JPH0650724B2 - Low temperature plasma electromagnetic field control mechanism - Google Patents

Low temperature plasma electromagnetic field control mechanism

Info

Publication number
JPH0650724B2
JPH0650724B2 JP23950084A JP23950084A JPH0650724B2 JP H0650724 B2 JPH0650724 B2 JP H0650724B2 JP 23950084 A JP23950084 A JP 23950084A JP 23950084 A JP23950084 A JP 23950084A JP H0650724 B2 JPH0650724 B2 JP H0650724B2
Authority
JP
Japan
Prior art keywords
temperature plasma
magnetic field
control mechanism
low temperature
electromagnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23950084A
Other languages
Japanese (ja)
Other versions
JPS61119036A (en
Inventor
和夫 鈴木
淳 千葉
正 園部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23950084A priority Critical patent/JPH0650724B2/en
Publication of JPS61119036A publication Critical patent/JPS61119036A/en
Publication of JPH0650724B2 publication Critical patent/JPH0650724B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は低温プラズマ電磁界制御機構に係り、特に薄膜
表面処理用に生成された低温プラズマを電磁界で制御す
る低温プラズマ電磁界制御機構に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low temperature plasma electromagnetic field control mechanism, and more particularly to a low temperature plasma electromagnetic field control mechanism for controlling low temperature plasma generated for thin film surface treatment with an electromagnetic field.

〔発明の背景〕[Background of the Invention]

最近の半導体薄膜生成およびエツチング等の表面処理装
置においては、膜均一度、成膜速度および表面処理速度
等の向上のために、電離または励起された多原子分子お
よび化合物等の低温プラズマを用いたものが広く採用さ
れている。
In recent surface treatment equipment such as semiconductor thin film generation and etching, low temperature plasma such as ionized or excited polyatomic molecules and compounds is used to improve film uniformity, film formation rate and surface treatment rate. Things are widely adopted.

第6図乃至第8図は従来の低温プラズマを用いたそれぞ
れ異なる半導体薄膜製造装置を示す。
6 to 8 show different semiconductor thin film manufacturing apparatuses using conventional low temperature plasma.

第6図は平行平板電極型薄膜製造装置を示している。真
空容器1は排気孔5と供給孔6を有して構成され、その
内部には高周波交流が印加される1対の平行平板電極
2,3が配置されている。電極3は試料台を兼ねてお
り、その上には基板4が取付けられている。
FIG. 6 shows a parallel plate electrode type thin film manufacturing apparatus. The vacuum container 1 is configured to have an exhaust hole 5 and a supply hole 6, and inside thereof, a pair of parallel plate electrodes 2 and 3 to which a high frequency alternating current is applied are arranged. The electrode 3 also serves as a sample table, and the substrate 4 is mounted thereon.

真空容器1内を排気孔5から真空排気した後、電極2,
3間に高周波電界を加えながら供給孔6から材料ガスを
注入して電離し、この低温プラズマにより基板4の上に
薄膜を成長させている。
After evacuating the inside of the vacuum container 1 through the exhaust hole 5, the electrodes 2,
A material gas is injected from the supply hole 6 and ionized while applying a high-frequency electric field between the electrodes 3, and a low temperature plasma is used to grow a thin film on the substrate 4.

第7図は誘導コイル7を用いた薄膜製造装置を示してお
り、真空容器1の外周には電極3を包囲するように誘導
コイル7が配置され、誘導コイル7による誘導電界を用
いている。
FIG. 7 shows a thin-film manufacturing apparatus using the induction coil 7. The induction coil 7 is arranged on the outer periphery of the vacuum container 1 so as to surround the electrode 3, and the induction electric field generated by the induction coil 7 is used.

これらの両薄膜製造装置の場合、イオン化された材料ガ
スの低温プラズマは自由拡散によつて試料基板4に至
る。このため、基板4の表面での反応確率は場所によつ
て異なり、成膜後の膜厚は不均一になり易い。また膜厚
の生成速度は電離エネルギーを一定に保たなければなら
ず簡単に制御することはできない。
In the case of both of these thin film manufacturing apparatuses, the low temperature plasma of the ionized material gas reaches the sample substrate 4 by free diffusion. Therefore, the reaction probability on the surface of the substrate 4 varies depending on the location, and the film thickness after film formation tends to be non-uniform. The rate of film thickness generation cannot be easily controlled because ionization energy must be kept constant.

第8図は従来の他の実施例によるプラズマ電磁界制御機
構を示している。
FIG. 8 shows a conventional plasma electromagnetic field control mechanism according to another embodiment.

この例による薄膜製造装置は、プラズマ生成室12と反
応室13とを分離しており、プラズマ生成室12に外側
に磁界コイル8を配置している。この磁界コイル8によ
り発生した磁界と、導波管9から注入した2.45GHzの
マイクロ波10とにより、電子サイクロトロン共鳴を起
こし、供給孔6から注入した材料ガスを電離し、引出し
口14から低温プラズマ状態にある材料ガスを反応室1
3に導き、試料基板4の上に薄膜を成長させている。こ
の装置は、「応用物理」第52巻第2号(1983)の第1
18頁に招介されている。
In the thin film manufacturing apparatus according to this example, the plasma generation chamber 12 and the reaction chamber 13 are separated from each other, and the magnetic field coil 8 is arranged outside the plasma generation chamber 12. The magnetic field generated by the magnetic field coil 8 and the 2.45 GHz microwave 10 injected from the waveguide 9 cause electron cyclotron resonance to ionize the material gas injected from the supply hole 6, and the low temperature plasma from the extraction port 14. The material gas in the state of the reaction chamber 1
3, the thin film is grown on the sample substrate 4. This device is the first in "Applied Physics" Vol. 52, No. 2 (1983).
You are invited to page 18.

この製造装置では、試料基板4を垂直に貫く磁界を磁界
コイル8によつて与えることにより、低温プラズマ11
の運動エネルギーに方向性を持たせている。しかし、膜
均一性および生成速度については、依然として磁界方向
に自由拡散になつているため十分ではなかつた。
In this manufacturing apparatus, a low-temperature plasma 11 is generated by applying a magnetic field that vertically penetrates the sample substrate 4 by a magnetic field coil 8.
It gives direction to the kinetic energy of. However, the film uniformity and the generation rate were not sufficient because free diffusion still occurred in the magnetic field direction.

〔発明の目的〕[Object of the Invention]

本発明の目的は低温プラズマのエネルギーおよび方向性
を制御可能な低温プラズマ電磁界制御機構を提供するに
ある。
An object of the present invention is to provide a low temperature plasma electromagnetic field control mechanism capable of controlling the energy and directionality of low temperature plasma.

〔発明の概要〕[Outline of Invention]

本発明は、低温プラズマを案内するために磁界を与える
手段を制御可能に設け、この磁界に対して直交する方向
に電界を与える手段を制御可能に設け、これらの磁界と
電界とを制御することによつて低温プラズマのエネルギ
ーおよび方向性を制御するようにしたことを特徴とす
る。
The present invention is to controllably provide means for applying a magnetic field to guide a low temperature plasma and controllably provide means for applying an electric field in a direction orthogonal to the magnetic field. Therefore, the energy and direction of the low temperature plasma are controlled.

〔発明の実施例〕Example of Invention

以下本発明の実施例を図面によつて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図の低温プラズマ電磁界制御機構は、プラズマ生成
室12近傍の構成において第8図の装置と同様である
が、反応室13の近傍および電磁界配位において相違し
ている。
The low-temperature plasma electromagnetic field control mechanism of FIG. 1 is similar to the apparatus of FIG. 8 in the structure in the vicinity of the plasma generation chamber 12, but is different in the vicinity of the reaction chamber 13 and the electromagnetic field configuration.

反応室13の外周には磁界コイル15が配置されてお
り、磁界コイル15によつて発生した磁界は、プラズマ
生成室12の磁界コイル8によつて発生した磁界と連続
的に接続している。反応室13の中心には棒状電極16
が配置されており、この棒状電極16と反応室容器18
間には任意の電圧を印加する電源17が接続されてい
る。棒状電極16とほぼ平行に、また垂直に配置した試
料台3には試料基板4が固定されている。
A magnetic field coil 15 is arranged on the outer periphery of the reaction chamber 13, and the magnetic field generated by the magnetic field coil 15 is continuously connected to the magnetic field generated by the magnetic field coil 8 of the plasma generation chamber 12. A rod-shaped electrode 16 is provided at the center of the reaction chamber 13.
Are arranged, and the rod-shaped electrode 16 and the reaction chamber container 18 are arranged.
A power supply 17 for applying an arbitrary voltage is connected between them. A sample substrate 4 is fixed to a sample table 3 arranged substantially parallel to and vertically to the rod-shaped electrode 16.

同図に示す円筒座標(r,Θ,z)系を考えると、プラ
ズマ生成室12で第8図に示す従来例と同様にして生成
された低温プラズマは、磁界コイル15により発生した
z方向の磁界BZに勾配▽Bを持たせてプラズマ生成室1
2の磁界と連続的に接続されることにより、磁力線方向
の並進エネルギーε1を得る。同時に、反応室13内の
棒状電極16に任意の電圧を印加することにより、半径
方向、すなわちr方向の電界Eを発生し、この電界E
と軸方向磁界Bにより、反応室容器内の低温プラズ
マには周方向の力FΘ=E×BZ(ベクトル積)が加わ
り磁力線と直交する方向の運動エネルギーε2を得る。
このため試料基板4の表面近傍では、低温プラズマの試
料基板4の表面への入射角と、その荷電粒子の持つ運動
エネルギーが制御できる。
Considering the cylindrical coordinate (r, Θ, z) system shown in the figure, the low temperature plasma generated in the plasma generation chamber 12 in the same manner as the conventional example shown in FIG. Plasma generation chamber 1 with a gradient ▽ B in the magnetic field B Z
By being continuously connected to the magnetic field of 2, the translational energy ε 1 in the magnetic field line direction is obtained. At the same time, by applying an arbitrary voltage to the rod-shaped electrode 16 in the reaction chamber 13, an electric field E r in the radial direction, that is, the r direction is generated.
Due to r and the axial magnetic field B Z , a force F Θ = E r × B Z (vector product) in the circumferential direction is applied to the low temperature plasma in the reaction chamber container, and kinetic energy ε 2 in the direction orthogonal to the magnetic force lines is obtained.
Therefore, near the surface of the sample substrate 4, the angle of incidence of the low temperature plasma on the surface of the sample substrate 4 and the kinetic energy of the charged particles can be controlled.

第2図は上記機構の反応室13の電磁界配位を示してお
り、軸方向すなわちz方向の磁界BZと半径方向電界E
とにより、低温プラズマはローレンツFΘ(=E×B
)の力で周方向すなわちΘ方向に運動する。
FIG. 2 shows the electromagnetic field configuration of the reaction chamber 13 of the above mechanism, where the magnetic field B Z in the axial direction, that is, the z direction, and the radial electric field E r.
As a result, the low temperature plasma is Lorentz F Θ (= E r × B
It moves in the circumferential direction, that is, in the θ direction by the force of Z 2 ).

磁界コイル8は低温プラズマの生成に必要な固定磁界を
発生するのに対し、磁界コイル15は磁界の強さを制御
可能な電源に接続され、また電源17も電界の強さを制
御可能に成されており、低温プラズマの磁界Bに添う
磁力線方向または軸方向(z方向)の運動エネルギー
と、それに直交する電界Eと磁界Bによる軸直角方
向(r,Θ方向)の運動エネルギーを制御して方向性を
制御することができる。これは、試料基板4上での荷電
粒子および反応性中性原子、分子類の運動エネルギーを
制御し、同時に投入電力、損失過程を決める電磁界配位
を制御することにより、低温プラズマの密度、電離度等
を制御することが可能となる。つまり、低温プラズマの
試料基板上での微視的諸量(運動エネルギー、速度成分
等)と、巨射的諸量(密度、温度、電離度等の分布)が
制御可能となる。
The magnetic field coil 8 generates a fixed magnetic field necessary for generating low-temperature plasma, whereas the magnetic field coil 15 is connected to a power source capable of controlling the strength of the magnetic field, and the power source 17 also controls the strength of the electric field. The kinetic energy in the direction of magnetic force or the axial direction (z direction) along the magnetic field B Z of the low-temperature plasma and the kinetic energy in the direction perpendicular to the axis (r, Θ direction) due to the electric field Er and the magnetic field B Z orthogonal thereto. It is possible to control the directionality. This is because by controlling the kinetic energy of charged particles and reactive neutral atoms and molecules on the sample substrate 4, and at the same time controlling the input power and the electromagnetic field configuration that determines the loss process, the density of low temperature plasma, It is possible to control the degree of ionization and the like. That is, it is possible to control microscopic quantities (kinetic energy, velocity components, etc.) of the low-temperature plasma on the sample substrate and macroscopic quantities (distribution of density, temperature, ionization degree, etc.).

第3図は他の実施例による低温プラズマ電磁界制御可能
を示す縦断面図であり、第4図は第3図のIV−IV線に沿
つた断面図である。
FIG. 3 is a vertical sectional view showing the control of a low temperature plasma electromagnetic field according to another embodiment, and FIG. 4 is a sectional view taken along line IV-IV in FIG.

この実施例におけるプラズマ生成室12および磁界コイ
ル15は先の実施例と同一であるが、反応室13の内部
構成は先の実施例と相違している。
The plasma generation chamber 12 and the magnetic field coil 15 in this embodiment are the same as those in the previous embodiment, but the internal structure of the reaction chamber 13 is different from that in the previous embodiment.

反応室13内には、円筒座標(r,Θ,z)における軸
直角方向(r,Θ方向)の電界E1を発生する試料台を兼
ねた3対の電極24,25,26がそれぞれ対向配置さ
れている。この3対の電極には三相交流電源23が接続
され、電界E1を周方向すなわちΘ方向に回転する。各電
極には反応室13の反応室壁18の近傍にz方向に配置
されており、試料基板4が取付けられている。
Inside the reaction chamber 13, three pairs of electrodes 24, 25 and 26, which also function as sample holders for generating an electric field E 1 in the direction perpendicular to the axis (r, Θ direction) in the cylindrical coordinates (r, Θ, z), face each other. It is arranged. A three-phase AC power supply 23 is connected to the three pairs of electrodes and rotates the electric field E 1 in the circumferential direction, that is, in the Θ direction. A sample substrate 4 is attached to each electrode in the z direction near the reaction chamber wall 18 of the reaction chamber 13.

従つて、低温プラズマには、磁界コイル15によるz方
向の磁界Bと電界EとによるローレンツF1(=E1×
BZ(ベクトル積))が加わり、また電界生成用の三相交
流電源23の周波数で回転することになる。試料台を兼
ねた電極24〜26に取付けられた試料基板4の近傍に
は、ローレンツ力によるドリフトおよび電界の回転によ
つて、低温プラズマと反応性中性原子および分子がエネ
ルギー緩和を行ないながら方向性を持つ粒子束となつて
作業基板4に至る。
Therefore, Lorentz F 1 (= E 1 ×) due to the magnetic field B Z in the z direction by the magnetic field coil 15 and the electric field E 1 is applied to the low temperature plasma.
B Z (vector product) is added, and rotation is performed at the frequency of the three-phase AC power supply 23 for electric field generation. In the vicinity of the sample substrate 4 attached to the electrodes 24 to 26 also serving as the sample table, the low temperature plasma and the reactive neutral atoms and molecules are directional while energy is relaxed by the drift due to the Lorentz force and the rotation of the electric field. The particle bundle having the property reaches the working substrate 4.

この実施例においても、z方向の磁界を制御可能な磁界
コイル15と、r,Θ方向の電界を制御可能な電極2
4,25,26および電源23を用いることにより、先
の実施例と同じ効果を達成することができると共に、方
向性を持つ粒子束が得られる。これは三相交流電源23
に限らず多相交流を用いることができる。また電源23
は、直流電源であつて一定時間毎に電極24,25,2
6との接続を変えるようにするとこともできる。
Also in this embodiment, the magnetic field coil 15 capable of controlling the magnetic field in the z direction and the electrode 2 capable of controlling the electric field in the r and Θ directions.
By using 4, 25, 26 and the power source 23, the same effect as that of the previous embodiment can be achieved, and a directional particle bundle can be obtained. This is a three-phase AC power supply 23
Not limited to this, polyphase alternating current can be used. Power supply 23
Is a direct current power source, and electrodes 24, 25, 2 are set at regular intervals.
It is also possible to change the connection with 6.

第5図は本発明の更に他の実施例による低温プラズマ電
磁界制御機構を示す。先の実施例と同一符号は同等物を
示している。
FIG. 5 shows a low temperature plasma electromagnetic field control mechanism according to still another embodiment of the present invention. The same reference numerals as those used in the previous embodiment denote the same items.

この例では真空のプラズマ生成室兼反応室13内に電極
27,28を配置し、この電極27,28間に電源29
から高周波電界を印加して材料ガスを電離している。生
成された低温プラズマは、磁界コイル15によつて発生
した軸方向の磁界によつて並進エネルギーを得る。また
電極27,28の中間に配置した棒状電極16に電源1
7から所定電圧を印加し、磁界コイル15による磁界に
対して直角な電界を発生し、この電界と磁界により反応
室13内の低温プラズマに周方向の力を加え、磁力線と
直交する方向の運動エネルギーを得ている。電極28に
試料基板4を固定することによつて、先の実施例と同等
の効果を得ることができる。
In this example, electrodes 27 and 28 are arranged in a vacuum plasma generation chamber / reaction chamber 13, and a power source 29 is placed between the electrodes 27 and 28.
A high frequency electric field is applied to ionize the material gas. The generated low temperature plasma obtains translational energy by the axial magnetic field generated by the magnetic field coil 15. Further, the power source 1 is connected to the rod-shaped electrode 16 arranged between the electrodes 27 and 28.
A predetermined voltage is applied from 7 to generate an electric field at right angles to the magnetic field by the magnetic field coil 15, and the electric field and the magnetic field apply a circumferential force to the low temperature plasma in the reaction chamber 13 to move in a direction orthogonal to the magnetic field lines. Getting energy. By fixing the sample substrate 4 to the electrode 28, it is possible to obtain the same effect as that of the previous embodiment.

これらの各実施例による低温プラズマ制御機構を例えば
薄膜生成用に用いれば、生成時の薄膜均一化、平坦化お
よび膜生成速度等の各性能を向上することができる。
If the low-temperature plasma control mechanism according to each of these embodiments is used for thin film formation, for example, it is possible to improve the performances such as thin film uniformization, flattening, and film formation rate during generation.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、磁界コイル15等の軸方
向の制御可能な磁界を発生する手段と、この磁界に直交
する制御可能な電界を発生する電源17,23や電極1
6,24,25,26等の手段を設けたため、試料基板
に至る粒子のエネルギーおよび方向性等を制御すること
ができる。
As described above, according to the present invention, the means for generating a controllable magnetic field in the axial direction such as the magnetic field coil 15 and the power sources 17, 23 and the electrode 1 for generating a controllable electric field orthogonal to this magnetic field.
Since the means such as 6, 24, 25, and 26 are provided, the energy and directionality of particles reaching the sample substrate can be controlled.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例による低温プラズマ電磁界制
御機構の縦断面図、第2図は第1図の電磁界配位図、第
3図は本発明の他の実施例による低温プラズマ電磁界制
御機構の縦断面図、第4図は第3図のIV−IV線に沿つた
断面図、第5図は本発明の更に異なる実施例による低温
プラズマ電磁界制御機構の縦断面図、第6図、第7図お
よび第8図は従来のそれぞれ異なる実施例による薄膜製
造装置の縦断面図である。 8……磁界コイル、12……プラズマ生成室、13……
反応室、15……磁界コイル、16……棒状電極、17
……電源、23……三相交流電源、24〜28……電
極。
FIG. 1 is a longitudinal sectional view of a low temperature plasma electromagnetic field control mechanism according to an embodiment of the present invention, FIG. 2 is an electromagnetic field configuration diagram of FIG. 1, and FIG. 3 is a low temperature plasma according to another embodiment of the present invention. FIG. 4 is a vertical sectional view of the electromagnetic field control mechanism, FIG. 4 is a sectional view taken along line IV-IV of FIG. 3, and FIG. 5 is a vertical sectional view of a low temperature plasma electromagnetic field control mechanism according to a further different embodiment of the present invention. FIG. 6, FIG. 7 and FIG. 8 are vertical sectional views of thin film manufacturing apparatuses according to different conventional embodiments. 8 ... Magnetic field coil, 12 ... Plasma generation chamber, 13 ...
Reaction chamber, 15 ... Magnetic field coil, 16 ... Rod electrode, 17
...... Power supply, 23 …… Three-phase AC power supply, 24-28 …… Electrodes.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】真空にされた室内で低温プラズマの生成と
反応とを行なうようにした低温プラズマ電磁界制御機構
において、上記低温プラズマに所定方向の制御可能な磁
界を与える手段と、上記磁界に対してほぼ直方するよう
に制御可能な電界を与える手段とを設けたことを特徴と
する低温プラズマ電磁界制御機構。
1. A low-temperature plasma electromagnetic field control mechanism for generating and reacting low-temperature plasma in a vacuum chamber, means for giving a controllable magnetic field to the low-temperature plasma in a predetermined direction, and And a means for applying a controllable electric field so that the electric field is controllable in a substantially rectangular direction.
【請求項2】上記特許請求の範囲第1項記載のものにお
いて、上記磁界を与える手段として磁界コイルを用いた
ことを特徴とする低温プラズマ電磁界制御機構。
2. A low temperature plasma electromagnetic field control mechanism according to claim 1, wherein a magnetic field coil is used as the means for applying the magnetic field.
【請求項3】上記特許請求の範囲第1項記載のものにお
いて、上記電界を与える手段は、上記磁界の方向に幅方
向をほぼ合わせて設けた棒状電極と、この棒状電極に所
定の電圧を印加する電源とから成ることを特徴とする低
温プラズマ電磁界制御機構。
3. The device according to claim 1, wherein the means for applying the electric field is a rod-shaped electrode provided substantially in the width direction of the magnetic field, and a predetermined voltage is applied to the rod-shaped electrode. A low-temperature plasma electromagnetic field control mechanism characterized by comprising a power supply for applying.
【請求項4】上記特許請求の範囲第1項記載のものにお
いて、上記電界を与える手段は、上記磁界に対して直交
するように対向配置されて対を成す複数対の電極と、こ
の電極対の周方向に順次所定電圧を印加する電源とから
成ることを特徴とする低温プラズマ電磁界制御機構。
4. The device according to claim 1, wherein the means for applying the electric field includes a plurality of pairs of electrodes which are arranged to face each other so as to be orthogonal to the magnetic field, and a pair of the electrodes. A low temperature plasma electromagnetic field control mechanism comprising: a power source for sequentially applying a predetermined voltage in the circumferential direction of the.
【請求項5】上記特許請求の範囲第4項記載のものにお
いて、上記電源として多相交流を用いたことを特徴とす
る低温プラズマ電磁界制御機構。
5. A low-temperature plasma electromagnetic field control mechanism according to claim 4, wherein a polyphase alternating current is used as the power source.
JP23950084A 1984-11-15 1984-11-15 Low temperature plasma electromagnetic field control mechanism Expired - Lifetime JPH0650724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23950084A JPH0650724B2 (en) 1984-11-15 1984-11-15 Low temperature plasma electromagnetic field control mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23950084A JPH0650724B2 (en) 1984-11-15 1984-11-15 Low temperature plasma electromagnetic field control mechanism

Publications (2)

Publication Number Publication Date
JPS61119036A JPS61119036A (en) 1986-06-06
JPH0650724B2 true JPH0650724B2 (en) 1994-06-29

Family

ID=17045704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23950084A Expired - Lifetime JPH0650724B2 (en) 1984-11-15 1984-11-15 Low temperature plasma electromagnetic field control mechanism

Country Status (1)

Country Link
JP (1) JPH0650724B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2628529B2 (en) * 1988-02-24 1997-07-09 東京エレクトロン株式会社 Plasma CVD equipment
JP2650326B2 (en) * 1988-06-16 1997-09-03 株式会社島津製作所 Plasma processing equipment
JPH0223613A (en) * 1988-07-12 1990-01-25 Tokyo Ohka Kogyo Co Ltd Plasma reactor

Also Published As

Publication number Publication date
JPS61119036A (en) 1986-06-06

Similar Documents

Publication Publication Date Title
TW312815B (en)
US5648701A (en) Electrode designs for high pressure magnetically assisted inductively coupled plasmas
JP3271765B2 (en) High-density plasma deposition and etching equipment
JPS63174321A (en) Apparatus and method for ion etching and chemical vapor phase deposition
JPH0814026B2 (en) High density plasma deposition and etching equipment
WO2003025971A2 (en) Plasma processing apparatus with coil magnet system
JP2004501277A (en) Induction plasma loop enhances magnetron sputtering
JPH0770532B2 (en) Plasma processing device
JP3726477B2 (en) Plasma processing apparatus and plasma processing method
JPH11135438A (en) Semiconductor plasma processing apparatus
JPS5915982B2 (en) Electric discharge chemical reaction device
JPH06342771A (en) Dry etching apparatus
JPH0715898B2 (en) Microwave plasma processing equipment
JPH09289193A (en) Plasma generating equipment and its method, and plasma treatment equipment and its method
JPH09283300A (en) Plasma treatment device
WO1995015672A1 (en) Method and apparatus for planar plasma processing
JPH06267903A (en) Plasma device
US11515122B2 (en) System and methods for VHF plasma processing
JPH06220632A (en) Device for generating plasma by cathode sputtering and microwave irradiation
JPS61213377A (en) Method and apparatus for plasma deposition
JPH0650724B2 (en) Low temperature plasma electromagnetic field control mechanism
JP2002531914A (en) Enhanced plasma mode, method and system for plasma immersion ion implantation
JPS61125133A (en) Low temperature plasma electromagnetic field control structure
JP2003274633A (en) Linear induction plasma pump for treating reaction furnace
JPH11283926A (en) Plasma processor