JPH0637449B2 - Process for producing optically active atenolol and its intermediates - Google Patents

Process for producing optically active atenolol and its intermediates

Info

Publication number
JPH0637449B2
JPH0637449B2 JP1213148A JP21314889A JPH0637449B2 JP H0637449 B2 JPH0637449 B2 JP H0637449B2 JP 1213148 A JP1213148 A JP 1213148A JP 21314889 A JP21314889 A JP 21314889A JP H0637449 B2 JPH0637449 B2 JP H0637449B2
Authority
JP
Japan
Prior art keywords
optically active
atenolol
reaction
glycidyl ether
epichlorohydrin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1213148A
Other languages
Japanese (ja)
Other versions
JPH0377856A (en
Inventor
喜和 竹平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP1213148A priority Critical patent/JPH0637449B2/en
Publication of JPH0377856A publication Critical patent/JPH0377856A/en
Publication of JPH0637449B2 publication Critical patent/JPH0637449B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は狭心症・不整脈・高血圧症の治療薬として有効
なアテノロール及びその中間体の光学活性体の製法に関
する。アテノロールは上記の症状に対して治療薬として
よく用いられているβブロッカーの中でも特に優れた薬
理作用を有し、注目されている医薬品である。β−ブロ
ッカーは光学活性体が存在し、中でもS体ざ有効な薬理
作用を有することが一般に知られている。
TECHNICAL FIELD The present invention relates to a method for producing atenolol, which is effective as a therapeutic agent for angina / arrhythmia / hypertension, and an optically active intermediate thereof. Atenolol has a particularly excellent pharmacological action among β blockers often used as a therapeutic drug for the above-mentioned symptoms, and is a drug of interest. It is generally known that β-blockers have an optically active form, and among them, S form has an effective pharmacological action.

(従来の技術) 従来光学活性アテノロールの製法としてはD−マンニト
ールを出発原料とする下記の方法が知られている(特開
昭50−77331,DE2453324)。
(Prior Art) Conventionally, as a method for producing optically active atenolol, the following method using D-mannitol as a starting material is known (Japanese Patent Laid-Open No. 50-77331, DE 2453324).

を,Zはハロゲン又はスルホニルオキシ基を,*は不斎
炭素を表わす。) (発明が解決しようとする課題) しかしながらこの方法では化合物(III)の合成に多段
階を有し、しかも化合物(III)の一級水酸基をハロゲ
ンもしくはスルホニルオキシ基に変換する際、反応試剤
とNHCOCH基が反応してNCCH基へ変化し
た副生物が多量に生じ、収率も50%以下であり、かつ二
級水酸基への反応もいくぶんおこるため得られるグリシ
ジルエーテル(I)の光学純度は44%ee程度と低いもの
であり、実用性に乏しい方法である。
( , Z represents a halogen or sulfonyloxy group, and * represents a non-carbon. (Problems to be Solved by the Invention) However, in this method, there are multiple steps in the synthesis of compound (III), and when the primary hydroxyl group of compound (III) is converted to a halogen or sulfonyloxy group, the reaction reagent and NH Optical reaction of the glycidyl ether (I) obtained by the reaction of 2 COCH 2 groups to produce a large amount of by-products converted to NCCH 2 groups, the yield is 50% or less, and the reaction to secondary hydroxyl groups also occurs to some extent. The purity is as low as 44% ee, which is a method with little practicality.

また光学活性β−ブロッカーの合成によく用いられる下
記の方法では (Ar′はアリール基,Xは脱離基,*は不斎炭素を表
わす。)アリールオキシオキサゾリジン−2−オン(V
I)の環開裂がアルカリ加水分解の強い条件を必要と
し、その際アルカリ条件下で不安定なNHCOCH
基が分解するためにアテノロールの合成には用いること
ができない。
In addition, the following method often used for the synthesis of optically active β-blockers (Ar 'represents an aryl group, X represents a leaving group, and * represents a non-carbon.) Aryloxyoxazolidin-2-one (V
The ring opening of I) requires strong conditions for alkaline hydrolysis, in which case NH 2 COCH 2 which is unstable under alkaline conditions.
It cannot be used in the synthesis of atenolol because the group decomposes.

(課題を解決するための手段) 本発明者は上記の点に鑑み、効率のよい、ラセミ化を起
さず光学純度の高いグリシジルエーテル(I)の製法を
得る目的で鋭意検討した。その結果含水溶媒中水酸化ア
ルカリの存在下で光学活性エピクロロヒドリンと式 で表わされる化合物とを0〜45℃で反応させることによ
り上記目的を充分達成し得ることを見出し本発明を完成
させるに至った。
(Means for Solving the Problems) In view of the above points, the present inventor diligently studied in order to obtain an efficient process for producing glycidyl ether (I) having high optical purity without causing racemization. As a result, the formula of optically active epichlorohydrin The present invention has been completed by finding that the above object can be sufficiently achieved by reacting the compound represented by the above formula at 0 to 45 ° C.

本発明は、含水溶媒中1〜45℃の温度範囲で光学活性エ
ピクロロヒドリンに対して1〜1.5倍当量の水酸化アル
カリの存在下、式 で表わされる化合物と光学活性エピクロロヒドリンとを
反応させることを特徴とする式(I) (*は不斎炭素を表わす。)で表わされる化合物の製法
であり、更に化合物(I)をイソプロピルアミンと反応
させることを特徴とする光学活性アテノロール(II)の
製法を提供しようとするものである。
The present invention, in the presence of 1 to 1.5 times equivalent amount of alkali hydroxide to optically active epichlorohydrin in the temperature range of 1 to 45 ° C. in a water-containing solvent, A compound represented by the formula (I) characterized by reacting an optically active epichlorohydrin A method for producing a compound represented by (* represents non-carbon), and a method for producing an optically active atenolol (II) characterized by reacting compound (I) with isopropylamine. is there.

この反応に用いる含水溶媒としては水又は下記の有機溶
媒との混合物から選ばれる。即ち、メタノール,エタノ
ール,イソプロピルアルコールなどのアルコール類、エ
ーテル,テトラヒドロフラン,ジオキサンなどのエーテ
ル類、ヘキサン,ヘプタン,ベンゼン,トルエンなどの
炭化水素、ジクロロメタン,ジクロロエタンなどのハロ
ゲン化炭化水素、アセトン,メチルエチルケトンなどの
ケトン類、ジメチルホルムアミド,ジメチルスルホキシ
ドなどの非プロトン系極性溶媒を各々単独あるいは2種
以上を混合して水に加えても良く、均一系でも不均一系
でも良い。水溶媒で反応させると目的の光学活性グリシ
ジルエーテル(I)が固形物として析出するので後処理
が非常に簡単で好ましい。基質や塩基の水に対する仕込
量が多いときは、原料のエピクロロヒドリンが生成物
(I)をとりこみ、粘稠スラリー液となるため上記の有
機溶媒を各々単独あるいは混合して水に加えるとエピク
ロロヒドリンと(I)が分散し、撹拌しやすくすること
ができる。用いる水の量は に対して1〜20倍重量が適当である。もし有機溶媒を添
加するときは水に対して1:1〜0.0001(V/V比)で
用いることができる。また生成物の析出を容易にするた
めに反応系に食塩や塩化カリウム,炭酸ナトリウム,炭
酸カリウム,硫酸マグネシウム,硫酸ナトリウムを適量
添加しても良い。水酸化アルカリとしては水酸化リチウ
ム水酸化ナトリウム又は水酸化カリウムが好ましく用い
られ、その量は光学活性エピクロロヒドリンに対して1
〜1.5倍当量が適当である。
The water-containing solvent used in this reaction is selected from water or a mixture with the following organic solvent. That is, alcohols such as methanol, ethanol and isopropyl alcohol, ethers such as ether, tetrahydrofuran and dioxane, hydrocarbons such as hexane, heptane, benzene and toluene, halogenated hydrocarbons such as dichloromethane and dichloroethane, acetone and methyl ethyl ketone. An aprotic polar solvent such as a ketone, dimethylformamide, or dimethylsulfoxide may be added singly or as a mixture of two or more kinds to water, and it may be a homogeneous system or a heterogeneous system. When the reaction is carried out with an aqueous solvent, the desired optically active glycidyl ether (I) is precipitated as a solid, and therefore post-treatment is very simple and preferable. When the amount of the substrate or base to be charged to water is large, the raw material epichlorohydrin takes in the product (I) and becomes a viscous slurry liquid. Epichlorohydrin and (I) are dispersed, which makes it easier to stir. How much water to use 1 to 20 times the weight is suitable. If an organic solvent is added, it can be used in a ratio of 1: 1 to 0.0001 (V / V ratio) with respect to water. Further, in order to facilitate the precipitation of the product, appropriate amounts of sodium chloride, potassium chloride, sodium carbonate, potassium carbonate, magnesium sulfate and sodium sulfate may be added to the reaction system. As the alkali hydroxide, lithium hydroxide sodium hydroxide or potassium hydroxide is preferably used, and the amount thereof is 1 with respect to the optically active epichlorohydrin.
~ 1.5 times equivalent is appropriate.

は光学活性エピクロロヒドリンに対して0.5〜2.0モル当
量が適当である。反応はエピクロロヒドリンを のアルカリ水溶液に加えていっても、また (Mはアルカリ金属)の固形あるいは水溶液としてエピ
クロロヒドリンに加えても良い。反応は0〜45℃の温度
範囲,より好ましくは0〜30℃の温度範囲で行うことが
望ましい。
Is appropriately 0.5 to 2.0 molar equivalents with respect to the optically active epichlorohydrin. The reaction is epichlorohydrin Even if added to the alkaline aqueous solution of It may be added to epichlorohydrin as a solid or aqueous solution of (M is an alkali metal). The reaction is preferably carried out in the temperature range of 0 to 45 ° C, more preferably 0 to 30 ° C.

0℃以下では反応は殆んど起らず、水が凍結することも
あり、適当でない。また45℃を超えると、得られるグリ
シジルエーテル(I)の光学純度が低下し、かつ副生成
物の割合も増加するので好ましくない。この反応では反
応温度が高いほどラセミ化もおこりやすく、生成したグ
リシジルエーテル(I)が過剰の と反応して副生成物を与えることがあるので初期は0〜
20℃に冷却し、徐々に温度を上げていくのが最適であ
る。反応温度が低いほど生成するグリシジルエーテル
(I)の光学純度は高く、5℃での反応では96%eeのグ
リシジルエーテル(I)を得ることができる。また反応
時間は常温で5〜15時間,5℃では10〜48時間で行うこ
とができるが、それ以上長くなると、ろか困難な微細固
形物を与えるので余り長時間反応させることは好ましく
ない。この副生成物を生成させない為には の量をアルカリに対して1モル当量以上加える事が好ま
しい。この場合生成物としてグリシジルエーテル(I)
以外にハロヒドリン(VII) *は不斎炭素を表わす。)が副生することがあるが、こ
のハロヒドリン(VII)はイソプロピルアミンとの反応
でアテノロール(II)に変換できるので混入しても差支
えない。
Below 0 ° C, the reaction hardly occurs and water may freeze, which is not suitable. On the other hand, if it exceeds 45 ° C, the optical purity of the obtained glycidyl ether (I) is lowered and the proportion of by-products is increased, which is not preferable. In this reaction, the higher the reaction temperature, the more likely the racemization will occur, and the glycidyl ether (I) produced will be excessive. It may react with and give a by-product, so the initial value is 0
It is best to cool to 20 ° C and gradually raise the temperature. The lower the reaction temperature, the higher the optical purity of the glycidyl ether (I) formed, and the glycidyl ether (I) of 96% ee can be obtained by the reaction at 5 ° C. The reaction time may be 5 to 15 hours at room temperature and 10 to 48 hours at 5 ° C. However, if it is longer than that, it is difficult to give a fine solid substance and it is not preferable to react for a too long time. In order not to produce this by-product It is preferable to add 1 mol equivalent or more to the alkali. In this case, the product is glycidyl ether (I)
Besides halohydrin (VII) ( * Represents unsaid carbon. ) May be produced as a by-product, but this halohydrin (VII) can be mixed because it can be converted to atenolol (II) by reaction with isopropylamine.

反応が進行すると目的のグリシジルエーテル(I)が結
晶として析出するため、ろ別することができるが、必要
なら酢酸エチルなどで抽出することもできる。
As the reaction proceeds, the target glycidyl ether (I) precipitates as crystals, which can be filtered off, but can be extracted with ethyl acetate or the like if necessary.

本発明の方法の利点は、反応生成物である光学活性グリ
シジルエーテル(I)が反応中固形物として分離してく
ることであって、抽出等の操作で副生成物を混入させる
恐れもなく、光学純度,化学純度ともに優れた光学活性
グリシジルエーテル(I)を簡便に得ることができる。
この反応で用いる光学活性エピクロロヒドリンは本出願
人の出願に係わる特開昭61−132196号公報などにより得
られる光学純度の高いエピクロロヒドリンを用いること
ができる。
The advantage of the method of the present invention is that the optically active glycidyl ether (I), which is a reaction product, is separated as a solid during the reaction, and there is no fear of mixing by-products in an operation such as extraction, An optically active glycidyl ether (I) excellent in both optical purity and chemical purity can be easily obtained.
As the optically active epichlorohydrin used in this reaction, epichlorohydrin having a high optical purity, which is obtained, for example, from Japanese Patent Application Laid-Open No. 61-132196, filed by the present applicant, can be used.

ここで得られた光学活性グリシジルエーテル(I)は光
学純度90〜93%eeであり、これをこのままイソプロピル
アミンと反応して光学活性アテノロール(II)とし、再
結晶あるいは光学活性な有機酸例えば酒石酸,ジベンゾ
イル酒石酸,グルタミン酸などとの塩とし、ジアステレ
オマー法により精製しても良いが、光学活性グリシジル
エーテル(I)をメタノール,エタノール,イソプロピ
ルアルコール,n−ブタノール,t−ブタノール,ヘキ
サノール,シクロヘキサノールなどの炭素数1〜6の低
級アルコール、アセトン,メチルエチルケトン,メチル
イソプロピルケトン,メチルイソブチルケトン,シクロ
ヘキサノンなどの炭素数1〜6のケトン、酢酸メチル,
酢酸エチル,エチルブチレート,エチレングリコールジ
アセテートなどの有機酸エステル、アセトニトリル,プ
ロピオニトリル,ブチロニトリル,イソブチロニトリル
などの炭素数1〜4のアルキルニトリル類から選ばれた
1種又は2種以上を溶媒とし、好ましくはアルコール又
はケトン類を溶媒として、再結晶により光学純度98%以
上に精製したのち、イソプロピルアミンと反応させて光
学純度の良いアテノロール(II)を製造することもでき
る。特に光学活性アテノロールはラセミ体と光学活性体
との溶解度差が小さくアテノロールで光学純度を上げる
には非常に操作が繁雑となるため中間体の化合物(I)
の段階で精製する事が望ましい。
The optically active glycidyl ether (I) obtained here has an optical purity of 90 to 93% ee, and this is directly reacted with isopropylamine to give optically active atenolol (II), which is recrystallized or an optically active organic acid such as tartaric acid. , A salt with dibenzoyl tartaric acid, glutamic acid, etc., and may be purified by a diastereomer method, but the optically active glycidyl ether (I) is methanol, ethanol, isopropyl alcohol, n-butanol, t-butanol, hexanol, cyclohexanol. Such as lower alcohol having 1 to 6 carbon atoms, acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, ketone having 1 to 6 carbon atoms such as cyclohexanone, methyl acetate,
One or more selected from organic acid esters such as ethyl acetate, ethyl butyrate and ethylene glycol diacetate, and alkyl nitrites having 1 to 4 carbon atoms such as acetonitrile, propionitrile, butyronitrile and isobutyronitrile. It is also possible to produce atenolol (II) having a high optical purity by purifying the product to an optical purity of 98% or more by recrystallization by using as a solvent, preferably alcohol or ketones as a solvent, and then reacting with isopropylamine. In particular, the optically active atenolol has a small solubility difference between the racemate and the optically active substance, and the operation is very complicated to increase the optical purity of the atenolol, so that the intermediate compound (I) is used.
It is desirable to purify at the stage.

光学活性グリシジルエーテル(I)から光学活性アテノ
ロール(II)への変換は次の様にして行うことができ
る。即ち、化合物(I)を水又は低級アルコール例えば
メタノール,エタノール,イソプロピルアルコール,n
−ブタノール或いはこれらの混合溶媒中でイソプロピル
アミン3〜50倍モル,より好ましくは5〜30倍モルと40
〜80℃の温度で5〜20時間加熱撹拌することにより達成
できる。溶媒の量は光学活性グリシジルエーテル(I)
1gに対し、3〜100mlの範囲で反応中化合物(I)が溶
解し、均一溶液になる様に適宜選択することができる。
ハロヒドリン(VII)が混入した化合物(I)を用いる
場合は反応の初めからあるいは途中から炭酸ナトリウ
ム,炭酸カリウム,水酸化カリウム,水酸化ナトリウム
などの塩基をハロヒドリン(VII)に対して1〜5倍当
量添加し、同様に行うことにより目的の光学活性アテノ
ロール(II)を得ることができる。
The conversion of the optically active glycidyl ether (I) to the optically active atenolol (II) can be performed as follows. That is, the compound (I) is added to water or a lower alcohol such as methanol, ethanol, isopropyl alcohol, n
-Butanol or a mixed solvent thereof in isopropylamine 3 to 50 times mol, more preferably 5 to 30 times mol and 40 times
This can be achieved by heating and stirring at a temperature of -80 ° C for 5 to 20 hours. The amount of the solvent is the optically active glycidyl ether (I)
It can be appropriately selected so that the compound (I) is dissolved in the range of 3 to 100 ml per 1 g during the reaction to form a uniform solution.
When the compound (I) mixed with halohydrin (VII) is used, a base such as sodium carbonate, potassium carbonate, potassium hydroxide or sodium hydroxide is added to the halohydrin (VII) in an amount of 1 to 5 times from the beginning or the middle of the reaction. The desired optically active atenolol (II) can be obtained by adding an equivalent amount and carrying out in the same manner.

1−アリールオキシ−3−アミノ−2−プロパノール誘
導体はβ−アドレナリン遮断作用を有し、その多くはラ
セミ体として用いられているが、実質的にはS体のみが
有効な薬理作用をもっていることは多くの研究により明
らかにされてきており、本発明のアテノロールにおいて
もS体が特に有用であると考えられる。
1-Aryloxy-3-amino-2-propanol derivatives have β-adrenergic blocking action, and most of them are used as racemates, but substantially only S form has an effective pharmacological action. Has been clarified by many studies, and it is considered that the S-form is particularly useful in the atenolol of the present invention.

(発明の効果) 本発明によれば、従来法と比べて、ラセミ化を起すこと
なく、簡単な反応経路で光学純度の高い目的物質を、収
率よくかつ容易に得ることができる。
(Effect of the Invention) According to the present invention, a target substance having a high optical purity can be easily obtained in a high yield by a simple reaction route without causing racemization as compared with the conventional method.

以下更に具体的に本発明を実施例で詳細説明する。Hereinafter, the present invention will be described in more detail with reference to Examples.

(実施例) 実施例1 3.02g(0.02M)をNaOH0.96g,HO9.69gにとか
し、3℃に冷却し、撹拌下▲[α]21 D▼−35.0°のR
−(−)−エピクロロヒドリン1.85gを加え、3時間で
室温にもどしながら撹拌した。析出した結晶をろ別し、
水洗し、五酸化リン存在下で真空乾燥するとS−(+)
−グリシジルエーテル(I)が2.66g得られた。(収率6
4%) mp161〜162℃ ▲[α]21 D▼+9.6°(c=1.0,メタノール) (lit DE 2453324 mp 147〜149℃ ▲[α]21 D▼+4.8°(c=1.0,メタノール)) NMR(DMSO−d) δ:2.65〜2.73(1H,m,CH) 2.83 (1H,dt,J=1.1,5.1Hz,CH) 3.29 (2H,s,CH2) 3.33 (1H,m,CH) 3.80 (1H,ddd,J=-11.4,1.1,6.6Hz,CH) 4.29 (1H,ddd,J=-11.4,1.1,2.6Hz,CH) 6.82 (1H,br s,NH) 6.89 (2H,J=7.7Hz,ArH) 7.17 (2H,d,J=7.7Hz,ArH) 7.39 (1H,br s,NH) 実施例2 実施例1においてR−(−)−エピクロロヒドリンの代
りに▲[α]21 D▼+35.0°のS−(+)−エピクロロ
ヒドリンを用いる以外全く同様にして反応させ、R−
(−)−グリシジルエーテル(I)2.88gを得た。▲
[α]21 D▼−9.54°(c=1.0,メタノール) 実施例3 20.09g(0.133M)をKOH5.6g,水50g,メタノール5g
にけんだくさせ、▲[α]21 D▼+34.2°のS−(+)
−エピクロロヒドリン9.31gを11℃で撹拌下に滴下し、
撹拌下3時間かけて30℃まで昇温したのち、生成物をろ
別し、水洗し、五酸化リン存在下真空乾燥してR−
(−)−グリシジルエーテル(I)とハロヒドリン(VI
I)の約1:1混合物17.9gを得た。
(Example) Example 1 3.02 g (0.02 M) was dissolved in 0.96 g of NaOH and 9.69 g of H 2 O, cooled to 3 ° C., and with stirring, ▲ [α] 21 D ▼ -35.0 ° R.
1.85 g of-(-)-epichlorohydrin was added and stirred for 3 hours while returning to room temperature. The precipitated crystals are filtered off,
When washed with water and vacuum dried in the presence of phosphorus pentoxide, S-(+)
2.66 g of glycidyl ether (I) were obtained. (Yield 6
4%) mp 161-162 ° C ▲ [α] 21 D ▼ + 9.6 ° (c = 1.0, methanol) (lit DE 2453324 mp 147-149 ° C ▲ [α] 21 D ▼ + 4.8 ° (c = 1.0, Methanol)) NMR (DMSO-d 6 ) δ: 2.65 to 2.73 (1H, m, CH) 2.83 (1H, dt, J = 1.1,5.1Hz, CH) 3.29 (2H, s, CH 2 ) 3.33 (1H, m, CH) 3.80 (1H, ddd, J = -11.4,1.1,6.6Hz, CH) 4.29 (1H, ddd, J = -11.4,1.1,2.6Hz, CH) 6.82 (1H, br s, NH) 6.89 (2H, J = 7.7Hz, ArH) 7.17 (2H, d, J = 7.7Hz, ArH) 7.39 (1H, br s, NH) Example 2 In Example 1, R-(−)-epichlorohydrin Instead of using ▲ [α] 21 D ▼ + 35.0 ° S-(+)-epichlorohydrin, the reaction was performed in exactly the same manner, and R-
2.88 g of (-)-glycidyl ether (I) was obtained. ▲
[Α] 21 D ▼ −9.54 ° (c = 1.0, methanol) Example 3 20.09g (0.133M) 5.6g KOH, 50g water, 5g methanol
Let it run, ▲ [α] 21 D ▼ + 34.2 ° S-(+)
-Drop epichlorohydrin 9.31 g under stirring at 11 ° C,
After the temperature was raised to 30 ° C. over 3 hours with stirring, the product was separated by filtration, washed with water, and vacuum dried in the presence of phosphorus pentoxide to give R-
(−)-Glycidyl ether (I) and halohydrin (VI
17.9 g of an approximately 1: 1 mixture of I) was obtained.

各々収率33.5,26.8% 実施例4 実施例1で得たS−(+)−グリシジルエーテル(I)
2.66gをメタノール24.8g,イソプロピルアミン21.6g中
6時間加熱環流下に撹拌したのち、減圧下に溶媒を留去
し、シリカゲルカラムクロマトグラフィーで(クロロホ
ルム:メタノール20:1)精製しS−(−)−アテノロ
ール(II)3.04gを得た(収率89%)。尚このものの光
学純度をChiralcelOD(商品名)を用いたHPLCで
分析すると93%eeであった。
Yield 33.5% and 26.8%, respectively. Example 4 S-(+)-glycidyl ether (I) obtained in Example 1
After stirring 2.66 g in 24.8 g of methanol and 21.6 g of isopropylamine under reflux for 6 hours, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (chloroform: methanol 20: 1) to give S-(- ) -Atenolol (II) 3.04 g was obtained (yield 89%). The optical purity of this product was 93% ee when analyzed by HPLC using Chiralcel OD (trade name).

▲[α]21 D▼−15.57°(c=1.0,1NHCl)mp15
1.0〜152.5℃ (lit DE 2453324 ▲[α]21 D▼−13.6° (c=1.0,1NHCl),mp151.3〜153℃) 実施例5 実施例3で得たR−(−)−グリシジルエーテル(I)
とハロヒドリン(VII)の約1:1混合物8.77gをイソプ
ロピルアミン80g,メタノール80g中で5時間加熱環流下
に撹拌し、 NaCO3gを加え、更に2時間加熱撹拌した。反応
混合物を減圧下に溶媒留去し、シリカゲルカラムクロマ
トグラフィーで精製して、R−(+)−アテノロール
(II)8.89gを得た(収率85%)。尚このものの光学純
度をChiralcelOD(商品名)を用いたHPLCで分析
すると90%eeであった。
▲ [α] 21 D ▼ -15.57 ° (c = 1.0, 1NHCl) mp15
1.0-152.5 ° C. (lit DE 2453324 ▲ [α] 21 D ▼ -13.6 ° (c = 1.0, 1 NHCl), mp 151.3-153 ° C.) Example 5 R-(−)-glycidyl ether obtained in Example 3 (I)
8.77 g of a mixture of halohydrin and halohydrin (VII) in a ratio of about 1: 1 was stirred in 80 g of isopropylamine and 80 g of methanol with heating under reflux for 5 hours, 3 g of Na 2 CO 3 was added, and the mixture was further heated with stirring for 2 hours. The reaction mixture was evaporated under reduced pressure and the residue was purified by silica gel column chromatography to obtain 8.89 g of R-(+)-atenolol (II) (yield 85%). The optical purity of this product was 90% ee when analyzed by HPLC using Chiralcel OD (trade name).

▲[α]21 D▼+15.0°(c=1.0,1NHCl) mp151.5〜152.8℃ HNMR(DMSO−d) δ:0.99(6H,d,J=6.2Hz,CH3) 2.60〜2.75(2H,m,CH2) 3.28(2H,s,CH2) 3.30〜3.40(1H,m,CH) 3.77〜3.96(3H,m,CH2,CH) 6.80(1H,brs,NH) 6.86(2H,d,J=7.7Hz,ArH) 7.17(2H,d,J=7.7Hz,ArH) 7.37(1H,brs,NH) 実施例6 実施例1で得られたS−(+)−グリシジルエーテル
(I)をメタノールで再結晶すると融点167.3〜168.6
℃,▲[α]21 D▼+10.8°(c=0.5,メタノール)の
化合物(I)が得られた。このものを実施例4と同様に
してイソプロピルアミンと反応させ、S−(−)−アテ
ノロール(II)を得た。このものの光学純度はChiralce
lOD(商品名)を用いたHPLCで分析し、98.3%ee
であった。
▲ [α] 21 D ▼ + 15.0 ° (c = 1.0, 1 NHCl) mp 151.5-152.8 ° C. 1 HNMR (DMSO-d 6 ) δ: 0.99 (6H, d, J = 6.2Hz, CH 3 ) 2.60〜 2.75 (2H, m, CH 2 ) 3.28 (2H, s, CH 2) 3.30~3.40 (1H, m, CH) 3.77~3.96 (3H, m, CH 2, CH) 6.80 (1H, brs, NH) 6.86 (2H, d, J = 7.7Hz, ArH) 7.17 (2H, d, J = 7.7Hz, ArH) 7.37 (1H, brs, NH) Example 6 S-(+)-glycidyl obtained in Example 1 When ether (I) is recrystallized from methanol, the melting point is 167.3 to 168.6.
The compound (I) having a temperature of ▲ [α] 21 D ▼ + 10.8 ° (c = 0.5, methanol) was obtained. This was reacted with isopropylamine in the same manner as in Example 4 to obtain S-(−)-atenolol (II). The optical purity of this product is Chiralce
98.3% ee analyzed by HPLC using lOD (trade name)
Met.

実施例7 実施例3で得られたR−(−)−グリシジルエーテル
(I)をアセトンで再結晶すると融点166.2〜167.9℃,
▲[α]21 D▼−10.6°(c=0.5,メタノール)の化合
物(I)が得られた。このものを実施例4と同様にイソ
プロピルアミンと反応させ、R−(+)−アテノロール
(II)を得た。
Example 7 The R-(-)-glycidyl ether (I) obtained in Example 3 was recrystallized from acetone to give a melting point of 166.2 to 167.9 ° C.
A compound (I) of ▲ [α] 21 D ▼ -10.6 ° (c = 0.5, methanol) was obtained. This was reacted with isopropylamine in the same manner as in Example 4 to obtain R-(+)-atenolol (II).

ここで得た化合物(II)の光学純度はChiralcelOD
(商品名)を用いたHPLCで分析し、98.1%eeであっ
た。
The optical purity of the compound (II) obtained here is Chiralcel OD.
It was 98.1% ee as analyzed by HPLC using (trade name).

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】含水溶媒中0〜45℃で光学活性エピクロロ
ヒドリンに対して1〜1.5倍当量の水酸化アルカリの存
在下、式 で表わされる化合物と光学活性エピクロロヒドリンとを
反応させることを特徴とする式(I) (*は不斎炭素を表わす。)で表わされる化合物の製
法。
1. The formula in the presence of 1 to 1.5 equivalents of alkali hydroxide with respect to the optically active epichlorohydrin in a water-containing solvent at 0 to 45 ° C. A compound represented by the formula (I) characterized by reacting an optically active epichlorohydrin (* Represents a non-famous carbon.)
【請求項2】請求項1記載の方法で得た式(I)で表わ
される化合物をイソプロピルアミンと反応させることを
特徴とする光学活性アテノロールの製法。
2. A method for producing an optically active atenolol, which comprises reacting the compound represented by the formula (I) obtained by the method according to claim 1 with isopropylamine.
【請求項3】光学活性アテノロールの不斎炭素の立体配
置がS体である請求項2記載の製法。
3. The process according to claim 2, wherein the configuration of optically unreactive carbon of the optically active atenolol is S-configuration.
【請求項4】請求項1記載の方法で得た式(I)で表わ
される化合物を有機溶媒を用いて再結晶したのち、イソ
プロピルアミンと反応させることを特徴とする光学純度
の高いアテノロールの製法。
4. A process for producing atenolol having high optical purity, which comprises recrystallizing a compound represented by the formula (I) obtained by the method according to claim 1 using an organic solvent and then reacting it with isopropylamine. .
JP1213148A 1989-08-18 1989-08-18 Process for producing optically active atenolol and its intermediates Expired - Lifetime JPH0637449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1213148A JPH0637449B2 (en) 1989-08-18 1989-08-18 Process for producing optically active atenolol and its intermediates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1213148A JPH0637449B2 (en) 1989-08-18 1989-08-18 Process for producing optically active atenolol and its intermediates

Publications (2)

Publication Number Publication Date
JPH0377856A JPH0377856A (en) 1991-04-03
JPH0637449B2 true JPH0637449B2 (en) 1994-05-18

Family

ID=16634371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1213148A Expired - Lifetime JPH0637449B2 (en) 1989-08-18 1989-08-18 Process for producing optically active atenolol and its intermediates

Country Status (1)

Country Link
JP (1) JPH0637449B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998012171A1 (en) * 1996-09-18 1998-03-26 Daiso Co., Ltd. Process for the preparation of 3-amino-2-hydroxy-1-propyl ethers
US6087512A (en) * 1996-09-18 2000-07-11 Daiso Co., Ltd. Process for preparation of glycidyl ether

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6982349B1 (en) 2003-10-31 2006-01-03 Emcure Pharmaceuticals Limited Process for producing atenolol of high optical purity
JP5225574B2 (en) * 2006-11-09 2013-07-03 エムキュア ファーマシューティカルズ リミテッド Improved process for the preparation of beta-blocker compounds

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998012171A1 (en) * 1996-09-18 1998-03-26 Daiso Co., Ltd. Process for the preparation of 3-amino-2-hydroxy-1-propyl ethers
US6057476A (en) * 1996-09-18 2000-05-02 Daiso Co., Ltd. Process for the preparation of 3-amino-2-hydroxy-1-propyl ethers
US6087512A (en) * 1996-09-18 2000-07-11 Daiso Co., Ltd. Process for preparation of glycidyl ether

Also Published As

Publication number Publication date
JPH0377856A (en) 1991-04-03

Similar Documents

Publication Publication Date Title
KR960003810B1 (en) Process for producing optically active benzene-sulfonamide derivatives
US5225585A (en) Production of fluoxetine and new intermediates
HU186776B (en) Process for preparing new, optically active imidazolidin-2-one derivatives
HU195764B (en) Process for production of optically active carnitinenitril-chloride
JPH0637449B2 (en) Process for producing optically active atenolol and its intermediates
KR20100118747A (en) Improved preparation method of sarpogrelate hydrochloride
EP0108547B1 (en) Process for the preparation of the 1'-ethoxycarbonyloxyethyl ester of benzylpenicillin
US4408063A (en) Preparation of epihalohydrin enantiomers
JP3018296B2 (en) Method for producing glycidyl ether
JPH0637482B2 (en) Process for producing optically active atenolol and its intermediates
WO2004087640A1 (en) Process for the manufacture of n-alkoxalyl-alaninates
JPH08109173A (en) Method of preparing 4-substituted optically active (s)-2-oxazolidinone,new (s)-2-oxazolidinone and new optically active (s)-aminoalcohol
HU213315B (en) Process for producing arylacetic acids and their alkali metal salts
KR19990008411A (en) Improvement method of 4-hydroxy-2-pyrrolidone
JP3296560B2 (en) Chemical method for producing optically active aminodiols
EP0483674B1 (en) A process for producing an aliphatic amide and salts thereof
EP0389876B1 (en) New process for the synthesis of the n-methyl-3,4-dimethoxyphenylethylamine
KR100311949B1 (en) Process for the preparation of 1-[(cyclopent-3-en-1-yl)methyl]-5-ethyl-6-(3,5-dimethylbenzoyl)-2,4-pyrimidinedione
JP2000256244A (en) Production of 4-methyltetrafluorobenzyl alcohol derivative
EP0588652A1 (en) Process for the preparation of 2-aryl-1,3-propanediols
JPH08245529A (en) Method of preparing racemic amino alcohol
JP4218310B2 (en) Process for producing optically active 2-amino-2-phenylethanol and its intermediate
KR890002163B1 (en) Process for the preparation of 1-p-carbamoyl-methylphenoxy-3-isopropylamino-2-propaneol
JPS6343382B2 (en)
JPH045026B2 (en)