場合には光学素子自身の吸収による光の損
失の問題は生じない。
A condensing optical system 3 is installed in order to condense and introduce the light flux that has passed through the optical diaphragm 2 into the measuring section.
The condensing optical system 3 includes two plano-convex lenses.
Since the measurement wavelength range is about 1000 to 2600 nm, if a lens is used, there is a loss of light due to absorption by the lens itself, so anhydrous silica glass is used as the lens material. The condensing optical system 3 is not limited to the configuration of the embodiment, and a spherical or aspherical reflecting mirror may be used, for example, in which case the problem of light loss due to absorption of the optical element itself occurs. Absent.

【0012】測定部には積分球6が設置されており、積
分球6の入口窓に対向した出口窓にはサンプルホルダ7
に保持された試料17が設置される。集光光学系3で集
光された測定光18は積分球6の入口窓から導入されて
試料17に照射される。集光光学系3による測定光18
は積分球6のほぼ入口窓位置に光学絞り2の像を結像す
るように調整されている。これは、積分球の出口窓の位
置に設置された試料17の面上に絞り2などの像が結像
されることによって試料が加熱されて測定値の精度が低
下するのを防ぐためである。しかし、例えば光源部分に
測定範囲外の熱線をカットするフィルタを挿入するなど
の手段を施すことにより、試料面上に結像した光束によ
って試料が照射されても測定に影響があるほどの温度上
昇がない場合には、試料面上に絞り2などの像を結像さ
せ、測定される範囲が明瞭になるようにすることも可能
である。積分球6は内面を完全拡散反射面に近く、また
測定波長域での反射率が高く、波長依存性の低い材質、
具体的には例えば硫酸バリウムコーティング、金メッ
キ、フッ素系樹脂、セラミックなどで構成された、光束
の入出射窓を有する中空球体である。試料からの拡散反
射光をこのような構成の積分球6によって効率的に把え
ることが可能である。
An integrating sphere 6 is installed in the measuring section, and a sample holder 7 is provided in an outlet window facing the inlet window of the integrating sphere 6.
The sample 17 held by is installed. The measurement light 18 condensed by the condensing optical system 3 is introduced from the entrance window of the integrating sphere 6 and irradiated on the sample 17. Measuring light 18 by the condensing optical system 3
Is adjusted so as to form an image of the optical diaphragm 2 at approximately the entrance window position of the integrating sphere 6. This is to prevent the sample 2 from being heated by the formation of an image of the diaphragm 2 or the like on the surface of the sample 17 installed at the exit window of the integrating sphere, thereby lowering the accuracy of the measured value. . However, by providing a means such as inserting a filter that cuts the heat rays outside the measurement range into the light source part, the temperature rises so that the measurement is affected even if the sample is irradiated by the light flux imaged on the sample surface. If there is not, it is possible to form an image of the diaphragm 2 or the like on the sample surface so that the measured range becomes clear. The inner surface of the integrating sphere 6 is close to a perfect diffusive reflecting surface, has a high reflectance in the measurement wavelength range, and has a low wavelength dependence,
Specifically, it is a hollow sphere having a light flux entrance / exit window made of, for example, barium sulfate coating, gold plating, fluorine resin, ceramics, or the like. The diffuse reflection light from the sample can be efficiently grasped by the integrating sphere 6 having such a configuration.

【0013】積分球7よりも測定光入射側には測定光1
8を断続するダーク羽根4が設置されている。ダーク羽
根4は例えば図3に示されるような扇形形状をなし、モ
ータ5によって図3に矢印で示される方向に測光系と連
動して揺動又は回転するように制御され、必要に応じて
測定光18を遮断し、その遮断している間に検出器の暗
抵抗又は暗電流を補正できるようにするためのものであ
る。光源1、絞り2、集光光学系3、ダーク羽根4及び
積分球6を含む光学系はベース11上に配置されてい
る。
The measuring light 1 is located on the measuring light incident side of the integrating sphere 7.
The dark feather 4 which connects 8 is installed. The dark blade 4 has, for example, a fan shape as shown in FIG. 3, and is controlled by a motor 5 so as to swing or rotate in a direction indicated by an arrow in FIG. The light is blocked so that the dark resistance or the dark current of the detector can be corrected while the light is blocked. An optical system including a light source 1, a diaphragm 2, a condensing optical system 3, a dark blade 4, and an integrating sphere 6 is arranged on a base 11.

【0014】積分球に配置される試料17は、装置の測
定目的から各種の状態のものが用いられる。実施例で
は、例えばサンプルホルダ7がカップ状であって、透光
性の蓋を有するものを用い、そのサンプルホルダ7に小
麦粉などの粉末試料を充填して測定できるものを例示し
ている。サンプルホルダ7は図に示されていない押圧手
段によって積分球6の出口窓部に押圧固定されている。
試料の交換は装置カバー9の一部を構成する測定部蓋1
0を開閉することによって行なう。試料が野菜や果物の
ような固形物の場合には、サンプルホルダ7を用いずに
試料を積分球出口窓部に直接当接して固定すればよい。
また、液体試料の透過測定を行なう場合には、液体試料
を角セルなどの容器に入れ、図1中に破線で示された位
置Bのように測定光18が積分球6へ入射する手前の位
置に挿入し、積分球6の出口窓部を白色板などでふさぐ
ことにより測定を行なうことができる。
The sample 17 placed on the integrating sphere is used in various states for the purpose of measuring the device. In the embodiment, for example, the sample holder 7 is cup-shaped and has a translucent lid, and the sample holder 7 can be filled with a powder sample such as wheat flour for measurement. The sample holder 7 is pressed and fixed to the exit window of the integrating sphere 6 by a pressing means (not shown).
The sample is replaced by the measuring unit lid 1 which constitutes a part of the device cover 9.
By opening and closing 0. When the sample is a solid such as vegetables or fruits, the sample holder 7 may not be used and the sample may be directly brought into contact with and fixed to the integrating sphere outlet window.
Further, when performing the transmission measurement of the liquid sample, the liquid sample is put in a container such as a square cell and the measurement light 18 is incident on the integrating sphere 6 at a position B shown by a broken line in FIG. The measurement can be performed by inserting the integrating sphere 6 into the position and closing the exit window of the integrating sphere 6 with a white plate or the like.

【0015】積分球6の底面には分光器部40の入口ス
リット15が配置されている。分光器部40はベース1
1の端部でベース11より下側に取りつけられている。
分光器部40には入口スリット15から入射した光束を
回折して分散する回折格子12が設置され、回折格子1
2によって回折された分散光を折り曲げてアレー状検出
器14の面上に分散結像するために反射鏡13が設けら
れている。回折格子12がスリット15から積分球内壁
面の一部を見込むように構成されている。入口スリット
15から分光器部40に入射する光束は分光器自体の視
野によって限定されるため、試料照射前の白色光など測
定に無関係な光束が分光器に入射することはない。回折
格子12は実施例では凹面回折格子であって、溝間隔、
溝形状などを調整することにより、収差の補正機能を持
たせたものである。このような回折格子はルーリングエ
ンジンによる機械加工又はホログラフィー法によって製
造することができる。回折格子の溝本数、ブレーズ波長
などは測定波長域など装置に要求される性能諸元によっ
て決定される。反射鏡13は回折格子12からの回折光
をいったん折り曲げて検出器14に導入するための平面
鏡であり、それ自体は結像に寄与するものではないが、
検出器14の大きさなどにより回折格子12から検出器
14に回折光を直接導くことが困難な場合に有効な手段
であり、分光器部40を小型化する上で効果がある。
The entrance slit 15 of the spectroscope unit 40 is arranged on the bottom surface of the integrating sphere 6. The spectroscope section 40 is the base 1
It is attached below the base 11 at one end.
The spectroscope section 40 is provided with a diffraction grating 12 that diffracts and disperses the light beam incident from the entrance slit 15.
A reflecting mirror 13 is provided in order to bend the dispersed light diffracted by 2 and form a dispersed image on the surface of the array detector 14. The diffraction grating 12 is configured to allow a part of the inner wall surface of the integrating sphere to be seen from the slit 15. Since the light flux entering the spectroscope unit 40 from the entrance slit 15 is limited by the field of view of the spectroscope itself, a light flux unrelated to measurement such as white light before sample irradiation does not enter the spectroscope. The diffraction grating 12 is a concave diffraction grating in the embodiment, and has a groove interval,
The function of correcting aberration is provided by adjusting the groove shape and the like. Such a diffraction grating can be manufactured by machining with a ruling engine or by a holographic method. The number of grooves in the diffraction grating, the blaze wavelength, etc. are determined by the performance specifications required for the device, such as the measurement wavelength range. The reflecting mirror 13 is a plane mirror for bending the diffracted light from the diffraction grating 12 and introducing the diffracted light into the detector 14. Although the reflecting mirror 13 does not itself contribute to image formation,
This is an effective means when it is difficult to directly guide the diffracted light from the diffraction grating 12 to the detector 14 due to the size of the detector 14, and it is effective in reducing the size of the spectroscope unit 40.

【0016】検出器14上では回折光はほぼ平面的に結
像する。実施例の場合、分光器の結像倍率をおよそ1:
1となるように構成しておけば、検出器面上に形成され
るのは入口スリット15のほぼ当倍像である。一方、検
出器14は近赤外測定波長域に十分な感度を持つ素子で
構成されたアレー状検出器である。実施例ではPbS素
子を単一基板上にアレー状に配列したものである。必ず
しもこれに限定されるものではなく、例えばInGaA
s、InGaAsP又はPtSiなどのような半導体素
子で構成されたものであってもよい。実施例のように検
出器面上に結像される像が入口スリット15のほぼ当倍
像であるとすれば、入口スリット15の寸法はアレイ状
検出器14の一素子の寸法によって決定され、それ以上
にスリット15を広げても光束は検出器14をはみ出
し、受光光量の増加には寄与しない。
On the detector 14, the diffracted light forms an image in a substantially planar manner. In the case of the embodiment, the imaging magnification of the spectroscope is approximately 1:
If it is configured so as to be 1, the substantially equal-sized image of the entrance slit 15 is formed on the detector surface. On the other hand, the detector 14 is an array detector composed of elements having sufficient sensitivity in the near infrared measurement wavelength range. In the embodiment, PbS elements are arranged in an array on a single substrate. For example, InGaA is not limited to this.
It may be composed of a semiconductor element such as s, InGaAsP or PtSi. Assuming that the image formed on the surface of the detector as in the embodiment is a substantially equal image of the entrance slit 15, the size of the entrance slit 15 is determined by the size of one element of the arrayed detector 14, Even if the slit 15 is widened further than this, the light beam extends beyond the detector 14 and does not contribute to an increase in the amount of received light.

【0017】実施例の検出器14に用いるPbSアレー
状検出器14の一例を図4に示す。このアレー状検出器
14は例えば石英ガラス基板21上にPbS素子20を
パターンマスクを介してアレー状に接着させ、さらにそ
の上に石英カバーガラス22を貼り付け、各PbS素子
からの配線を接続するためのコネクタ基板23を裏面に
設けたものである。このようなPbSアレー状検出器は
例えば浜松ホトニクス株式会社から販売されている。P
bS素子はシリコンプロセスによって製造されるシリコ
ンホトダイオードアレイと異なり、素子中にマルチプレ
クサなどの電子回路を作り込むことが困難であるため、
アレーを構成する素子1つ1つからの配線を外部に取り
出さねばならないのが一般的である。このため、配線処
理やコネクタ配置のための基板23を必要とし、素子か
らの信号は基板23上のコネクタ24を介して外部に取
り出される。このため、アレー状検出器全体の寸法は必
ずしも小さくはならず、そのままでは分光器部40で回
折格子12からの回折光を直接受光するように組み込む
ことが困難な場合も考えられるが、反射鏡13を用いる
ことによりこの問題を解決し、アレー状検出器の設置位
置の自由度を増すことができる。
An example of the PbS array detector 14 used for the detector 14 of the embodiment is shown in FIG. In the array detector 14, for example, a PbS element 20 is adhered in an array shape on a quartz glass substrate 21 through a pattern mask, and a quartz cover glass 22 is further adhered on the PbS element 20 to connect wirings from each PbS element. The connector board 23 for this purpose is provided on the back surface. Such a PbS array detector is sold, for example, by Hamamatsu Photonics KK. P
Unlike a silicon photodiode array manufactured by a silicon process, a bS element has a difficulty in building an electronic circuit such as a multiplexer in the element.
Generally, the wiring from each of the elements forming the array must be taken out. Therefore, the substrate 23 for wiring processing and connector arrangement is required, and the signal from the element is taken out through the connector 24 on the substrate 23. For this reason, the size of the entire array detector is not necessarily small, and it may be difficult to incorporate the spectroscopic unit 40 so as to directly receive the diffracted light from the diffraction grating 12 as it is. By using 13, it is possible to solve this problem and increase the degree of freedom in the installation position of the array detector.

【0018】アレーを構成する素子の数はバンド幅やデ
ータ間隔、波長範囲などによって選択し決定することに
なるが、例えば256又は512程度の素子数が近赤外
分析に利用するのに好適である。仮りに、素子数を25
6、波長範囲を1100〜2500nmとすると、デー
タ採取間隔は波長によって異なるが、平均しておよそ
5.5nm/素子となり、従来のフィルタ切換え型の装
置に比べてはるかに細かなピッチでのデータ採取が可能
であり、近赤外分析には十分である。さらに、データ間
隔は素子数を増加させることにより容易に小さくするこ
とができる。一方、検出面上に結像した回折光の各素子
当りのスペクトルバンド幅は、回折格子自体の性能及び
分光器の設計によって変化するが、これら設計を適切に
行なうことにより、10nm程度の近赤外分析には十分
なバンド幅を得ることができる。
The number of elements forming the array is selected and determined depending on the bandwidth, data interval, wavelength range, etc., but for example, the number of elements of about 256 or 512 is suitable for use in near infrared analysis. is there. Assuming that the number of elements is 25
6. If the wavelength range is set to 1100 to 2500 nm, the data collection interval will vary depending on the wavelength, but will average about 5.5 nm / element, which is much finer than the conventional filter switching type device. Is possible, which is sufficient for near infrared analysis. Further, the data interval can be easily reduced by increasing the number of elements. On the other hand, the spectral band width of each element of the diffracted light imaged on the detection surface changes depending on the performance of the diffraction grating itself and the design of the spectroscope. A sufficient bandwidth can be obtained for external analysis.

【0019】図5には一実施例における信号処理系の概
略構成を示す。PbSアレー検出器を構成する各PbS
素子20の信号をコネクタ基板23及びコネクタ24を
介して取り出す。取り出された信号を増幅するプリアン
プ30と、増幅された信号を所定時間積分する積分器3
1が各素子ごとに設けられている。各素子からの積分器
31による積分信号を順次呼び出すためにマルチプレク
サ32が設けられており、呼び出された信号をデジタル
信号に変換してCPU33に取り込むためにAD変換器
38が設けられている。CPU33は取り込んだ信号を
測定データとして処理する。各素子の信号を増幅し積分
してCPU33に取り込む走査を複数回繰り返し、測定
信号をアナログ的又はデジタル的に積分することによ
り、ノイズを低減して測定精度を向上させることも可能
である。
FIG. 5 shows a schematic configuration of a signal processing system in one embodiment. Each PbS constituting the PbS array detector
The signal of the element 20 is taken out via the connector board 23 and the connector 24. A preamplifier 30 for amplifying the extracted signal and an integrator 3 for integrating the amplified signal for a predetermined time
1 is provided for each element. A multiplexer 32 is provided to sequentially call the integrated signals from the integrators 31 from the respective elements, and an AD converter 38 is provided to convert the called signals into digital signals and take them into the CPU 33. The CPU 33 processes the captured signal as measurement data. It is also possible to reduce noise and improve measurement accuracy by repeating scanning a plurality of times for amplifying and integrating the signal of each element and fetching it into the CPU 33 and integrating the measurement signal in an analog or digital manner.

【0020】CPU33は各PbS素子20からの信号
を順次読み出して吸収スペクトル又は反射スペクトルを
再構成するデータ処理を行なうとともに、ダーク羽根モ
ータ制御回路34や光源制御回路35を制御し、またキ
ーボード37からの入力の処理、測定結果のCRT画面
36上への表示などの制御も行なう。測定データは単純
なスペクトルとして表示される場合は稀であり、測定デ
ータを統計処理して試料の定量的又は定性的データを最
終結果として得る場合が一般的である。このような統計
処理はCPU33で行なってもよく、もしその能力が十
分でない場合には別のパーソナルコンピュータなどを利
用することも可能である。
The CPU 33 sequentially reads the signals from the respective PbS elements 20 to perform data processing for reconstructing the absorption spectrum or the reflection spectrum, controls the dark blade motor control circuit 34 and the light source control circuit 35, and uses the keyboard 37. Is also controlled, and the measurement result is displayed on the CRT screen 36. The measurement data is rarely displayed as a simple spectrum, and it is common to statistically process the measurement data to obtain quantitative or qualitative data of the sample as the final result. Such statistical processing may be performed by the CPU 33, and if the ability is not sufficient, another personal computer or the like can be used.

【0021】次に、図1から図5に示された一実施例の
動作について説明する。試料の測定に先立って予め別に
用意した基準拡散反射板を積分球6の出口窓に配置し、
その基準拡散反射板に測定光を照射して得たデータを基
準値として記憶しておく。測定は各種試料の透過特性又
は反射特性を基準拡散反射板による基準値と比較するこ
とにより行なうことができる。試料測定では試料はサン
プルホルダ7に保持され、又は直接に積分球6の出口窓
の位置に配置される。光源からの測定光は集光光学系3
で集光されて試料17に照射される。試料17から反射
された測定光は積分球6中にトラップされ、積分球の内
壁面で多重反射する。積分球6で多重反射した試料から
の反射光は、積分球6の底面にある入口スリット15を
経て分光器部40に入射し、回折格子12で分散され反
射鏡13を経てアレー状検出器14に入射して多波長に
わたって同時に受光される。
Next, the operation of the embodiment shown in FIGS. 1 to 5 will be described. Prior to the measurement of the sample, a reference diffuse reflection plate prepared separately is placed in the exit window of the integrating sphere 6,
Data obtained by irradiating the reference diffuse reflection plate with the measurement light is stored as a reference value. The measurement can be performed by comparing the transmission characteristics or reflection characteristics of various samples with a reference value obtained by a reference diffuse reflection plate. In the sample measurement, the sample is held by the sample holder 7 or directly placed at the position of the exit window of the integrating sphere 6. The measuring light from the light source is a condensing optical system 3
The light is focused on the sample 17 and irradiated onto the sample 17. The measurement light reflected from the sample 17 is trapped in the integrating sphere 6 and is multiply reflected by the inner wall surface of the integrating sphere. The reflected light from the sample that has been multiple-reflected by the integrating sphere 6 enters the spectroscope unit 40 through the entrance slit 15 on the bottom surface of the integrating sphere 6, is dispersed by the diffraction grating 12, and passes through the reflecting mirror 13 to form the array detector 14. And is received simultaneously over multiple wavelengths.

【0022】図6は第2の実施例における測定部を示し
たものである。図6では、試料17aは白色測定光18
によって照射され、これを拡散反射する。試料17aは
照射位置の依存性を持たない場所的に均一な試料であ
る。試料17aは白色測定光によって照射されてこれを
拡散反射する。反射光は第1の実施例と同様の分光器部
40に斜め方向から入射することにより、試料の拡散反
射特性を第1の実施例と同様に測定することができる。
図6の実施例では第1の実施例で必要とされた積分球6
は不要である。
FIG. 6 shows the measuring section in the second embodiment. In FIG. 6, the sample 17a is the white measurement light 18
It is illuminated by and is diffusely reflected. The sample 17a is a locally uniform sample that does not depend on the irradiation position. The sample 17a is illuminated with white measurement light and diffusely reflects it. The diffused reflection characteristics of the sample can be measured in the same manner as in the first embodiment by allowing the reflected light to enter the spectroscope section 40 similar to that in the first embodiment from an oblique direction.
In the embodiment of FIG. 6, the integrating sphere 6 required in the first embodiment is used.
Is unnecessary.

【0023】図7は第3の実施例の測定部を示す図であ
る。図7の例では試料17は積分球の入口窓に対向した
位置ではなく、入口窓から90度の位置に配置されてお
り、測定光18は積分球6の内壁の一部を照射するよう
に積分球6と試料17の位置が設定されている。この例
では、積分球内面で拡散反射された光によって試料17
が照射される。拡散光によって照射された試料の0度方
向の反射光が集光レンズ39によって分光器部の入口ス
リット15に導かれて分光器部に導入され、以後は前述
の第1及び第2の実施例と同様に測光される。図7の実
施例では試料が直接強力な測定光で照射されることがな
いので、例えば試料の温度上昇などによる測定の誤差を
防ぐことができる。
FIG. 7 is a diagram showing the measuring section of the third embodiment. In the example of FIG. 7, the sample 17 is arranged not at a position facing the entrance window of the integrating sphere but at a position 90 degrees from the entrance window, and the measurement light 18 irradiates a part of the inner wall of the integrating sphere 6. The positions of the integrating sphere 6 and the sample 17 are set. In this example, the sample 17 is diffused by the light diffusely reflected on the inner surface of the integrating sphere.
Is irradiated. The reflected light in the 0 degree direction of the sample irradiated with the diffused light is guided by the condenser lens 39 to the entrance slit 15 of the spectroscope section and introduced into the spectroscope section, and thereafter, the first and second embodiments described above. It is metered in the same way as. In the embodiment shown in FIG. 7, since the sample is not directly irradiated with strong measuring light, it is possible to prevent a measurement error due to, for example, a temperature rise of the sample.

【0024】実施例では検出器としてPbS素子をアレ
ー状に配置した検出器を使用しているが、例えば検出器
を半導体プロセスによって製造されるInGaAs素子
などを用いて検出器と同一基板上にマルチプレクサなど
の回路を形成することにより、信号処理系の構成をより
簡略化することも可能である。
In the embodiment, a detector in which PbS elements are arranged in an array is used as the detector. For example, the detector is an InGaAs element manufactured by a semiconductor process and the like and a multiplexer is provided on the same substrate as the detector. It is possible to further simplify the configuration of the signal processing system by forming a circuit such as.

【0025】[0025]

【発明の効果】本発明によれば分光器部の回折格子を機
械的に走査することなく固定したままで、分散光結像面
上に置かれたアレー状検出器からの信号を順次呼び出す
ことによって、波長を電気的に走査することが可能であ
り、初期の調整を適切に行なうことにより長期にわたっ
て高い波長精度を維持することが可能である。さらに、
波長の走査速度は機械的方法による場合に比べて格段に
高速化することが可能であり、測定の高速化とともに、
繰返し測定を行なってそのデータを積算することにより
測定ノイズを低減して測定精度の向上を図ることが可能
であり、近赤外分析に好適な分析装置を実現することが
できる。
According to the present invention, the signals from the array detectors placed on the dispersed light image forming plane are sequentially retrieved while the diffraction grating of the spectroscope unit is fixed without mechanical scanning. , It is possible to electrically scan the wavelength, and it is possible to maintain high wavelength accuracy for a long period of time by appropriately performing the initial adjustment. further,
The scanning speed of the wavelength can be significantly increased compared to the case of using the mechanical method.
By repeating the measurement and integrating the data, it is possible to reduce the measurement noise and improve the measurement accuracy, and it is possible to realize an analyzer suitable for near infrared analysis.

【図面の簡単な説明】[Brief description of drawings]

【図1】一実施例を示す平面断面図である。FIG. 1 is a plan sectional view showing an embodiment.

【図2】図1におけるX−X’線位置での断面図であ
る。
FIG. 2 is a cross-sectional view taken along line XX ′ in FIG.

【図3】同実施例におけるダーク羽根を示す正面図であ
る。
FIG. 3 is a front view showing a dark blade in the embodiment.

【図4】同実施例におけるアレー状検出器を示す分解斜
視図である。
FIG. 4 is an exploded perspective view showing an array detector according to the same embodiment.

【図5】同実施例における信号処理系を示す回路図であ
る。
FIG. 5 is a circuit diagram showing a signal processing system in the embodiment.

【図6】第2の実施例における測定部を示す側面断面図
である。
FIG. 6 is a side sectional view showing a measuring section in the second embodiment.

【図7】第3の実施例における測定部を示す側面断面図
である。
FIG. 7 is a side sectional view showing a measuring section in a third embodiment.

【符号の説明】[Explanation of symbols]

1 光源 3 集光光学系 6 積分球 12 回折格子 14 アレー状検出器 15 分光器部入口スリット 17,17a 試料 18 測定光 DESCRIPTION OF SYMBOLS 1 light source 3 condensing optical system 6 integrating sphere 12 diffraction grating 14 array detector 15 spectroscope entrance slit 17, 17a sample 18 measurement light

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 完 京都府京都市中京区西ノ京桑原町1番地 株式会社島津製作所三条工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nakamura Kan 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto City Kyoto Prefecture Shimadzu Corporation Sanjo Factory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 近赤外域の連続スペクトル光を発する光
源と、前記光源から発生した光を集光して後記測定部に
導入する集光光学系と、前記集光光学系を経て導入され
た光源からの光を試料に照射する測定部と、回折格子を
備え前記測定部通過後の光をほぼ平面上に分散して結像
させる分光器部と、前記分光器部の結像面に配置され近
赤外域に感度をもつアレー状検出器と、前記検出器の出
力信号を処理する信号処理回路と、を備えたことを特徴
とする近赤外分析装置。
1. A light source that emits continuous spectrum light in the near-infrared region, a condensing optical system that condenses the light generated from the light source and introduces the light into a measurement unit described later, and the light is introduced through the condensing optical system. A measuring unit that irradiates the sample with light from a light source, a spectroscope unit that includes a diffraction grating and disperses and forms an image of the light after passing through the measuring unit on a substantially flat surface, and a spectroscope unit that is disposed on the imaging surface of the spectroscope unit. A near-infrared analysis device, comprising: an array-shaped detector having sensitivity in the near-infrared region; and a signal processing circuit for processing an output signal of the detector.
JP4224996A 1992-07-31 1992-07-31 Near-infrared analytical apparatus Pending JPH0650889A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4224996A JPH0650889A (en) 1992-07-31 1992-07-31 Near-infrared analytical apparatus
US08/088,453 US5422483A (en) 1992-07-31 1993-07-07 Near infrared analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4224996A JPH0650889A (en) 1992-07-31 1992-07-31 Near-infrared analytical apparatus

Publications (1)

Publication Number Publication Date
JPH0650889A true JPH0650889A (en) 1994-02-25

Family

ID=16822457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4224996A Pending JPH0650889A (en) 1992-07-31 1992-07-31 Near-infrared analytical apparatus

Country Status (2)

Country Link
US (1) US5422483A (en)
JP (1) JPH0650889A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008046132A (en) * 2006-08-16 2008-02-28 Wafermasters Inc Spectroscopy system
JP2010008706A (en) * 2008-06-26 2010-01-14 Shimadzu Corp Diffraction grating and spectrometer
WO2012074087A1 (en) * 2010-12-03 2012-06-07 株式会社 東芝 Automatic analysis device
JP2013019673A (en) * 2011-07-07 2013-01-31 Sharp Corp Optical measurement analysis device, storehouse, electromagnetic wave generation device, and optical measurement analysis method
CN103308457A (en) * 2013-04-10 2013-09-18 浙江工商大学 Establishment method of prediction model for bergamot pear maturity
JP2015535084A (en) * 2012-11-20 2015-12-07 テクノロギアン トゥトキムスケスクス ヴェーテーテー オイ Optical sample measuring device and method of using the sample measuring device
CN106525239A (en) * 2016-11-03 2017-03-22 西安应用光学研究所 Grating-type imaging spectrograph spatial spectral radiation brightness responsivity calibration device and method
JP2017223494A (en) * 2016-06-14 2017-12-21 株式会社島津製作所 Spectroscope and incident light restriction member used for the same
JP6395981B1 (en) * 2015-12-28 2018-09-26 サンフォーレスト インコーポレイテッド Light source integrated lens assembly and spectroscopic analysis apparatus including the same

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5534700A (en) * 1994-07-25 1996-07-09 Hughes Aircraft Company Optical spectrometer system having a curved reflective imaging slit body
US5523563A (en) * 1994-08-12 1996-06-04 E. I. Du Pont De Nemours And Company Apparatus for controlling the temperature of a near-infrared analyzer
FR2737573B1 (en) * 1995-07-31 1997-09-26 Alliance Instr Sa METHOD FOR INFRARED ANALYSIS OF A SAMPLE AND DEVICE FOR CARRYING OUT THE METHOD
US5873982A (en) * 1996-04-26 1999-02-23 Japan Tobacco Inc. Method and apparatus of discriminating coal species
DE19619513C2 (en) * 1996-05-14 2001-03-22 Stoeckert Instr Gmbh Device for measuring physiological parameters of blood in an extracorporeal circuit
GB2328016B (en) * 1997-08-08 2001-04-25 Pfizer Ltd Spectrophotometric analysis
US6184528B1 (en) 1998-08-27 2001-02-06 Vought Aircraft Industries, Inc. Method of spectral nondestructive evaluation
AU5886299A (en) * 1998-09-07 2000-03-27 Hamish Alexander Nigel Kennedy Produce identification system
US6355930B1 (en) 1999-01-25 2002-03-12 En'urga, Inc. Fast infrared linear image optical instruments
JP2002062189A (en) * 2000-08-24 2002-02-28 Shimadzu Corp Detector for spectrophotometry and integrating sphere- measuring instrument using it, and spectrophotometer
US7126682B2 (en) * 2001-04-11 2006-10-24 Rio Grande Medical Technologies, Inc. Encoded variable filter spectrometer
EP1488214B1 (en) * 2002-03-20 2012-02-22 AG Leader Technology, Inc. High speed analyzer using near infrared radiation transmitted through thick samples of optically dense material
AU2006200712B1 (en) * 2006-02-21 2006-09-28 Rosewood Research Pty Ltd Spectographic sample monitoring
US8703492B2 (en) 2007-04-06 2014-04-22 Qiagen Gaithersburg, Inc. Open platform hybrid manual-automated sample processing system
US8355132B2 (en) * 2007-04-06 2013-01-15 Qiagen Gaithersburg, Inc. Sample adequacy measurement system having a plurality of sample tubes and using turbidity light scattering techniques
US8877507B2 (en) 2007-04-06 2014-11-04 Qiagen Gaithersburg, Inc. Ensuring sample adequacy using turbidity light scattering techniques
FI20075622A0 (en) * 2007-09-07 2007-09-07 Valtion Teknillinen Spectrometer and method for measuring a moving sample
US8148176B2 (en) * 2009-08-20 2012-04-03 Innovalight, Inc. Methods for distinguishing a set of highly doped regions from a set of lightly doped regions on a silicon substrate
CN101907564B (en) * 2010-06-24 2013-07-17 江苏大学 Rapeseed quality non-destructive testing method and device based on near infrared spectrum technology
TWI575494B (en) * 2011-08-19 2017-03-21 半導體能源研究所股份有限公司 Method for driving semiconductor device
CN107340509B (en) * 2012-03-09 2020-04-14 株式会社半导体能源研究所 Method for driving semiconductor device
KR101846017B1 (en) * 2017-09-18 2018-04-05 엘아이지넥스원 주식회사 Apparatus and method for generating image with noise
CN118209517A (en) * 2024-03-26 2024-06-18 中国科学院合肥物质科学研究院 Compact visible near infrared band spectrum detection device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3874799A (en) * 1973-06-01 1975-04-01 Color Control Inc Method and apparatus for color spectrophotometry
JPS6111622A (en) * 1984-06-27 1986-01-20 Hitachi Ltd Spectrophotometer
MX169020B (en) * 1986-09-19 1993-06-16 Satake Eng Co Ltd MEASURING DEVICE FOR AMYLOSE AND / OR AMYLOPECTIN CONTENT IN RICE
IT1216681B (en) * 1988-03-31 1990-03-08 Maxmeyer Duco Mm D Spa PORTABLE SPECTROPHOMETER.
US4932779A (en) * 1989-01-05 1990-06-12 Byk Gardner, Inc. Color measuring instrument with integrating sphere
FI90592C (en) * 1989-02-16 1994-02-25 Anadis Instr Sa IR spectrometric analysis method and IR spectrometer
US5206701A (en) * 1991-09-20 1993-04-27 Amoco Corporation Apparatus for near-infrared spectrophotometric analysis

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008046132A (en) * 2006-08-16 2008-02-28 Wafermasters Inc Spectroscopy system
JP2010008706A (en) * 2008-06-26 2010-01-14 Shimadzu Corp Diffraction grating and spectrometer
WO2012074087A1 (en) * 2010-12-03 2012-06-07 株式会社 東芝 Automatic analysis device
JP2012132907A (en) * 2010-12-03 2012-07-12 Toshiba Corp Automatic analysis device
US9933358B2 (en) 2010-12-03 2018-04-03 Toshiba Medical Systems Corporation Automatic analyzer
JP2013019673A (en) * 2011-07-07 2013-01-31 Sharp Corp Optical measurement analysis device, storehouse, electromagnetic wave generation device, and optical measurement analysis method
JP2015535084A (en) * 2012-11-20 2015-12-07 テクノロギアン トゥトキムスケスクス ヴェーテーテー オイ Optical sample measuring device and method of using the sample measuring device
CN103308457A (en) * 2013-04-10 2013-09-18 浙江工商大学 Establishment method of prediction model for bergamot pear maturity
JP6395981B1 (en) * 2015-12-28 2018-09-26 サンフォーレスト インコーポレイテッド Light source integrated lens assembly and spectroscopic analysis apparatus including the same
JP2018534562A (en) * 2015-12-28 2018-11-22 サンフォーレスト インコーポレイテッド Light source integrated lens assembly and spectroscopic analysis apparatus including the same
JP2017223494A (en) * 2016-06-14 2017-12-21 株式会社島津製作所 Spectroscope and incident light restriction member used for the same
CN106525239A (en) * 2016-11-03 2017-03-22 西安应用光学研究所 Grating-type imaging spectrograph spatial spectral radiation brightness responsivity calibration device and method

Also Published As

Publication number Publication date
US5422483A (en) 1995-06-06

Similar Documents

Publication Publication Date Title
JPH0650889A (en) Near-infrared analytical apparatus
US4285596A (en) Holographic diffraction grating system for rapid scan spectral analysis
US5489980A (en) Apparatus for rapid and accurate analysis of the composition of samples
KR100275422B1 (en) Space light modulator spectrometer
US8159668B2 (en) Spectrometer for measuring moving sample material and the method
US4540282A (en) Apparatus for optically analyzing a sample
US6748251B2 (en) Method and apparatus for detecting mastitis by using visual light and/or near infrared lights
CN108885166A (en) For determining the analyte system and method for whole blood hemoglobin parameters
JP2003513236A (en) Built-in optical probe for spectroscopic analysis
US11156549B2 (en) Diffuse reflectance infrared fourier transform spectroscopy
JPS591971B2 (en) Bunko Koudokei
WO2004015388A2 (en) Subsystem based optical interrogation of sample
US4487477A (en) Optical beam splitter
JPH07229840A (en) Method and apparatus for optical measurement
HU188795B (en) Detecting arrangement for meassuring the intensity of radiation scattering at a given angle from a sample exposed to radiation of given angle of incidence
JPS6017340A (en) Device for measuring optical characteristic of paper
EP0176826A2 (en) Method and apparatus for dual-beam spectral transmission measurements
EP0059836A1 (en) Optical beam splitter
EP3830553B1 (en) Diffuse reflectance apparatus
JPH0694528A (en) Spectral analyzer
JP2002372456A (en) Ir spectrophotometer
CA1184652A (en) Optical analyser with a grating-monochromator for the near infrared range
JP3402524B2 (en) 3D spectrophotometer
US10345228B2 (en) Dark reference standard and measurement thereof
KR20020013061A (en) Method for Determinating spectrum using multslit and mult channel spectrograph using the same