JPH0644514B2 - Thin film EL device and manufacturing method thereof - Google Patents

Thin film EL device and manufacturing method thereof

Info

Publication number
JPH0644514B2
JPH0644514B2 JP9717986A JP9717986A JPH0644514B2 JP H0644514 B2 JPH0644514 B2 JP H0644514B2 JP 9717986 A JP9717986 A JP 9717986A JP 9717986 A JP9717986 A JP 9717986A JP H0644514 B2 JPH0644514 B2 JP H0644514B2
Authority
JP
Japan
Prior art keywords
zinc sulfide
thin film
metal oxide
film
insulating metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9717986A
Other languages
Japanese (ja)
Other versions
JPS62254394A (en
Inventor
昌夫 横山
勉 七尾
Original Assignee
鐘淵化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鐘淵化学工業株式会社 filed Critical 鐘淵化学工業株式会社
Priority to JP9717986A priority Critical patent/JPH0644514B2/en
Publication of JPS62254394A publication Critical patent/JPS62254394A/en
Publication of JPH0644514B2 publication Critical patent/JPH0644514B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、多結晶硫化亜鉛薄膜を用いたエレクトロルミ
ネッセンス(以下、ELと略す)素子及びその製造法に
関する。
TECHNICAL FIELD The present invention relates to an electroluminescence (hereinafter abbreviated as EL) device using a polycrystalline zinc sulfide thin film and a method for manufacturing the same.

「従来の技術及び本発明が解決しようとする問題点」 II〜VI族半導体である硫化亜鉛はEL素子を始めとする
発光素子、蛍光体としての応用が進められて来ている。
特にEL素子は全固体型、平面発光素子となる特色があ
り、能動型ディスプレー関連素子としての応用が期待さ
れている。
"Prior Art and Problems to be Solved by the Present Invention" Zinc sulfide, which is a group II-VI semiconductor, has been applied as a light emitting element including an EL element and a phosphor.
In particular, the EL element has a feature of being an all-solid-state type and a planar light emitting element, and is expected to be applied as an active display-related element.

EL素子は駆動方式によって直流型及び交流型に分けら
れ、更には蛍光体層の種類によって薄膜で螢光体層が構
成される薄膜型、及び蛍光体をポリマー中に均一に分散
させて複合化した膜厚のやや大きい分散型の2方式に分
類されている。
EL devices are classified into direct current type and alternating current type according to the driving method, and further, a thin film type in which a fluorescent material layer is composed of a thin film depending on the type of fluorescent material layer, and a uniform dispersion of fluorescent material in a polymer to form a composite. It is classified into two types of dispersion type, which have a slightly larger film thickness.

このうち、薄膜型EL素子用硫化亜鉛蛍光体薄膜は真空
蒸着法、スパッタリング法、分子線エピタキシー(MB
E法)、原子層エピタキシー法(ALE法)による製造
方法が知られており、これらはすべて高真空下での成膜
技術によるものである。高真空下での成膜技術ではピン
ホールの少ない、緻密な膜質が得られる反面、化学量論
性において不安定で欠陥構造を多く含む膜質になる場合
や、生産性に乏しく、原料が高価であったり、大面積の
製膜が困難となるなどの問題点が指摘されている。
Among them, the zinc sulfide phosphor thin film for thin film type EL device is a vacuum deposition method, a sputtering method, a molecular beam epitaxy (MB
E method) and atomic layer epitaxy method (ALE method) are known, and all of them are based on a film forming technique under high vacuum. Although film technology with few pinholes and dense film quality can be obtained by high-vacuum film deposition technology, film quality with unstable stoichiometry and many defect structures, poor productivity, and expensive raw materials It has been pointed out that there are some problems, such as difficulty in forming a large-area film.

これらの問題点に対して、本発明者等は有機亜鉛化合物
溶液の塗布加熱分解法によって、EL用硫化亜鉛薄膜を
常圧プロセスで作る技術を発明し、先に特許出願済みで
ある(特願昭60−85282号)。この方法は、上記
問題点の解決以外に、溶液の段階で種々の活性剤を添加
することが可能であり、活性剤はそのまま膜中に残る為
添加量の制御が容易であり、膜中のこれらの活性剤の濃
度分布が均一であること、欠陥を作りにくいことから、
薄膜EL用材料としての基本性能としては非常に優れて
いることが判明している。
With respect to these problems, the inventors of the present invention invented a technique of forming a zinc sulfide thin film for EL by an atmospheric pressure process by a coating thermal decomposition method of an organic zinc compound solution, and have already applied for a patent (patent application). 60-85282). In addition to solving the above problems, this method can add various activators at the stage of solution, and since the activator remains in the film as it is, it is easy to control the addition amount, Since the concentration distribution of these activators is uniform and it is difficult to create defects,
It has been found that the basic performance as a material for thin film EL is extremely excellent.

しかしながら、薄膜ELにした場合、前述の真空技術に
より成膜された硫化亜鉛薄膜の微細構造は、柱状構造を
しており緻密性に優れているのに対して、塗布法硫化亜
鉛薄膜の微細構造は、いわゆる粒子堆積構造をしている
ため上記より緻密性においてやや劣り、そのためこの膜
に電場を与えると発光に関与しない漏れ電流が大きくな
って、素材は優れていながら膜質がやや劣るため輝度が
上がらなかったり、発光効率の低い膜という新たな問題
点が発生し、その解決をはかる必要が生じて来ている。
However, in the case of the thin film EL, the fine structure of the zinc sulfide thin film formed by the above-described vacuum technique has a columnar structure and is excellent in denseness, whereas the fine structure of the coating method zinc sulfide thin film is Is slightly inferior in compactness to the above because it has a so-called particle deposition structure, and therefore when an electric field is applied to this film, the leakage current that does not participate in light emission increases, and although the material is excellent, the film quality is slightly inferior and the brightness is low. There is a new problem that the film does not increase or the film has low luminous efficiency, and it is necessary to solve it.

「問題点を解決するための手段」 本発明者等は、上記の問題点を解決するため鋭意研究の
結果、この粒子堆積構造の硫化亜鉛薄膜の粒界に絶縁性
金属酸化物を析出させて緻密性及び耐電圧特性を向上さ
せることにより、既存の真空技術による薄膜EL素子と
同等以上の輝度並びに発光効率を有する性能が得られる
ことを見出した、本発明を完成するに至った。
"Means for Solving Problems" The inventors of the present invention have conducted earnest research to solve the above problems, and as a result, deposited an insulating metal oxide at the grain boundaries of a zinc sulfide thin film having this particle deposition structure. The present invention has been completed in which it has been found that by improving the compactness and the withstand voltage characteristics, the performance having the luminance and the luminous efficiency equal to or higher than that of the thin film EL element by the existing vacuum technology can be obtained.

即ち、本発明の第1は多結晶硫化亜鉛薄膜を用いたEL
素子において、硫化亜鉛の粒界に絶縁性金属酸化物を析
出させた層を有することを特徴とする薄膜EL素子を、
本発明の第2は多結晶硫化亜鉛薄膜を用いたEL素子を
製造するに際し、硫化亜鉛の粒界に絶縁性金属酸化物を
析出させることを特徴とする薄膜EL素子の製造法をそ
れぞれ内容とするものである。
That is, the first aspect of the present invention is an EL device using a polycrystalline zinc sulfide thin film.
In the device, a thin film EL device having a layer in which an insulating metal oxide is deposited on a grain boundary of zinc sulfide,
A second aspect of the present invention relates to a method of manufacturing a thin film EL element, characterized in that an insulating metal oxide is deposited at a grain boundary of zinc sulfide when manufacturing an EL element using a polycrystalline zinc sulfide thin film. To do.

本発明の硫化亜鉛の粒界に絶縁性金属酸化物を析出させ
た層を有するEL用薄膜は、下記の方法により製造する
ことができる。
The EL thin film having a layer in which an insulating metal oxide is deposited on the grain boundary of zinc sulfide of the present invention can be manufactured by the following method.

硫化亜鉛薄膜を成膜後、金属酸化物前駆体溶液を硫化
亜鉛薄膜上に塗布乾燥した後加熱処理をすることによっ
て、硫化亜鉛粒子の粒界に絶縁性金属酸化物を析出させ
る。
After forming the zinc sulfide thin film, the metal oxide precursor solution is applied onto the zinc sulfide thin film, dried, and then heat-treated to deposit an insulating metal oxide on the grain boundaries of the zinc sulfide particles.

塗布法硫化亜鉛薄膜の成膜時に、予め塗布液中に絶縁
性金属酸化物前駆体溶液を加えておき、硫化亜鉛薄膜合
成と同時に粒界に絶縁性金属酸化物を析出させる。
Coating Method When forming a zinc sulfide thin film, an insulating metal oxide precursor solution is added to the coating solution in advance, and the insulating metal oxide is deposited on the grain boundaries simultaneously with the synthesis of the zinc sulfide thin film.

金属酸化物前駆体溶液中にコロイド状硫化亜鉛を加え
て均一に分散させたのち、基板上に塗布し乾燥後加熱処
理を施して硫化亜鉛粒子の粒界に絶縁性金属酸化物を析
出させた構造の薄膜を作る。
After colloidal zinc sulfide was added to the metal oxide precursor solution and dispersed uniformly, it was coated on the substrate, dried and subjected to heat treatment to deposit an insulating metal oxide at the grain boundaries of the zinc sulfide particles. Make a thin film of structure.

これらの3方法のうち、の方法において、硫化亜鉛の
粒界に絶縁性金属酸化物が析出している層が少なくとも
100Å以上、好ましくは300Å以上必要である。こ
のため、例えば金属酸化物前駆体溶液の粘度を低くして
硫化亜鉛薄膜の内部への含浸効果を高めたり、塗布方法
としてディッピング法、スピンコーティング法、ロール
コーター、スクリーン印刷による塗布法等を採用するこ
と等が考えられる。又の方法では塗布加熱分解法によ
って成膜された硫化亜鉛薄膜上に更に金属酸化物前駆体
溶液を塗布し加熱分解によって絶縁性金属酸化物を生成
させるので、金属酸化物前駆体溶液の塗布厚さを調整す
る等して硫化亜鉛薄膜、硫化亜鉛の粒界に絶縁性金属酸
化物を析出させた膜、絶縁性金属酸化物膜の三層構造を
有する薄膜を一挙に製造することができる利点がある。
In any of these three methods, at least 100 Å or more, preferably 300 Å or more, of the layer in which the insulating metal oxide is deposited at the grain boundary of zinc sulfide is required. For this reason, for example, the viscosity of the metal oxide precursor solution is lowered to enhance the effect of impregnating the zinc sulfide thin film into the interior, or a dipping method, a spin coating method, a roll coater, a coating method by screen printing or the like is adopted as a coating method. It is possible to do it. In the other method, the metal oxide precursor solution is further applied onto the zinc sulfide thin film formed by the coating thermal decomposition method, and the insulating metal oxide is generated by thermal decomposition. The advantage of being able to produce a thin film having a three-layer structure of a zinc sulfide thin film, a film in which an insulating metal oxide is deposited on the grain boundary of zinc sulfide, and an insulating metal oxide film by adjusting the thickness There is.

、の方法は、1回の塗布焼成工程によって本発明の
効果が得られる利点がある反面、加熱雰囲気が不活性ガ
ス雰囲気あるいは硫化雰囲気となる為、残留カーボン、
不要の硫化物等の副生を防いで膜の可視光透過性を保つ
必要上、金属酸化物前駆体溶液の種類をより更に限定
する必要がある。
The method of, has the advantage that the effect of the present invention can be obtained by one coating and baking step, but on the other hand, since the heating atmosphere is an inert gas atmosphere or a sulfurizing atmosphere, residual carbon,
The type of the metal oxide precursor solution needs to be further limited in order to prevent unnecessary by-products such as sulfides and to maintain the visible light transmittance of the film.

又、焼成後の膜中において硫化亜鉛に対する金属酸化物
の組成比が0.5以下、特に好ましくは、0.3から
0.03の範囲であることが本発明の効果を得る為の必
要な条件である。
Further, in order to obtain the effect of the present invention, the composition ratio of the metal oxide to zinc sulfide in the film after firing is 0.5 or less, particularly preferably in the range of 0.3 to 0.03. It is a condition.

本発明に用いられる絶縁性金属酸化物としては、可視光
に対して透明性があり体積固有抵抗値で1×10Ω・
cm以上であることが好ましく、例えばB、Be、Mg、
Al、Si、Ca、Ga、Ge、Ti、Cr、Fe、C
o、Ni、Sr、Y、Zr、Nb、Mo、Sb、Sn、
In、Ba、Pb、Bi、Ta、W、La、Ce、P
r、Nd、Sm、Eu、Gd、Tb等の金属酸化物が挙
げられ、中でもB、Mg、Al、Si、Ga、Ge、T
i、Y、Zr、Nb、Sb、Sn、Pb、Bi、Ta、
La、Smが特に本発明に好ましい結果を与える。又、
上記の金属から選ばれる2種以上の複合金属酸化物も同
様に本発明に有用である。
The insulating metal oxide used in the present invention is transparent to visible light and has a volume resistivity value of 1 × 10 9 Ω ·
cm or more, for example, B, Be, Mg,
Al, Si, Ca, Ga, Ge, Ti, Cr, Fe, C
o, Ni, Sr, Y, Zr, Nb, Mo, Sb, Sn,
In, Ba, Pb, Bi, Ta, W, La, Ce, P
Examples thereof include metal oxides such as r, Nd, Sm, Eu, Gd and Tb, and among them, B, Mg, Al, Si, Ga, Ge and T.
i, Y, Zr, Nb, Sb, Sn, Pb, Bi, Ta,
La and Sm give particularly favorable results to the present invention. or,
Two or more complex metal oxides selected from the above metals are also useful in the present invention.

これらの金属を含む金属酸化物前駆体溶液用いて、前述
〜に記載された方法によって硫化亜鉛の粒界に絶縁
性金属酸化物を析出させた層を作ることができる。金属
酸化物前駆体溶液としては、加水分解、熱分解によって
所望する金属酸化物を副生物をい作ることなく速やかに
生成するものが好ましく、例えば上記金属のアルコキシ
ド、カルボン酸塩、キレート化合物、硝酸塩及びこれら
の官能基を含む錯化合物を前駆体として含まれる溶液が
挙げられる。これらのうち金属アルコキシドでは、炭素
数1〜5の炭化水素を含むアルコキシ基あるいはこの官
能基の内一部をカルボキシル基、β−ジケトン基等のキ
レート基で置換された化合物、炭素数1〜10迄のカル
ボン酸の上記金属塩、硝酸塩が特に好ましい結果をもた
らす。
Using the metal oxide precursor solution containing these metals, it is possible to form a layer in which an insulating metal oxide is deposited at the grain boundaries of zinc sulfide by the methods described in the above-mentioned items. The metal oxide precursor solution is preferably one which rapidly produces a desired metal oxide by hydrolysis or thermal decomposition without producing a by-product, and examples thereof include alkoxides of the above metals, carboxylates, chelate compounds, and nitrates. And a solution containing a complex compound containing these functional groups as a precursor. Among these, metal alkoxides include compounds having an alkoxy group containing a hydrocarbon having 1 to 5 carbon atoms or a part of this functional group substituted with a chelating group such as a carboxyl group or a β-diketone group, and a carbon number having 1 to 10 carbon atoms. The above metal salts of carboxylic acids, nitrates up to which give particularly favorable results.

金属酸化物前駆体の溶解に用いられる溶媒は、前駆体の
種類、コーティングの方法、前述の〜の成膜法に応
じて適宜選定する必要があるが、具体例として水;炭素
数1〜20迄の1価又は多価アルコール;これらのアル
コールと蟻酸.酢酸.プロピオン酸等のカルボン酸との
エステル;炭素数20迄のケトン、エーテル;ベンゼ
ン.トルエン.キシレン等の芳香族溶媒;メチルセルソ
ルブ.エチルセルソルブ等のグリコールエーテル類;N
−メチルジピロリドン.ジメチルホルムアミド.ジメチ
ルアセトアミド等の窒素含有有機溶媒のうちの一種又は
二種以上の混合溶媒が挙げられる。
The solvent used for dissolving the metal oxide precursor needs to be appropriately selected according to the type of the precursor, the coating method, and the film-forming method described in 1 to 5 above, but as a specific example, water; Up to monohydric or polyhydric alcohols; these alcohols and formic acid. Acetic acid. Esters with carboxylic acids such as propionic acid; ketones having up to 20 carbon atoms, ethers; benzene. toluene. Aromatic solvents such as xylene; methyl cellosolve. Glycol ethers such as ethyl cellosolve; N
-Methyldipyrrolidone. Dimethylformamide. One or a mixture of two or more kinds of nitrogen-containing organic solvents such as dimethylacetamide can be used.

又、これらの金属酸化物前駆体の希釈率は化合物の種類
にもよるが通常金属含有量としての1〜30重量%の範
囲で用いるのが好ましい。
Further, the dilution ratio of these metal oxide precursors depends on the kind of the compound, but it is usually preferable to use it in the range of 1 to 30% by weight as the metal content.

これらの塗布方法としては、浸漬塗布法、スピンコート
法、ロールコール法、スクリーン印刷法、フレキソ印刷
法、スプレー塗布法等の通常用いられる薄膜のコーティ
ング方法の応用が可能である。又塗布後の乾燥温度は用
いられる溶媒の種類に応じて適宜調整する必要があり、
50〜250℃の範囲で行われる。更に加熱処理温度は
膜中に含まれる有機成分の除去、膜の緻密化促進の為通
常350℃以上で、基板の耐熱性にもよるが700℃以
下の温度で15分以上加熱される。加熱雰囲気は蛍光体
薄膜の硫化亜鉛が酸化するのを防ぐ為、窒素、アルゴン
等の不活性ガスを用いるのが好ましいが炭化物の生成を
防ぐ為5モル%以下の酸素を混入させる場合もある。
As a coating method for these, it is possible to apply a commonly used thin film coating method such as a dip coating method, a spin coating method, a roll coating method, a screen printing method, a flexographic printing method, and a spray coating method. Also, the drying temperature after coating needs to be appropriately adjusted according to the type of solvent used,
It is carried out in the range of 50 to 250 ° C. Further, the heat treatment temperature is usually 350 ° C. or higher in order to remove the organic components contained in the film and accelerate the densification of the film, and depending on the heat resistance of the substrate, it is heated to 700 ° C. or lower for 15 minutes or more. In order to prevent the zinc sulfide of the phosphor thin film from being oxidized, it is preferable to use an inert gas such as nitrogen or argon in the heating atmosphere, but 5 mol% or less of oxygen may be mixed in order to prevent the formation of carbides.

これら〜の方法で得られるEL用薄膜は硫化亜鉛の
製法に由来して粒子堆積構造を有しているが硫化亜鉛に
加えるドーパント、あるいはこれらの製膜方法によって
粒径、膜厚の調整が可能であるが、EL素子発光層に1
06V/cm以上の高電界がかかる為、駆動電圧と発光効
率、輝度のバランスから、構成している硫化亜鉛の粒径
は0.01〜0.5μm、膜厚は0.03〜2.0μm
の範囲が実用的である。
The EL thin films obtained by these methods have a particle deposition structure derived from the zinc sulfide manufacturing method, but the particle size and film thickness can be adjusted by the dopant added to zinc sulfide or these film forming methods. However, 1 in the EL element light emitting layer
Since a high electric field of 06 V / cm or more is applied, the particle size of zinc sulfide constituting the composition is 0.01 to 0.5 μm, and the film thickness is 0.03 to 2.0 μm from the balance of driving voltage, luminous efficiency, and brightness.
The range of is practical.

更に本発明で効果が明らかとなった硫化亜鉛の粒界に絶
縁性金属酸化物を析出させた層によって膜の発光効率、
耐電圧が向上するが、この層の生成の確認は膜の深さ方
向の表面分析(ESCA、SIMS)、分析電子顕微鏡
(STEM)による解析、あるいは膜の断面を希酸等で
エッチング処理したのち走査電子顕微鏡で観察すること
によって可能となる。
Further, the luminous efficiency of the film by the layer in which the insulating metal oxide is deposited on the grain boundary of zinc sulfide, which has been clarified in the present invention,
Although the withstand voltage is improved, the formation of this layer can be confirmed by surface analysis in the depth direction of the film (ESCA, SIMS), analysis by analytical electron microscope (STEM), or after etching the cross section of the film with dilute acid or the like. It becomes possible by observing with a scanning electron microscope.

これら本発明によるEL薄膜を発光素子として用いるに
は、膜の厚さ方向に電圧をかけることで達成できるが、
交流、直流等の駆動方式の違い、耐湿性、寿命の点等か
らデバイスの構造を種々工夫する必要がある。例えば、
直流駆動方式ならば上記、による膜が適している
が、直接膜の両端に電極を作るか電子注入側の電極との
間にMIS構造となる様な絶縁膜を設けると良い。交流
駆動型のデバイスにおいては発光層はからのどれで
も良好な結果が期待でき、この膜の片側若しくは両側に
絶縁膜を更に加えて発光輝度の安定あるいは長寿命化を
図ることができる。
Use of these EL thin films according to the present invention as a light emitting device can be achieved by applying a voltage in the thickness direction of the film.
It is necessary to devise the structure of the device variously in terms of the difference in the driving method such as AC and DC, humidity resistance, and life. For example,
If the DC drive method is used, the above film is suitable, but it is preferable to form electrodes directly on both ends of the film or to provide an insulating film having a MIS structure between the electrodes on the electron injection side. In the AC drive type device, good results can be expected from any of the light emitting layers, and an insulating film can be further added to one side or both sides of this film to stabilize the emission brightness or prolong the life.

「実施例」 以下、実施例及び比較例をもって本発明を更に詳しく説
明するが、当然ながら本発明は実施例のみに限定される
ものではない。
"Examples" Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the Examples.

実施例1 2−エチルヘキサン酸亜鉛(金属亜鉛含有率15.0w
t%)25.0gとマンガンジアセチルアセトナート7
2.6mg(亜鉛に対して0.5mol%)をベンゼン5
0.0gに溶かし、更にリノール酸25.0gを加え攪
拌して硫化亜鉛膜生成用前駆体溶液を作った。この溶液
を、錫をドーピングした酸化インジウムからなる透明導
電膜(以下、ITOと略す)2000Åを製膜した厚さ
約1.1mmで50mmの無アルカリ耐熱ガラス基板上に、
スピンコーターを用いて2000rpmにてコーティン
グし、更に110℃30分乾燥後、大気中600℃1時
間加熱した後、引き続き硫化水素雰囲気中400℃30
分処理して、膜厚約4000ÅのEL素子用の透明な硫
化亜鉛薄膜を得た。この試料をAとする。
Example 1 Zinc 2-ethylhexanoate (metal zinc content 15.0 w
t%) 25.0 g and manganese diacetylacetonate 7
2.6 mg (0.5 mol% with respect to zinc) of benzene 5
It was dissolved in 0.0 g, and further, 25.0 g of linoleic acid was added and stirred to prepare a precursor solution for forming a zinc sulfide film. This solution was applied on a transparent conductive film (hereinafter abbreviated as ITO) 2000 Å made of indium oxide doped with tin to a thickness of about 1.1 mm and 50 mm non-alkali heat resistant glass substrate,
Coating with a spin coater at 2000 rpm, further drying at 110 ° C. for 30 minutes, heating at 600 ° C. for 1 hour in the air, and subsequently at 400 ° C. in a hydrogen sulfide atmosphere.
After a minute treatment, a transparent zinc sulfide thin film for an EL device having a film thickness of about 4000Å was obtained. This sample is designated as A.

又、上記のITO基板上に比較試料として、マンガンを
0.5mol%ドーピングした硫化亜鉛のターゲットを
用いて、基板温度180℃、製膜速度約5Å/sec、
製膜時の真空度2×10-6の条件で電子ビーム蒸着を実
施して、膜厚約4000Åの硫化亜鉛膜を作った。この
試料をBとする。
As a comparative sample on the above ITO substrate, a target of zinc sulfide doped with 0.5 mol% of manganese was used, the substrate temperature was 180 ° C., the film formation rate was about 5 Å / sec,
Electron beam evaporation was performed under the conditions of a vacuum degree of 2 × 10 −6 during film formation to form a zinc sulfide film having a film thickness of about 4000 Å. This sample is designated as B.

テトラエチルシリケートの4量体50.0gにエチルア
ルコール200gを加え、攪拌しながら無水酢酸5.0
g徐々に加えて反応させて加水分解条件をコントロール
したSiO膜形成用塗布液を調整した。(Si濃度
8.0wt%) この溶液中に試料A及びBを浸漬し15cm/minの引
き上げ速度にて大気中に引き出し、次に100℃15分
間乾燥したのち窒素雰囲気下600℃1時間焼成した。
To 50.0 g of tetraethyl silicate tetramer, 200 g of ethyl alcohol was added, and 5.0% of acetic anhydride was added with stirring.
A coating solution for forming a SiO 2 film, in which the hydrolysis conditions were controlled, was prepared by gradually adding and reacting. (Si concentration: 8.0 wt%) Samples A and B were dipped in this solution, drawn into the atmosphere at a pulling rate of 15 cm / min, dried at 100 ° C. for 15 minutes, and then baked at 600 ° C. for 1 hour in a nitrogen atmosphere. .

これらの試料の断面を希塩酸でエッチングした後、走査
電子顕微鏡で観察したところ、試料Aにコーティングし
たものは粒子堆積構造の硫化亜鉛薄膜と約1000Åの
粒界にSiOが析出した層、そして約1000ÅのS
iO膜の3層構造であった。この試料をCとする。
Cross-sections of these samples were etched with dilute hydrochloric acid and then observed with a scanning electron microscope. As a result, what was coated on Sample A was a zinc sulfide thin film with a particle deposition structure, a layer in which SiO 2 was deposited at a grain boundary of about 1000 Å, and 1000Å S
It had a three-layer structure of an iO 2 film. This sample is designated as C.

一方、試料Bにコーティングしたものの断面は柱状構造
の硫化亜鉛層と約1500ÅのSiO膜の2層構造で
あった。この試料をDとする。
On the other hand, the cross-section of the sample B coated had a two-layer structure of a zinc sulfide layer having a columnar structure and a SiO 2 film of about 1500 Å. This sample is designated as D.

これらの試料A〜Dの表面に電極としてアルミニウムを
蒸着して下地の透明導電膜の間に、交流(50Hz)電荷
を与えて輝度−電圧特性を測定して図−1にプロットし
た(デバイスのサイズ5mm角)。この図から分かる通
り、試料Cは既存の真空技術による発光層(例えば試料
B又はD)に較べて同等以上の性能を示すことから、本
発明の効果は明らかである。
Aluminum was vapor-deposited as an electrode on the surface of each of the samples A to D, and an alternating current (50 Hz) charge was applied between the transparent conductive films as the bases to measure the luminance-voltage characteristics and plotted in FIG. Size 5mm square). As can be seen from this figure, the effect of the present invention is clear since the sample C exhibits the same or higher performance than the existing light emitting layer (for example, the sample B or D) by the vacuum technique.

比較例1 実施例1で作った試料A(塗布法硫化亜鉛膜)及びB
(EB蒸着硫化亜鉛膜)の上に、マグネトロンスパッタ
リング装置でSiOターゲットを用いて、約10Å/
secの製膜速度にて約2000ÅのSiO膜を作っ
た。この試料をE及びFとする。
Comparative Example 1 Samples A (coating method zinc sulfide film) and B prepared in Example 1
Approximately 10Å / on the (EB evaporated zinc sulfide film) with a magnetron sputtering device using a SiO 2 target.
A SiO 2 film of about 2000Å was formed at a film forming speed of sec. Let this sample be E and F.

この試料E、Fの断面を酸でエッチングした後、走査電
子顕微鏡で観察したところ、双方の試料とも硫化亜鉛の
粒界にSiOが析出している層は見つからなかった。
When the cross sections of the samples E and F were etched with an acid and then observed with a scanning electron microscope, no layer in which SiO 2 was precipitated at the grain boundary of zinc sulfide was found in both samples.

又このE、F膜の表面にアルミニウム電極を作り、下地
膜との間に交流電荷を与えてEL特性を評価したとこ
ろ、EはFに比べて発光輝度耐電圧ともにかなり劣って
いることが判明した。
Also, when an aluminum electrode was formed on the surface of the E and F films and an AC charge was applied between the film and the base film, the EL characteristics were evaluated, and it was found that E was much inferior to F in both emission luminance and withstand voltage. did.

実施例2 アルミニウムブトキシジイソプロポキシド20.0gを
酢酸イソプロピル75.0gに溶かし、攪拌しながらア
セチルアセトン5.0gを加えて、酸化アルミニウム形
成用前駆体溶液を作った。この溶液中に実施例1で用い
た試料A、Bに引き上げ速度10cm/minで浸漬塗布
した後、アルゴンガス中700℃1時間加熱したのち、
試料A、Bと共に膜上にアルミニウムを蒸着してEL素
子を作った。この試料をG、Hとする。
Example 2 20.0 g of aluminum butoxydiisopropoxide was dissolved in 75.0 g of isopropyl acetate, and 5.0 g of acetylacetone was added with stirring to prepare a precursor solution for forming aluminum oxide. Samples A and B used in Example 1 were dipped and coated in this solution at a pulling rate of 10 cm / min, and then heated in argon gas at 700 ° C. for 1 hour.
Aluminum was vapor-deposited on the film together with Samples A and B to fabricate an EL device. Let this sample be G and H.

この素子に交流電圧を印加して発光特性を測定し、これ
らの性能評価結果を図−2にまとめた。これから分かる
通り、酸化アルミニウムをコーティングした試料GはE
B蒸着法による試料Bを上回り、Hと同等以上の性能を
示しており本発明の効果が如実に現れている。
An AC voltage was applied to this device to measure the light emission characteristics, and the performance evaluation results of these were summarized in FIG. As can be seen, the sample G coated with aluminum oxide is E
The results are superior to those of Sample B by the B vapor deposition method, and the performance is equal to or higher than that of H, demonstrating the effect of the present invention.

尚、この試料Gを表面分析の結果、硫化亜鉛と酸化アル
ミニウムの混在層が約800Å出来ており、この層によ
る発光効率の性能向上効果によるものと判明した。
As a result of the surface analysis of this sample G, a mixed layer of zinc sulfide and aluminum oxide was formed to a thickness of about 800 L, which was proved to be due to the effect of improving the luminous efficiency by this layer.

実施例3 ビスマストリイソプロポキシド25.0gをイソプロピ
ルアルコール150.0gに溶解したのち、加水分解速
度調整の為3.5gのアセチルアセトンと2.0gの無
水酢酸を加え、加熱還流をして酸化ビスマト形成用前駆
体溶液とした。
Example 3 After dissolving 25.0 g of bismuth triisopropoxide in 150.0 g of isopropyl alcohol, 3.5 g of acetylacetone and 2.0 g of acetic anhydride were added to adjust the hydrolysis rate, and the mixture was heated under reflux to give bismuth oxide. This was the precursor solution for formation.

次に、共沈法によって作られた硫化亜鉛コロイド(マン
ガン約1.0重量%ドープ)65gを加え、十分に攪拌
して半透明のペースト状とし、これを実施例1で用いた
ITO基板上にスピンコーターでコーティングし、更に
乾燥後、窒素中600℃一時間焼成して透明な薄膜を得
た。
Next, 65 g of zinc sulfide colloid (about 1.0 wt% manganese dope) produced by the coprecipitation method was added and sufficiently stirred to form a semi-transparent paste, which was placed on the ITO substrate used in Example 1. Was coated with a spin coater, dried and baked in nitrogen at 600 ° C. for 1 hour to obtain a transparent thin film.

段差計を用いて膜厚を測定した結果、この膜の厚さは、
約5500Åであった。更に、この膜上にアルミニウム
蒸着して交流電圧を印加したところ昼間の室内でも視認
出来る十分な輝度のEL発光が得られた。
As a result of measuring the film thickness using a step gauge, the thickness of this film is
It was about 5500Å. Further, when aluminum was vapor-deposited on this film and an AC voltage was applied, EL light emission with sufficient brightness that was visible even in the room during the day was obtained.

実施例4 アクリル酸亜鉛(金属亜鉛含有量31wt%)20gと
マンガンジアセチルアセトナート0.17gそしてエチ
ルアルコール60gを加えて攪拌して均一溶液としたの
ち、実施例1で用いたSiO膜形成用塗布液を10g
更に加えて攪拌し前駆体溶液とした。この溶液中にIT
O基板を浸漬させたのち、15cm/minの速度で引き
上げ80℃で1時間乾燥して透明な硬化膜を得た。
Example 4 20 g of zinc acrylate (metal zinc content 31 wt%), 0.17 g of manganese diacetylacetonate and 60 g of ethyl alcohol were added and stirred to form a uniform solution, which was then used for forming the SiO 2 film used in Example 1. 10g coating liquid
Furthermore, it stirred and was set as the precursor solution. IT in this solution
After immersing the O substrate, it was pulled up at a speed of 15 cm / min and dried at 80 ° C. for 1 hour to obtain a transparent cured film.

この膜を酸化雰囲気中450℃で加熱して有機成分を除
去し、次に硫化水素にガス置換して1時間加熱した。更
に窒素雰囲気に変えて600℃1時間加熱処理して、膜
厚5000Åの透明な薄膜を得た。
This film was heated at 450 ° C. in an oxidizing atmosphere to remove organic components, and then gas was replaced with hydrogen sulfide and heated for 1 hour. Further, the atmosphere was changed to a nitrogen atmosphere and heat treatment was performed at 600 ° C. for 1 hour to obtain a transparent thin film having a film thickness of 5000 Å.

この膜の表面分析をESCA及びSIMSにより実施し
たところ、含まれている元素成分(Zn、S、Mn、S
i、O)が共に深さ方向にほぼ一定であることが判明し
た。又、IN塩素水溶液中に実施例1で用いた試料A、
Bと共にこの基板を30分浸漬して取り出したところ、
SiO成分を含まない試料A、Bの膜は完全にエッチ
ングされているのに対してこの膜は殆ど変化がみられな
かった。このことは、添加したSiO成分が膜中に均
一に偏析していることによるものと考えられる。
When the surface analysis of this film was carried out by ESCA and SIMS, the contained elemental components (Zn, S, Mn, S
It was found that both i and O) were almost constant in the depth direction. In addition, the sample A used in Example 1 in an IN chlorine aqueous solution,
When this substrate was immersed in B for 30 minutes and then taken out,
The films of Samples A and B containing no SiO 2 component were completely etched, whereas this film showed almost no change. It is considered that this is because the added SiO 2 component is uniformly segregated in the film.

又、この膜上にアルミニウム電極を付け交流電場を印加
したところ、試料Aに比べて約5倍以上の耐電圧及び発
光輝度を示しており、本発明の効果が極めて大きいこと
が分かった。
Further, when an aluminum electrode was attached to this film and an AC electric field was applied, the withstand voltage and the emission luminance were about 5 times or more that of Sample A, which proved that the effect of the present invention was extremely large.

「作用・効果」 叙上の通り、本発明によれば、例えば酸化亜鉛バリスタ
が粒界に酸化ビスマス等の高抵抗層を析出させている構
造と同様に、硫化亜鉛粒子の粒界に絶縁性酸化物を析出
させることによって、電場を印加した場合に生じる粒界
の漏れ電流を減少させ発光効率を向上させる。更には、
この効果以外に硫化亜鉛薄膜の緻密性を向上させて耐電
圧特性を上げると共に、ピンホールによる膜の短絡防止
効果も得られる。
[Operation / Effect] As described above, according to the present invention, similar to the structure in which, for example, a zinc oxide varistor deposits a high resistance layer such as bismuth oxide on the grain boundary, the insulating property is maintained on the grain boundary of the zinc sulfide particle. By precipitating the oxide, the leakage current at the grain boundary that occurs when an electric field is applied is reduced and the luminous efficiency is improved. Furthermore,
In addition to this effect, the denseness of the zinc sulfide thin film is improved to improve the withstand voltage characteristics, and the effect of preventing short circuit of the film due to pinholes can be obtained.

【図面の簡単な説明】[Brief description of drawings]

図−1及び図−2は、いずれも輝度−電圧特性を示すグ
ラフである。
1 and 2 are graphs showing the luminance-voltage characteristics.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】多結晶硫化亜鉛薄膜を用いたEL素子にお
いて、硫化亜鉛の粒界に絶縁性金属酸化物を析出させた
層を有することを特徴とする薄膜EL素子。
1. An EL device using a polycrystalline zinc sulfide thin film, which has a layer in which an insulating metal oxide is deposited at a grain boundary of zinc sulfide.
【請求項2】硫化亜鉛薄膜が粒子堆積構造を有している
ことを特徴とする特許請求範囲第1項記載の薄膜EL素
子。
2. The thin film EL element according to claim 1, wherein the zinc sulfide thin film has a particle deposition structure.
【請求項3】多結晶硫化亜鉛薄膜を用いたEL素子を製
造するに際し、硫化亜鉛の粒界に絶縁性金属酸化物を析
出させることを特徴とする薄膜EL素子の製造法。
3. A method of manufacturing a thin film EL element, which comprises depositing an insulating metal oxide at a grain boundary of zinc sulfide when manufacturing an EL element using a polycrystalline zinc sulfide thin film.
【請求項4】硫化亜鉛薄膜を成膜後、金属酸化物前駆体
溶液を硫化亜鉛薄膜上に塗布乾燥した後加熱処理をする
ことにより、硫化亜鉛粒子の粒界に絶縁性金属酸化物を
析出させる特許請求の範囲第3項記載の製造法。
4. After forming a zinc sulfide thin film, a metal oxide precursor solution is applied onto the zinc sulfide thin film and dried, followed by heat treatment to deposit an insulating metal oxide on the grain boundaries of zinc sulfide particles. The manufacturing method according to claim 3.
【請求項5】塗布法硫化亜鉛薄膜の成膜時に、予め塗布
液中に絶縁性金属酸化物前駆体溶液を加えておき、硫化
亜鉛薄膜合成と同時に粒界に絶縁性金属酸化物を析出さ
せる特許請求の範囲第3項記載の製造法。
5. A coating method: When an zinc sulfide thin film is formed, an insulating metal oxide precursor solution is added to a coating solution in advance so that the zinc sulfide thin film is synthesized and an insulating metal oxide is precipitated at a grain boundary. The manufacturing method according to claim 3.
【請求項6】金属酸化物前駆体溶液中にコロイド状硫化
亜鉛を加えて均一に分散させたのち、基板上に塗布し乾
燥後加熱処理を施して硫化亜鉛粒子の粒界に絶縁性金属
酸化物を析出させる特許請求の範囲第3項記載の製造
法。
6. A colloidal zinc sulfide is added to a metal oxide precursor solution to disperse it uniformly, and the resulting mixture is coated on a substrate, dried and then heat-treated to form an insulating metal oxide on the grain boundaries of the zinc sulfide particles. The manufacturing method according to claim 3, wherein a substance is deposited.
【請求項7】硫化亜鉛薄膜を成膜後、金属酸化物前駆体
溶液を硫化亜鉛薄膜上に塗布乾燥した後加熱処理をする
ことにより、硫化亜鉛薄膜上に絶縁性金属酸化物薄膜を
成膜するのと同時に、硫化亜鉛粒子の粒界に絶縁性金属
酸化物を析出させる特許請求の範囲第3項記載の製造
法。
7. An insulating metal oxide thin film is formed on a zinc sulfide thin film by forming a zinc sulfide thin film, applying a metal oxide precursor solution on the zinc sulfide thin film, and then performing heat treatment. At the same time, the insulating metal oxide is deposited on the grain boundaries of the zinc sulfide particles, and the manufacturing method according to claim 3.
JP9717986A 1986-04-25 1986-04-25 Thin film EL device and manufacturing method thereof Expired - Lifetime JPH0644514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9717986A JPH0644514B2 (en) 1986-04-25 1986-04-25 Thin film EL device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9717986A JPH0644514B2 (en) 1986-04-25 1986-04-25 Thin film EL device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS62254394A JPS62254394A (en) 1987-11-06
JPH0644514B2 true JPH0644514B2 (en) 1994-06-08

Family

ID=14185354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9717986A Expired - Lifetime JPH0644514B2 (en) 1986-04-25 1986-04-25 Thin film EL device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0644514B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4126996B2 (en) * 2002-03-13 2008-07-30 セイコーエプソン株式会社 Device manufacturing method and device manufacturing apparatus
DE10228937A1 (en) 2002-06-28 2004-01-15 Philips Intellectual Property & Standards Gmbh Electroluminescent device with improved light decoupling
JPWO2008013171A1 (en) * 2006-07-25 2009-12-17 パナソニック株式会社 Light emitting element and display device
WO2008032737A1 (en) * 2006-09-14 2008-03-20 Panasonic Corporation Display apparatus
WO2008072520A1 (en) * 2006-12-15 2008-06-19 Panasonic Corporation Linear light-emitting device
JP5191476B2 (en) * 2007-02-23 2013-05-08 パナソニック株式会社 Display device
WO2008105153A1 (en) * 2007-02-27 2008-09-04 Panasonic Corporation Display device

Also Published As

Publication number Publication date
JPS62254394A (en) 1987-11-06

Similar Documents

Publication Publication Date Title
JP2770299B2 (en) Thin-film EL element, method of manufacturing the same, and sputtering target used therefor
JP2003500805A (en) Electroluminescent laminate having a patterned phosphor structure and a thick film dielectric having improved dielectric properties
JP2015057786A (en) Laminated thick film dielectric structure for thick film dielectric electroluminescent display
CA2447626C (en) Single source sputtering of thioaluminate phosphor films
US6650046B2 (en) Thin-film EL device, and its fabrication process
JPH0644514B2 (en) Thin film EL device and manufacturing method thereof
US6677059B2 (en) EL device and making method
US6025677A (en) Blue light emitting thiogallate phosphor including a thin nucleation layer of strontium sulfide
WO2011036730A1 (en) Metal-salt-containing composition, substrate, and method for producing substrate
JP3834339B2 (en) Transparent conductive film and method for producing the same
US6803122B2 (en) EL device
JP2005513742A (en) Sputter deposition process for electroluminescent phosphors.
JPH06187832A (en) Manufacture of transparent conductive film
JP4271807B2 (en) Encapsulated phosphor particles for EL, EL display panel, and encapsulated phosphor particles for EL
JP3049890B2 (en) Method for forming transparent conductive film
JP2958384B2 (en) Method for producing multilayer film including transparent conductor film
US10770645B2 (en) Oriented piezoelectric film, method for producing the oriented piezoelectric film, and liquid dispensing head
JP2526632B2 (en) Method for producing transparent conductive zinc oxide film
JP3650328B2 (en) H2S cracking cell, sulfide manufacturing method using the same, inorganic EL device manufacturing method, and inorganic EL device
CN1510102A (en) Diolame fluorescent powder and preparing method thereof
JPH06251873A (en) Forming method of electroluminescent element
JPH06200245A (en) Dielectric-coated material and its production
JP3865122B2 (en) Sulfur oxide phosphor for electroluminescence device and electroluminescence device
GB2126416A (en) Electroluminescent display devices
JP2001192813A (en) Method and device for producing sulfide light emitting layer