JPH0637406A - Metal vapor laser device - Google Patents

Metal vapor laser device

Info

Publication number
JPH0637406A
JPH0637406A JP19187292A JP19187292A JPH0637406A JP H0637406 A JPH0637406 A JP H0637406A JP 19187292 A JP19187292 A JP 19187292A JP 19187292 A JP19187292 A JP 19187292A JP H0637406 A JPH0637406 A JP H0637406A
Authority
JP
Japan
Prior art keywords
insulating member
discharge tube
heat insulating
heat
metal vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19187292A
Other languages
Japanese (ja)
Inventor
Eisaku Mizufune
栄作 水船
Tsuneyoshi Ohashi
常良 大橋
Toshiji Shirokura
利治 白倉
Akira Wada
昭 和田
Sei Takemori
聖 竹森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19187292A priority Critical patent/JPH0637406A/en
Publication of JPH0637406A publication Critical patent/JPH0637406A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a metal vapor laser device, in which the consumption of metallic vapor is reduced largely and not only operation for a prolonged term is enabled but also laser transmission having a high output and high efficiency is enabled. CONSTITUTION:The thickness of a heat-resistant heat-insulating member 2 positioned at the central section in the axial direction of a discharge tube 1 is made thinner than that of the end section of the member 2 so that a heat- insulating member 2 mounted in a coaxial manner on the outer circumference of the discharge tube 1, in which metallic sources 9 are heated and vaporized by discharge energy in a gas and metallic vapor is generated and a laser medium composed of the metallic vapor is formed, has heat-insulating characteristics shaping tube-wall temperature distribution in the discharge tube having bimodal characteristics, in which a tube-wall temperature at a central section in the discharge tube 1 is minimized and a tube-wall temperature between the central section of the discharge tube and the end section of the discharge tube is maximized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は金属蒸気レーザ装置に係
り、特に、予め放電管内に収納されている金属をガス放
電によって加熱して気化、及び励起させてレーザ出力を
得る金属蒸気レーザ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal vapor laser device, and more particularly to a metal vapor laser device which heats a metal contained in a discharge tube in advance by gas discharge to vaporize and excite it to obtain a laser output. .

【0002】[0002]

【従来の技術】従来の金属蒸気レーザ装置は、例えば、
特開平2−281773 号公報に開示されているように、ガス
中の放電エネルギーにより放電管内の管壁温度を所定温
度(例えば、銅蒸気レーザでは1500℃前後)に昇温
するため、セラミック製放電管の外周に、放電管軸方向
に沿って厚みが一様で、かつ、一様な断熱特性を具備し
た電気絶縁性の円筒状断熱部材と、さらにその外周に真
空断熱層とを組み合わせた複合断熱構造が採用され、放
電管径方向の断熱強化を図っている。
2. Description of the Related Art A conventional metal vapor laser device is, for example,
As disclosed in Japanese Unexamined Patent Publication No. 281773/1990, since the temperature of the wall in the discharge tube is raised to a predetermined temperature (for example, about 1,500 ° C in a copper vapor laser) by the discharge energy in the gas, a ceramic discharge is generated. A composite structure in which an electrically insulating cylindrical heat insulating member having a uniform thickness along the discharge tube axial direction and having uniform heat insulating properties is provided on the outer circumference of the tube, and a vacuum heat insulating layer is further provided on the outer circumference thereof. A heat insulation structure is adopted to strengthen the heat insulation in the radial direction of the discharge tube.

【0003】また、特開昭63−229782号公報では、真空
断熱層内部に放電管軸方向に沿って厚みが一様で、か
つ、一様な断熱特性を具備した第2の電気絶縁性の円筒
状断熱部材を配設し、放電管径方向の断熱性能の更なる
向上を図っている。
Further, in Japanese Patent Application Laid-Open No. 63-229782, there is provided a second electrically insulating material having a uniform thickness along the discharge tube axis direction inside the vacuum heat insulating layer and having uniform heat insulating characteristics. By disposing a cylindrical heat insulating member, the heat insulating performance in the radial direction of the discharge tube is further improved.

【0004】[0004]

【発明が解決しようとする課題】上記従来の金属蒸気レ
ーザ装置によれば、放電管の外周に配設された円筒状断
熱部材の厚みが放電管軸方向に沿って一様であり、か
つ、一様な断熱性能を具備していたため、放電管内の管
壁温度は、放電管軸方向の中央部で最大となり端部に向
かって単調減少する単峰性の管壁温度分布を形成してい
た。
According to the above-mentioned conventional metal vapor laser device, the thickness of the cylindrical heat insulating member disposed on the outer periphery of the discharge tube is uniform along the axial direction of the discharge tube, and Since it had uniform heat insulation performance, the temperature of the wall inside the discharge tube was maximum at the central part in the axial direction of the discharge tube and formed a monomodal wall temperature distribution that monotonically decreased toward the end. .

【0005】その結果、金属蒸気密度が放電管内の管壁
温度で一義的に決まり、かつ、レーザ出力、及び発振効
率が適切な管壁温度、即ち、適切な放電管内金属蒸気密
度により最適化される事実から、上述の単峰性の管壁温
度分布では、金属蒸気密度も放電管内中央部で最大とな
り、中央部から端部に向かって単調減少するため、レー
ザ発振に寄与し得る有効領域は、金属蒸気密度の高い放
電管軸方向中央部の高温領域に限定され、従来の装置で
は、レーザ媒質の放電管内での効率的な形成が図られて
いなかった。
As a result, the metal vapor density is uniquely determined by the tube wall temperature in the discharge tube, and the laser output and the oscillation efficiency are optimized by the appropriate tube wall temperature, that is, the appropriate metal vapor density in the discharge tube. According to the above fact, in the above-mentioned monomodal tube wall temperature distribution, the metal vapor density also reaches its maximum in the central part of the discharge tube and monotonically decreases from the central part toward the end, so that the effective area that can contribute to laser oscillation is However, it is limited to the high temperature region in the central portion of the discharge tube where the metal vapor density is high, and the conventional device has not been able to efficiently form the laser medium in the discharge tube.

【0006】そのため、放電長に占めるレーザ媒質長の
割合が小さく、従って、レーザ装置の高出力化を図るた
めには、放電体積の増加を余儀なくされ、放電管の長尺
化に対しては、放電抵抗と放電管の自己インダクタンス
の増大により電源の高電圧化が必要となり、また、放電
管の大口径化に対しては、放電電流の表皮効果のため、
放電管径方向中心部の利得低下によりレーザビームがリ
ングモードになり、発振効率が低下するという問題があ
った。
Therefore, the ratio of the laser medium length to the discharge length is small. Therefore, in order to increase the output of the laser device, the discharge volume must be increased, and the length of the discharge tube must be increased. Due to the increase in the discharge resistance and the self-inductance of the discharge tube, it is necessary to increase the voltage of the power supply.For the larger diameter of the discharge tube, the skin effect of the discharge current causes
There is a problem that the laser beam becomes a ring mode due to the decrease in the gain in the central portion in the radial direction of the discharge tube, and the oscillation efficiency is decreased.

【0007】さらに、レーザ媒質となる金属蒸気密度が
放電管端部へ単調減少するため、放電管中央部と端部の
間に大きな密度勾配が生じ、その結果、金属蒸気が放電
管端部へ拡散し、端部の低温領域で凝集・固化するた
め、金属蒸気の消耗が著しく、レーザ装置の長時間運転
が困難であった。
Further, since the density of the metal vapor serving as the laser medium monotonically decreases toward the end of the discharge tube, a large density gradient is generated between the central portion and the end of the discharge tube, and as a result, the metal vapor flows toward the end of the discharge tube. Since it diffuses and agglomerates and solidifies in the low temperature region of the edge, the metal vapor is consumed so much that it is difficult to operate the laser device for a long time.

【0008】本発明は上述の点に鑑みなされたもので、
その目的とするところは、金属蒸気の消耗が大幅に低減
され、長時間運転が可能なことは勿論、高出力で、か
つ、高効率なレーザ発信ができる金属蒸気レーザ装置を
提供するにある。
The present invention has been made in view of the above points,
It is an object of the present invention to provide a metal vapor laser device capable of performing highly efficient laser emission with a high output, as well as being able to drastically reduce the consumption of metal vapor and operating for a long time.

【0009】[0009]

【課題を解決するための手段】本発明はガス中の放電エ
ネルギーにより金属源を加熱・蒸発させて金属蒸気を発
生させ、その金属蒸気から成るレーザ媒質を形成させる
放電管の外周に同軸状に設けられた断熱部材が、前記放
電管内中央部の管壁温度が極小となり、かつ、放電管中
央部と放電管端部の間の管壁温度が極大となる双峰特性
の放電管内管壁温度分布を形成する断熱特性を具備して
いることを特徴とする。
DISCLOSURE OF THE INVENTION According to the present invention, a metal source is heated and evaporated by discharge energy in a gas to generate a metal vapor, and a laser medium made of the metal vapor is coaxially formed on the outer circumference of the discharge tube. The heat insulating member provided has a twin-peaked discharge tube inner wall temperature in which the temperature of the inner wall of the discharge tube is minimized and the temperature of the wall between the center of the discharge tube and the end of the discharge tube is maximized. It is characterized by having adiabatic properties that form a distribution.

【0010】[0010]

【作用】本発明の上記構成による金属蒸気レーザ装置に
よれば、ガス中の放電エネルギーにより、予め放電管内
に配設された金属塊が加熱・蒸発して生成された金属蒸
気は、上記双峰性管壁温度分布に起因した密度勾配によ
り、放電管の中央部と端部の両方向に同時に拡散する。
According to the metal vapor laser device having the above-described structure of the present invention, the metal vapor generated by heating and evaporating the metal lump previously arranged in the discharge tube by the discharge energy in the gas is the bimodal one. Due to the density gradient caused by the temperature distribution of the heat-generating tube wall, it diffuses simultaneously in both the central part and the end part of the discharge tube.

【0011】このため、放電管最端部を除いて、金属蒸
気の密度勾配がゼロになる定常状態では、金属蒸気が均
一分布する領域は放電管軸方向に沿って拡大し、長尺、
かつ、平坦な金属蒸気密度分布が形成されるので、上記
目的が達成される。
For this reason, in a steady state where the density gradient of the metal vapor is zero except for the end of the discharge tube, the region where the metal vapor is uniformly distributed expands along the axial direction of the discharge tube and becomes long.
In addition, since the flat metal vapor density distribution is formed, the above object is achieved.

【0012】[0012]

【実施例】以下、図示した実施例に基づいて本発明の金
属蒸気レーザ装置を詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The metal vapor laser device of the present invention will be described in detail below with reference to the illustrated embodiments.

【0013】図1に本発明の金属蒸気レーザ装置の一実
施例を示す。
FIG. 1 shows an embodiment of the metal vapor laser device of the present invention.

【0014】該図に示すごとく、予め複数個の金属塊9
を収納した耐熱セラミック製の円筒状放電管1は、その
外周を耐熱セラミックファイバー製の円筒状断熱層2に
より同軸状に取り囲まれ、円筒状断熱層2の外周には、
更に同軸状に円筒状の耐熱ガラス管3が配設されてい
る。
As shown in the figure, a plurality of metal ingots 9 are previously formed.
A cylindrical discharge tube 1 made of a heat-resistant ceramic that accommodates is coaxially surrounded by a cylindrical heat-insulating layer 2 made of a heat-resistant ceramic fiber.
Further, a cylindrical heat-resistant glass tube 3 is coaxially arranged.

【0015】また、前記放電管1と断熱層2とを收納し
た円筒状耐熱ガラス管3は、その両端が金属製のレーザ
管本体5に具備された金属フランジ8a〜8cにOリン
グ等(図示せず)の弾性部材を介して支持され、これに
より、高温下での放電管1と耐熱ガラス管3の放電管軸
方向への伸びを吸収し、かつ、熱応力割れを防止してい
る。
The cylindrical heat-resistant glass tube 3 accommodating the discharge tube 1 and the heat insulating layer 2 has O-rings or the like on the metal flanges 8a to 8c provided on the laser tube body 5 made of metal at both ends (see FIG. It is supported via an elastic member (not shown), which absorbs the expansion of the discharge tube 1 and the heat-resistant glass tube 3 in the axial direction of the discharge tube at high temperature and prevents thermal stress cracking.

【0016】さらに、前記耐熱ガラス管3と前記レーザ
管本体5とに囲まれた空間は、前記Oリング等で密閉さ
れ、真空引きにより真空断熱層4を構成することによ
り、更なる断熱強化を図っている。
Further, the space surrounded by the heat-resistant glass tube 3 and the laser tube body 5 is sealed with the O-ring or the like, and the vacuum heat insulating layer 4 is formed by vacuuming, so that the heat insulation is further enhanced. I am trying.

【0017】また、前記金属フランジ8a,8b間には
電気絶縁用の円筒状スリーブ7が設けられ、金属フラン
ジ8a,8cにはそれぞれ円筒状電極6a,6bが機械
的に固定され、電気的に接続されている。
A cylindrical sleeve 7 for electrical insulation is provided between the metal flanges 8a and 8b, and cylindrical electrodes 6a and 6b are mechanically fixed to the metal flanges 8a and 8c, respectively. It is connected.

【0018】そして、円筒状電極6aと6b間に外部電
気回路(図示せず)から高電圧パルスが印加されると、
前記放電管1の内部に予め封入されたバッファーガス中
の電極6aと6bに挟まれた放電空間10にプラズマが
生成・進展し、パルス放電電流は、このプラズマを介し
て電極6aと6b間を流れ、更に電極を介して金属製レ
ーザ管本体5を流れる。この時、前記放電空間10と前
記レーザ管本体5は同軸構造を形成し、放電空間10を
流れる放電電流の向き11aがレーザ管本体5を流れる
向き11bと逆方向になるため、レーザ管本体5の自己
インダクタンスが低減され、レーザ上下準位間の自己終
止遷移を利用した金属蒸気レーザ装置に適した立ち上り
の速い放電電流が得られる構造となっている。
When a high voltage pulse is applied from an external electric circuit (not shown) between the cylindrical electrodes 6a and 6b,
Plasma is generated and propagates in the discharge space 10 sandwiched between the electrodes 6a and 6b in the buffer gas previously sealed inside the discharge tube 1, and the pulse discharge current flows between the electrodes 6a and 6b via this plasma. And further flows through the metal laser tube body 5 via the electrodes. At this time, the discharge space 10 and the laser tube main body 5 form a coaxial structure, and the direction 11a of the discharge current flowing through the discharge space 10 is opposite to the direction 11b flowing through the laser tube main body 5. Has a reduced self-inductance, and has a structure capable of obtaining a fast rising discharge current suitable for a metal vapor laser device utilizing a self-terminating transition between upper and lower laser levels.

【0019】その結果、前記金属蒸気に、前記パルス放
電エネルギーの一部が移行し、一部の金属蒸気原子に反
転分布状態が形成されるため、誘導放出光の光共振器
(図示せず)による増幅作用によってレーザ発振が達成
される。
As a result, a part of the pulse discharge energy is transferred to the metal vapor, and a population inversion state is formed in a part of the metal vapor atoms, so that an optical resonator (not shown) for stimulated emission light. Laser oscillation is achieved by the amplifying action by.

【0020】従来のレーザ装置では、上述した如く、放
電管1の外周は一様な厚みで、かつ、一様な断熱特性を
具備した断熱層2で同軸状に配設されていたため、管壁
温度は放電管軸方向の中央部で最大で、端部に向かって
単調減少する単峰性分布を形成していたため、レーザ媒
質となる金属蒸気密度も前記管壁温度と同様に、単峰性
分布を呈することになる。
In the conventional laser device, as described above, the outer circumference of the discharge tube 1 is coaxially arranged with the heat insulating layer 2 having a uniform thickness and uniform heat insulating property, and therefore, the tube wall. Since the temperature was maximum in the central part in the axial direction of the discharge tube and formed a monomodal distribution that monotonically decreased toward the end, the metal vapor density of the laser medium, like the tube wall temperature, was also monomodal. It will have a distribution.

【0021】このため、レーザ発振に寄与し得る放電管
1内の有効領域が中心部の高温領域に制限されていたの
で、放電体積を増大させることなくレーザ出力、及び発
振効率の向上を図ることは困難であった。
For this reason, the effective region in the discharge tube 1 which can contribute to laser oscillation is limited to the high temperature region of the central portion, so that the laser output and the oscillation efficiency can be improved without increasing the discharge volume. Was difficult.

【0022】そこで、本実施例では、図2に断熱層2の
詳細を示すように、断熱層2の軸方向中央部の厚みを薄
くし、前記中央部での径方向への放熱が、放電管1の中
央部と端部とに挟まれた厚みの厚い断熱領域での放熱よ
り顕著になる。
Therefore, in this embodiment, as shown in detail in FIG. 2, the thickness of the heat insulating layer 2 at the central portion in the axial direction is reduced, and the heat radiation in the radial direction at the central portion is discharged. It becomes more noticeable than the heat radiation in the thick heat insulating region sandwiched between the central portion and the end portion of the tube 1.

【0023】このため、図3に放電管軸方向長さに対す
る管壁温度12と銅蒸気密度分布13a,13bの特性
を示すごとく、放電管中央部の管壁温度12は極小とな
り、一方、放電管中央部と端部とに挟まれた領域での管
壁温度12は極大となる双峰性の管壁温度分布を形成し
得る。
Therefore, as shown in FIG. 3 which shows the characteristics of the tube wall temperature 12 and the copper vapor density distributions 13a and 13b with respect to the axial length of the discharge tube, the tube wall temperature 12 at the central portion of the discharge tube becomes minimum, while the discharge The tube wall temperature 12 in the region sandwiched between the central part and the end part of the tube can form a maximally bimodal tube wall temperature distribution.

【0024】この結果、管壁温度で決まる金属特有の飽
和蒸気圧に達した金属蒸気は、図3に示すように、過渡
的には、管壁温度12が極小となる放電管軸方向の中央
部で銅蒸気密度が極小となり、放電管軸方向の中央部と
端部に挟まれた領域では極大となる双峰性密度分布13
aを呈することになる。
As a result, as shown in FIG. 3, the metal vapor that has reached the saturated vapor pressure peculiar to the metal, which is determined by the tube wall temperature, transiently has the tube wall temperature 12 at the minimum center in the axial direction of the discharge tube. Density distribution where the copper vapor density is minimal in the area, and is maximal in the area sandwiched between the center and the end in the axial direction of the discharge tube.
will exhibit a.

【0025】しかし、同様に、図3の金属蒸気の双峰性
密度分布13aにより、放電管1内では金属蒸気の密度
勾配が生じるため、放電管軸方向の中心部と端部に向か
ってそれぞれ同時に金属蒸気の拡散14a,14b,1
4c,14dが生じ、少なくとも放電管軸方向の最端部
を除いて、定常的には均一な金属蒸気密度分布の平衡状
態13bが放電管1内に形成され得る。
However, similarly, since the density gradient of the metal vapor is generated in the discharge tube 1 due to the bimodal density distribution 13a of the metal vapor shown in FIG. 3, the density gradient of the metal vapor is directed toward the central portion and the end portion in the axial direction of the discharge tube. At the same time diffusion of metal vapors 14a, 14b, 1
4c and 14d occur, and the equilibrium state 13b having a uniform metal vapor density distribution can be constantly formed in the discharge tube 1 except at least the outermost end in the axial direction of the discharge tube.

【0026】これにより、放電長に占めるレーザ媒質長
の割合が増大し、また、拡散領域が放電管1の最端部に
限定されるため、放電体積を増加させることなく、高出
力・高発振効率化及び長時間運転の可能な金属蒸気レー
ザ装置を提供できる。
As a result, the ratio of the laser medium length to the discharge length increases, and the diffusion region is limited to the outermost end of the discharge tube 1, so that the high output and high oscillation can be achieved without increasing the discharge volume. It is possible to provide a metal vapor laser device that is efficient and can be operated for a long time.

【0027】図2に示した断熱部材2は一様な断熱特性
を有する一体構造であったが、更に、図4から図10に
示す他の実施例のように、同一の断熱性能を有する複数
の断熱部材の組合わせでも、前記双峰性管壁温度分布を
達成することができる。
Although the heat insulating member 2 shown in FIG. 2 has an integrated structure having uniform heat insulating characteristics, a plurality of heat insulating members 2 having the same heat insulating performance as in the other embodiments shown in FIGS. The above bimodal tube wall temperature distribution can also be achieved by combining the above heat insulating members.

【0028】即ち、図4に示す実施例は、断熱層2を軸
方向に3分割し、中央部の厚みの薄い断熱層と、その両
端の厚みの厚い断熱層とを突き合わせた構造で断熱部材
を構成したものである。
That is, in the embodiment shown in FIG. 4, the heat insulating layer 2 is divided into three parts in the axial direction, and a heat insulating layer having a thin central portion and thick heat insulating layers at both ends thereof are butted against each other. Is configured.

【0029】図5に示す実施例は、中央部の厚みの薄い
断熱層とその両端の厚みの厚い断熱層とをはめ合い構造
にして断熱部材を構成したものである。
In the embodiment shown in FIG. 5, the heat insulating member has a structure in which a thin heat insulating layer at the central portion and thick heat insulating layers at both ends thereof are fitted to each other.

【0030】図6に示す実施例は、中央部の厚みの薄い
部位にて軸方向に2分割された断熱層同士の突き合わせ
構造で断熱部材を構成したものである。
In the embodiment shown in FIG. 6, the heat insulating member is constructed by abutting structure of heat insulating layers divided into two in the axial direction at a thin portion of the central portion.

【0031】図7に示す実施例は、中央部の厚みの薄い
断熱層と一方の厚みの厚い断熱層を一体構造とし、これ
と残る厚みの厚い断熱層とを突き合わせた構造で断熱部
材を構成したものである。
In the embodiment shown in FIG. 7, the heat insulating member having a structure in which the heat insulating layer having a small thickness at the central portion and the heat insulating layer having a large thickness on one side are integrated, and the remaining heat insulating layer having a large thickness is abutted against each other. It was done.

【0032】図8に示す実施例は、図7に示す突き合わ
せ構造をはめ合い構造に変形して断熱部材を構成したも
のである。
In the embodiment shown in FIG. 8, a heat insulating member is constructed by modifying the butt structure shown in FIG. 7 into a mating structure.

【0033】図9に示す実施例は、図6に示す突き合わ
せ構造を厚みの薄い中央部ではめ合い構造に変形して断
熱部材を構成したものである。
In the embodiment shown in FIG. 9, the abutting structure shown in FIG. 6 is transformed into a mating structure in the thin central portion to form a heat insulating member.

【0034】図10に示す実施例は、厚みが一様な一体
の断熱層の端部外周に更なる断熱層を同軸状に配設して
断熱部材を構成したものである。
In the embodiment shown in FIG. 10, a further heat insulating layer is coaxially arranged on the outer periphery of the end portion of an integrated heat insulating layer having a uniform thickness to form a heat insulating member.

【0035】図11に示す実施例は、厚みの厚い断熱層
の一方の端部外周をテーパ状とし、このテーパ状断熱層
と厚みの薄い断熱層とを突き合わせて断熱部材を構成し
たものである。
In the embodiment shown in FIG. 11, the outer periphery of one end of the thick heat insulating layer is tapered, and the heat insulating member is formed by abutting the tapered heat insulating layer and the thin heat insulating layer. .

【0036】図12に示す実施例は、上述のテーパ状断
熱層の突き合わせ構造にして断熱部材を構成したもので
ある。
In the embodiment shown in FIG. 12, a heat insulating member is constructed by the abutting structure of the above-mentioned tapered heat insulating layers.

【0037】上記断熱構造は、断熱層2の軸方向中央部
の厚みを薄くするため、放電管1の軸方向中央部に位置
する断熱層の外周長をその端部に比して短くする構造と
したが、図13に示す実施例では、逆に、3分割された
断熱部材において、断熱層2の中央部の内周長をその端
部の内周長に比して長くして突合わせ構造としたことを
特徴としている。他の構成は図1に示したものと同様で
ある。
In the above heat insulating structure, the thickness of the heat insulating layer 2 at the central portion in the axial direction is made thin, so that the outer peripheral length of the heat insulating layer located at the central portion in the axial direction of the discharge tube 1 is made shorter than the end portion thereof. However, in the embodiment shown in FIG. 13, conversely, in the three-divided heat insulating member, the inner peripheral length of the central portion of the heat insulating layer 2 is made longer than the inner peripheral length of the end portion, and the abutting is performed. It is characterized by having a structure. The other structure is similar to that shown in FIG.

【0038】図14に示す実施例は、内周長の短い断熱
層と外周長の長い断熱層とを一体構造とし、この断熱層
と残る内周長の短い断熱層とを突合わせた構造で断熱部
材を構成したものである。
The embodiment shown in FIG. 14 has a structure in which a heat insulating layer having a short inner circumference and a heat insulating layer having a long outer circumference are integrated with each other, and the heat insulating layer and the remaining heat insulating layer having a short inner circumference are butted against each other. This is a heat insulating member.

【0039】図15に示す実施例は、図14の突合わせ
構造をはめ合い構造の変形した例である。
The embodiment shown in FIG. 15 is a modification of the fitting structure of the butt structure of FIG.

【0040】図16に示す実施例は、図13をはめ合い
構造に変形した例である。
The embodiment shown in FIG. 16 is an example in which FIG. 13 is modified into a fitting structure.

【0041】図17に示す実施例は、一様な断熱特性を
有する一体の断熱層の端部内面に、同軸状に断熱層を配
設した構造である。
The embodiment shown in FIG. 17 has a structure in which a heat insulating layer is coaxially arranged on the inner surface of an end of an integral heat insulating layer having uniform heat insulating properties.

【0042】図18に示す実施例は、端部内面をテーパ
状にした断熱層の突合わせ構造である。
The embodiment shown in FIG. 18 has a butt structure of heat insulating layers in which the inner surface of the end is tapered.

【0043】図19に示す実施例は、図18において、
軸方向中央部に内周長の長い厚みの一様な断熱層部材を
挿入し、突合わせ構造とした実施例である。
The embodiment shown in FIG. 19 is similar to that of FIG.
This is an example in which a uniform heat insulating layer member having a long inner peripheral length is inserted in the central portion in the axial direction to form a butt structure.

【0044】図20に示す実施例は、放電管1と断熱層
2とを収納した耐熱ガラス管3の外周で、かつ、放電管
1の中央部を除く部位に、別の断熱層15を同軸状に配
設したことを特徴とする。
In the embodiment shown in FIG. 20, another heat insulating layer 15 is coaxially provided on the outer periphery of the heat-resistant glass tube 3 accommodating the discharge tube 1 and the heat insulating layer 2 and at a portion other than the central portion of the discharge tube 1. It is characterized in that it is arranged in a shape.

【0045】図21に示す実施例は、図20の断熱層1
5と同様の部位に、少なくとも1枚以上の金属製熱放射
板16を設けたことを特徴とする。
The embodiment shown in FIG. 21 is the heat insulating layer 1 of FIG.
It is characterized in that at least one or more metal heat radiation plates 16 are provided in the same portion as in FIG.

【0046】図22に示す実施例は、真空断熱層4内の
放電管1の中央部に位置する金属製レーザ管本体5の内
面に熱吸収体17を設け、放電管1の中央部径方向から
の放射熱を熱吸収体17により吸収し、吸収した熱を真
空断熱層4の外周に設けられた水、あるいは油等の冷却
層19により除去し、放電管1の軸方向中央部の管壁温
度を端部より低下させることを特徴とする。
In the embodiment shown in FIG. 22, the heat absorber 17 is provided on the inner surface of the metallic laser tube body 5 located in the central portion of the discharge tube 1 in the vacuum heat insulating layer 4, and the radial direction of the central portion of the discharge tube 1 is set. Radiant heat from the heat absorbing body 17 is absorbed by the heat absorbing body 17, and the absorbed heat is removed by a cooling layer 19 such as water or oil provided on the outer circumference of the vacuum heat insulating layer 4, and the tube at the central portion in the axial direction of the discharge tube 1 is removed. It is characterized in that the wall temperature is lowered from the end.

【0047】図23に示す実施例は、真空断熱層4内に
放電管1の軸方向中央部に位置する部位に少なくとも1
枚以上の金属製熱放射板16を設け、この熱放射板16
に複数の開孔部18を設けることにより、放電管1の軸
方向中央部径方向からの放熱を開孔部18を通して促進
させることを特徴とする。
In the embodiment shown in FIG. 23, at least one portion is provided in the vacuum heat insulating layer 4 at a portion located at the central portion in the axial direction of the discharge tube 1.
One or more metal heat radiation plates 16 are provided.
By providing a plurality of openings 18 in the discharge tube 1, heat dissipation from the axial center radial direction of the discharge tube 1 is promoted through the openings 18.

【0048】図25に示す実施例は、真空断熱層4の外
周に同軸状に冷却層20を配設し、この冷却層20を放
電管1の軸方向中央部に位置する部位のレーザ管本体5
に設けられた金属フランジ8dと8eにより隔室20を
形成することにより、隔室20の冷却用冷媒の温度を、
その両側の冷却層19に流す冷却用冷媒の温度より低く
して、放電管1の軸方向端部より中央部からの熱を多く
吸収・除去することを特徴としている。
In the embodiment shown in FIG. 25, the cooling layer 20 is coaxially arranged on the outer periphery of the vacuum heat insulating layer 4, and the cooling layer 20 is located at the central portion of the discharge tube 1 in the axial direction. 5
By forming the compartment 20 by the metal flanges 8d and 8e provided in the compartment, the temperature of the cooling medium in the compartment 20 is
It is characterized in that the temperature of the cooling refrigerant flowing in the cooling layers 19 on both sides thereof is made lower than that of the cooling tube 19 so that a large amount of heat from the central portion of the discharge tube 1 is absorbed and removed from the axial end portion.

【0049】図26に示す実施例は、金属フランジ8d
と8eにより、Oリング等の弾性部材を介して、放電管
1の軸方向中央部に位置する耐熱ガラス管3と金属製の
レーザ管本体5で囲まれた領域に隔室20を設け、図2
5の実施例と同様に、隔室20に両側の冷却層19より
低い温度の冷媒を流し、放電管1の軸方向中央部からの
熱を端部に比べて多く吸収・除去することを特徴として
いる。
The embodiment shown in FIG. 26 has a metal flange 8d.
And 8e provide a compartment 20 in a region surrounded by the heat-resistant glass tube 3 and the metal laser tube body 5 located in the axial center of the discharge tube 1 via an elastic member such as an O-ring. Two
As in the fifth embodiment, a coolant having a temperature lower than that of the cooling layers 19 on both sides is made to flow in the compartment 20 to absorb and remove a large amount of heat from the axial central portion of the discharge tube 1 compared to the end portion. I am trying.

【0050】図27に示す実施例は、真空断熱層4にお
いて、放電管1の軸方向中央部に位置する部位に、例え
ば、金属等の熱良導体から成るバネ状板21を、耐熱ガ
ラス管3の外周面と金属製レーザ管本体5の内周面とに
接触して配設することにより、放電管1の軸方向中央部
から径方向に伝熱される熱を、バネ状板21の熱伝導を
介して金属製レーザ管本体5に放熱することを特徴とし
ている。
In the embodiment shown in FIG. 27, in the vacuum heat insulating layer 4, a spring-shaped plate 21 made of, for example, a good heat conductor such as metal is attached to a portion of the vacuum heat insulating layer 4 located at the central portion in the axial direction of the discharge tube 1. By disposing in contact with the outer peripheral surface of the metal laser tube main body 5 and the inner peripheral surface of the metal laser tube main body 5, the heat transferred in the radial direction from the central portion in the axial direction of the discharge tube 1 is transferred to the heat conduction of the spring-shaped plate 21. It is characterized in that heat is radiated to the metal laser tube body 5 via the.

【0051】図28に示す実施例は、図27と同様に、
真空断熱層4内の放電管1の軸方向中央部に位置する部
位に、図29に示すように、例えば、金属製の熱良導体
から成るリング状のバネ板材21を、耐熱ガラス管3の
外周面とレーザ管本体5の内周面に接触して配設するこ
とにより、金属製のバネ状板材21の熱伝導を介して、
金属製レーザ管本体5に放熱することを特徴としてい
る。
The embodiment shown in FIG. 28 is similar to that of FIG.
As shown in FIG. 29, for example, a ring-shaped spring plate member 21 made of a metal good heat conductor is provided on the outer peripheral surface of the heat-resistant glass tube 3 in a portion of the vacuum heat insulating layer 4 located at the central portion in the axial direction of the discharge tube 1. By arranging in contact with the surface and the inner peripheral surface of the laser tube main body 5, the heat conduction of the metal spring-shaped plate member 21
It is characterized in that heat is radiated to the metal laser tube body 5.

【0052】さらに、放電管1の軸方向中央部に位置す
る真空断熱層4内に、図30に示すように、例えば、金
属製の熱良導体から成るリング状のバネ状板材21を設
けてもよい。
Further, as shown in FIG. 30, for example, a ring-shaped spring-like plate member 21 made of a metal good conductor is provided in the vacuum heat insulating layer 4 located at the central portion in the axial direction of the discharge tube 1. Good.

【0053】図31に示す実施例では、放電管1の外周
を同軸状に取り巻く断熱部材2において、図32に示す
ように、放電管1の軸方向中央部に位置する断熱部材の
かさ密度を端部の断熱部材のかさ密度より小さくし、放
電管1の軸方向中央部からの放熱を端部より促進したこ
とを特徴としている。
In the embodiment shown in FIG. 31, in the heat insulating member 2 that surrounds the outer circumference of the discharge tube 1 coaxially, as shown in FIG. 32, the bulk density of the heat insulating member located at the axial center of the discharge tube 1 is It is characterized in that it is made smaller than the bulk density of the heat insulating member at the end to promote heat dissipation from the axial center of the discharge tube 1 from the end.

【0054】図33に示す断熱部材の構造は、一様な断
熱特性を具備した円筒構造において、断熱層2の軸方向
中央部に、断熱層2を形成する断熱部材より高熱伝導率
を有する複数の断熱部材23a,23b,23cを断熱
層2と交互に配列することを特徴とするものである。こ
れにより、図34に示す熱伝導状態図から明らかなごと
く、放電管1の径方向に管壁を通して伝熱される熱流束
は、断熱層2と断熱部材23a,23b,23cをそれ
ぞれ直接通過するが、低熱伝導率を有する断熱層2が高
熱伝導率を有する断熱部材23a,23b,23cと交
互に隣接しているため、断熱層2から断熱部材23a,
23b,23cへの熱伝導による熱流束24が生成す
る。
The structure of the heat insulating member shown in FIG. 33 is a cylindrical structure having uniform heat insulating properties, and a plurality of heat insulating members each having a higher thermal conductivity than the heat insulating member forming the heat insulating layer 2 are provided in the axial central portion of the heat insulating layer 2. The heat insulating members 23a, 23b, and 23c are alternately arranged with the heat insulating layer 2. Thereby, as is clear from the heat conduction state diagram shown in FIG. 34, the heat flux transferred through the tube wall in the radial direction of the discharge tube 1 directly passes through the heat insulating layer 2 and the heat insulating members 23a, 23b, 23c, respectively. Since the heat insulating layer 2 having low thermal conductivity is adjacent to the heat insulating members 23a, 23b, and 23c having high heat conductivity alternately, the heat insulating layer 2 to the heat insulating member 23a,
Heat flux 24 is generated by heat conduction to 23b and 23c.

【0055】その結果、放電管1の中央部からの放熱が
高熱伝導率を有する断熱部材23a,23b,23cを
通して促進され、放電管1の中央部と端部に挟まれた領
域からの放熱に比して顕著となるため、図3と同様の定
常的な金属蒸気の密度の均一分布13bが放電管1内に
形成され得る。
As a result, the heat radiation from the central portion of the discharge tube 1 is promoted through the heat insulating members 23a, 23b and 23c having high thermal conductivity, and the heat radiation from the area sandwiched between the central portion and the end portion of the discharge tube 1 is performed. Since it is remarkable in comparison, a steady uniform metal vapor density distribution 13b similar to that shown in FIG. 3 can be formed in the discharge tube 1.

【0056】図35に示す実施例は、真空断熱層4内の
放電管1と断熱部材2とを収納した耐熱ガラス管3の外
周面で、少なくとも放電管1の軸方向中央部を除いた部
位に、例えば、電気絶縁被覆された発熱体25を配設
し、この発熱体25により耐熱ガラス管3を加熱するこ
とにより、放電管1内に双峰性の管壁温度分布を形成す
ることを特徴とする。
In the embodiment shown in FIG. 35, the outer peripheral surface of the heat-resistant glass tube 3 accommodating the discharge tube 1 and the heat insulating member 2 in the vacuum heat insulating layer 4 is a portion excluding at least the central portion in the axial direction of the discharge tube 1. In addition, for example, by disposing a heat-generating body 25 which is covered with electric insulation and heating the heat-resistant glass tube 3 by the heat-generating body 25, it is possible to form a bimodal tube wall temperature distribution in the discharge tube 1. Characterize.

【0057】図36に示す実施例は、レーザ管本体5の
外周面において、少なくとも放電管1の軸方向中央部を
除く部位に、発熱体25を配設したことを特徴としてい
る。
The embodiment shown in FIG. 36 is characterized in that the heating element 25 is arranged on the outer peripheral surface of the laser tube main body 5 at least at a portion except the central portion in the axial direction of the discharge tube 1.

【0058】[0058]

【発明の効果】以上説明した本発明の金属蒸気レーザ装
置によれば、ガス中の放電エネルギーにより金属源を加
熱・蒸発させて金属蒸気を発生させ、その金属蒸気から
成るレーザ媒質を形成させる放電管の外周に同軸状に設
けられた断熱部材が、前記放電管内中央部の管壁温度が
極小となり、かつ、放電管中央部と放電管端部の間の管
壁温度が極大となる双峰特性の放電管内管壁温度分布を
形成する断熱特性を具備しているものであるから、ガス
中の放電エネルギーにより、予め放電管内に配設された
金属塊が加熱・蒸発して生成された金属蒸気は、上記双
峰性管壁温度分布に起因した密度勾配により、放電管の
中央部と端部の両方向に同時に拡散するため、放電管の
最端部を除いて、金属蒸気の密度勾配がゼロになる定常
状態では、金属蒸気が均一分布する領域は放電管の軸方
向に沿って拡大し、長尺、かつ、平坦な金属蒸気密度分
布が形成されるので、放電管内の管壁温度が放電管の軸
方向に沿って双峰性分布となり、放電管の軸方向に長
尺、かつ、平坦な金属蒸気密度分布が得られ、従って、
放電長に占める放電管の軸方向のレーザ媒質長の割合が
増加し、高出力、かつ、高効率なレーザ発振が得られ
る。
According to the metal vapor laser device of the present invention described above, a discharge for heating and evaporating a metal source by the discharge energy in gas to generate metal vapor and forming a laser medium made of the metal vapor. The heat insulating member coaxially provided on the outer periphery of the tube has a twin-peak structure in which the tube wall temperature in the central portion of the discharge tube is minimized and the tube wall temperature between the discharge tube central portion and the discharge tube end is maximized. Since it has adiabatic characteristics that form the temperature distribution inside the discharge tube, the metal generated in advance by heating and evaporating the metal mass that was previously placed in the discharge tube due to the discharge energy in the gas. Since the vapor is simultaneously diffused in both directions of the central portion and the end portion of the discharge tube due to the density gradient caused by the bimodal tube wall temperature distribution, the density gradient of the metal vapor is different except for the outermost end portion of the discharge tube. In a steady state of zero, metal vaporization The area in which the gas is evenly distributed expands along the axial direction of the discharge tube, and a long and flat metal vapor density distribution is formed.Therefore, the temperature of the wall inside the discharge tube is doubled along the axial direction of the discharge tube. It has a ridged distribution, and a long and flat metal vapor density distribution is obtained in the axial direction of the discharge tube. Therefore,
The ratio of the laser medium length in the axial direction of the discharge tube to the discharge length is increased, and high output and highly efficient laser oscillation can be obtained.

【0059】また、平坦な金属蒸気密度分布の放電管の
軸方向への拡大により、放電管内の金属蒸気の拡散が生
じる領域は少なくとも放電管の最端部にのみ限定される
ため、金属蒸気の消耗が大幅に低減されるので、長時間
運転の可能な金属蒸気レーザ装置を提供できる。
Further, due to the expansion of the flat metal vapor density distribution in the axial direction of the discharge tube, the region in which the metal vapor is diffused in the discharge tube is limited to at least only the end portion of the discharge tube. Since the consumption is greatly reduced, it is possible to provide a metal vapor laser device that can be operated for a long time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の金属蒸気レーザ装置の一実施例を示す
半断面図である。
FIG. 1 is a half sectional view showing an embodiment of a metal vapor laser device of the present invention.

【図2】本発明の金属蒸気レーザ装置の一実施例に採用
される断熱部材の断面斜視図である。
FIG. 2 is a cross-sectional perspective view of a heat insulating member used in an embodiment of the metal vapor laser device of the present invention.

【図3】本発明の金属蒸気レーザ装置の一実施例におけ
る放電管内の管壁温度と金属蒸気密度の軸方向分布特性
図である。
FIG. 3 is an axial distribution characteristic diagram of a tube wall temperature and a metal vapor density in a discharge tube in an embodiment of the metal vapor laser device of the present invention.

【図4】本発明に採用される断熱部材の他の実施例を示
す断面図である。
FIG. 4 is a cross-sectional view showing another embodiment of a heat insulating member adopted in the present invention.

【図5】本発明に採用される断熱部材の他の実施例を示
す断面図である。
FIG. 5 is a sectional view showing another embodiment of a heat insulating member adopted in the present invention.

【図6】本発明に採用される断熱部材の他の実施例を示
す断面図である。
FIG. 6 is a cross-sectional view showing another embodiment of a heat insulating member adopted in the present invention.

【図7】本発明に採用される断熱部材の他の実施例を示
す断面図である。
FIG. 7 is a cross-sectional view showing another embodiment of a heat insulating member used in the present invention.

【図8】本発明に採用される断熱部材の他の実施例を示
す断面図である。
FIG. 8 is a sectional view showing another embodiment of a heat insulating member adopted in the present invention.

【図9】本発明に採用される断熱部材の他の実施例を示
す断面図である。
FIG. 9 is a cross-sectional view showing another embodiment of a heat insulating member adopted in the present invention.

【図10】本発明に採用される断熱部材の他の実施例を
示す断面図である。
FIG. 10 is a sectional view showing another embodiment of a heat insulating member adopted in the present invention.

【図11】本発明に採用される断熱部材の他の実施例を
示す断面図である。
FIG. 11 is a sectional view showing another embodiment of the heat insulating member adopted in the present invention.

【図12】本発明に採用される断熱部材の他の実施例を
示す断面図である。
FIG. 12 is a sectional view showing another embodiment of a heat insulating member used in the present invention.

【図13】本発明の金属蒸気レーザ装置の他の実施例を
示す半断面図である。
FIG. 13 is a half cross-sectional view showing another embodiment of the metal vapor laser device of the present invention.

【図14】図13に示した実施例に採用される断熱部材
の他の実施例を示す断面図である。
14 is a cross-sectional view showing another embodiment of the heat insulating member used in the embodiment shown in FIG.

【図15】図13に示した実施例に採用される断熱部材
の他の実施例を示す断面図である。
15 is a cross-sectional view showing another embodiment of the heat insulating member used in the embodiment shown in FIG.

【図16】図13に示した実施例に採用される断熱部材
の他の実施例を示す断面図である。
16 is a cross-sectional view showing another embodiment of the heat insulating member adopted in the embodiment shown in FIG.

【図17】図13に示した実施例に採用される断熱部材
の他の実施例を示す断面図である。
17 is a cross-sectional view showing another embodiment of the heat insulating member used in the embodiment shown in FIG.

【図18】図13に示した実施例に採用される断熱部材
の他の実施例を示す断面図である。
FIG. 18 is a cross-sectional view showing another embodiment of the heat insulating member adopted in the embodiment shown in FIG.

【図19】図13に示した実施例に採用される断熱部材
の他の実施例を示す断面図である。
FIG. 19 is a cross-sectional view showing another embodiment of the heat insulating member adopted in the embodiment shown in FIG.

【図20】本発明の金属蒸気レーザ装置の他の実施例を
示す半断面図である。
FIG. 20 is a half cross-sectional view showing another embodiment of the metal vapor laser device of the present invention.

【図21】本発明の金属蒸気レーザ装置の他の実施例を
示す半断面図である。
FIG. 21 is a half cross-sectional view showing another embodiment of the metal vapor laser device of the present invention.

【図22】本発明の金属蒸気レーザ装置の他の実施例を
示す半断面図である。
FIG. 22 is a half sectional view showing another embodiment of the metal vapor laser device of the present invention.

【図23】本発明の金属蒸気レーザ装置の他の実施例を
示す半断面図である。
FIG. 23 is a half cross-sectional view showing another embodiment of the metal vapor laser device of the present invention.

【図24】図23に示した実施例に採用される熱放射板
の詳細を示す斜視図である。
FIG. 24 is a perspective view showing details of a heat radiation plate adopted in the embodiment shown in FIG. 23.

【図25】本発明の金属蒸気レーザ装置の他の実施例を
示す半断面図である。
FIG. 25 is a half cross-sectional view showing another embodiment of the metal vapor laser device of the present invention.

【図26】本発明の金属蒸気レーザ装置の他の実施例を
示す半断面図である。
FIG. 26 is a half cross-sectional view showing another embodiment of the metal vapor laser device of the present invention.

【図27】本発明の金属蒸気レーザ装置の他の実施例を
示す半断面図である。
FIG. 27 is a half cross-sectional view showing another embodiment of the metal vapor laser device of the present invention.

【図28】本発明の金属蒸気レーザ装置の他の実施例を
示す半断面図である。
FIG. 28 is a half cross-sectional view showing another embodiment of the metal vapor laser device of the present invention.

【図29】図28図のI〜II線に沿う断面図である。29 is a cross-sectional view taken along line I-II of FIG. 28.

【図30】図28に採用されるバネ板材の他の実施例を
示す部分断面図である。
FIG. 30 is a partial cross-sectional view showing another embodiment of the spring plate member adopted in FIG. 28.

【図31】本発明の金属蒸気レーザ装置の他の実施例を
示す半断面図である。
FIG. 31 is a half cross-sectional view showing another embodiment of the metal vapor laser device of the present invention.

【図32】図31に採用される断熱部材の他の実施例を
示す断面斜視図である。
32 is a sectional perspective view showing another embodiment of the heat insulating member adopted in FIG. 31. FIG.

【図33】図31に採用される断熱部材の他の実施例を
示す断面斜視図である。
33 is a sectional perspective view showing another embodiment of the heat insulating member adopted in FIG. 31. FIG.

【図34】図33に示した断熱部材の熱伝導状態を示す
図である。
34 is a diagram showing a heat conduction state of the heat insulating member shown in FIG. 33.

【図35】本発明の金属蒸気レーザ装置の他の実施例を
示す断面斜視図である。
FIG. 35 is a sectional perspective view showing another embodiment of the metal vapor laser device of the present invention.

【図36】本発明の金属蒸気レーザ装置の他の実施例を
示す断面斜視図である。
FIG. 36 is a sectional perspective view showing another embodiment of the metal vapor laser device of the present invention.

【符号の説明】[Explanation of symbols]

1…円筒状放電管、2…円筒状断熱層、3…耐熱ガラス
管、4…真空断熱層、5…レーザ管本体、6a,6b…
円筒状電極、7…電気絶縁スリーブ、8a,8b,8
c,8d,8e…金属フランジ、9…金属塊、10…放
電空間、11a,11b…放電電流の向き、12…管壁
温度、13a…金属蒸気密度の過渡分布、13b…金属
蒸気密度の定常分布、14a,14b,14c,14d
…金属蒸気の拡散方向、15…断熱部材、16…熱放射
板、17…熱吸収体、18…開孔部、19…冷却層、2
0…隔室、21…バネ状板材、23a,23b,23c
…高熱伝導率の断熱部材、25…発熱体。
DESCRIPTION OF SYMBOLS 1 ... Cylindrical discharge tube, 2 ... Cylindrical heat insulation layer, 3 ... Heat-resistant glass tube, 4 ... Vacuum heat insulation layer, 5 ... Laser tube main body, 6a, 6b ...
Cylindrical electrode, 7 ... Electrically insulating sleeve, 8a, 8b, 8
c, 8d, 8e ... Metal flange, 9 ... Metal ingot, 10 ... Discharge space, 11a, 11b ... Direction of discharge current, 12 ... Tube wall temperature, 13a ... Transient distribution of metal vapor density, 13b ... Steady state of metal vapor density Distribution, 14a, 14b, 14c, 14d
... direction of diffusion of metal vapor, 15 ... heat insulating member, 16 ... heat radiating plate, 17 ... heat absorber, 18 ... aperture, 19 ... cooling layer, 2
0 ... compartment, 21 ... spring-like plate material, 23a, 23b, 23c
... A heat insulating member having a high thermal conductivity, 25 ... A heating element.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 和田 昭 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 竹森 聖 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Akira Wada Akira Wada 4026 Kuji Town, Hitachi City, Ibaraki Prefecture Hitate Manufacturing Co., Ltd.Hitachi Laboratory Ltd. Hitachi Research Laboratory

Claims (34)

【特許請求の範囲】[Claims] 【請求項1】ガス中の放電エネルギーにより金属源を加
熱・蒸発させて金属蒸気を発生させ、その金属蒸気から
成るレーザ媒質を形成させる放電管と、該放電管の外周
に同軸状に設けられた断熱部材と、該断熱部材の外周に
同軸状に設けられ、真空断熱層を形成する金属製レーザ
管とを備えた金属蒸気レーザ装置において、前記断熱部
材は、前記放電管内中央部の管壁温度が極小となり、か
つ、放電管中央部と放電管端部の間の管壁温度が極大と
なる双峰特性の放電管内管壁温度分布を形成する断熱特
性を具備していることを特徴とする金属蒸気レーザ装
置。
1. A discharge tube for heating and evaporating a metal source by discharge energy in a gas to generate a metal vapor and forming a laser medium composed of the metal vapor, and a discharge tube coaxially provided on the outer circumference of the discharge tube. In a metal vapor laser device comprising a heat insulating member and a metal laser tube coaxially provided on the outer periphery of the heat insulating member and forming a vacuum heat insulating layer, the heat insulating member is a tube wall in a central portion of the discharge tube. It is characterized by having adiabatic characteristics that form a twin-peaked inner wall temperature distribution of the discharge tube that minimizes the temperature and maximizes the tube wall temperature between the discharge tube center and the discharge tube end. Metal vapor laser equipment.
【請求項2】ガス中の放電エネルギーにより金属源を加
熱・蒸発させて金属蒸気を発生させ、その金属蒸気から
成るレーザ媒質を形成させる放電管と、該放電管の外周
に同軸状に設けられた断熱部材と、該断熱部材の外周に
同軸状に設けられ、真空断熱層を形成する金属製レーザ
管とを備えた金属蒸気レーザ装置において、前記放電管
内中央部の管壁温度が極小となり、かつ、放電管中央部
と放電管端部の間の管壁温度が極大となる双峰特性の放
電管内管壁温度分布を形成するように、前記断熱部材の
軸方向中央部の厚みをその端部の厚みより薄くしたこと
を特徴とする金属蒸気レーザ装置。
2. A discharge tube for heating and evaporating a metal source by discharge energy in a gas to generate a metal vapor and forming a laser medium made of the metal vapor, and a discharge tube coaxially provided on the outer periphery of the discharge tube. In a metal vapor laser device provided with a heat insulating member and a metal laser tube coaxially provided on the outer periphery of the heat insulating member and forming a vacuum heat insulating layer, the tube wall temperature at the central portion in the discharge tube becomes minimum, Further, the thickness of the axial center portion of the heat insulating member is adjusted so as to form a bimodal inner wall temperature distribution of the discharge tube that maximizes the tube wall temperature between the discharge tube central portion and the discharge tube end portion. A metal vapor laser device characterized by being made thinner than the thickness of the portion.
【請求項3】ガス中の放電エネルギーにより金属源を加
熱・蒸発させて金属蒸気を発生させ、その金属蒸気から
成るレーザ媒質を形成させる放電管と、該放電管の外周
に同軸状に設けられた断熱部材と、該断熱部材の外周に
同軸状に設けられ、真空断熱層を形成する金属製レーザ
管とを備えた金属蒸気レーザ装置において、前記放電管
内中央部の管壁温度が極小となり、かつ、放電管中央部
と放電管端部の間の管壁温度が極大となる双峰特性の放
電管内管壁温度分布を形成するように、前記放電管軸方
向中央部に位置する断熱部材の外周長をその端部に比し
て短くしたことを特徴とする金属蒸気レーザ装置。
3. A discharge tube for heating and evaporating a metal source by discharge energy in a gas to generate a metal vapor and forming a laser medium composed of the metal vapor, and a discharge tube coaxially provided on the outer periphery of the discharge tube. In a metal vapor laser device provided with a heat insulating member and a metal laser tube coaxially provided on the outer periphery of the heat insulating member and forming a vacuum heat insulating layer, the tube wall temperature at the central portion in the discharge tube becomes minimum, And, in order to form a temperature distribution of the inner wall of the discharge tube having a bimodal characteristic in which the temperature of the wall between the center of the discharge tube and the end of the discharge tube becomes maximum, the heat insulating member located in the center of the discharge tube in the axial direction is formed. A metal vapor laser device characterized in that the outer peripheral length is shorter than the end portion.
【請求項4】ガス中の放電エネルギーにより金属源を加
熱・蒸発させて金属蒸気を発生させ、その金属蒸気から
成るレーザ媒質を形成させる放電管と、該放電管の外周
に同軸状に設けられた断熱部材と、該断熱部材の外周に
同軸状に設けられ、真空断熱層を形成する金属製レーザ
管とを備えた金属蒸気レーザ装置において、前記放電管
内中央部の管壁温度が極小となり、かつ、放電管中央部
と放電管端部の間の管壁温度が極大となる双峰特性の放
電管内管壁温度分布を形成するように、前記放電管軸方
向中央部に位置する断熱部材の内周長を、その端部の内
周長に比して長くしたことを特徴とする金属蒸気レーザ
装置。
4. A discharge tube for heating and evaporating a metal source by discharge energy in gas to generate metal vapor and forming a laser medium made of the metal vapor, and a discharge tube coaxially provided on the outer circumference of the discharge tube. In a metal vapor laser device provided with a heat insulating member and a metal laser tube coaxially provided on the outer periphery of the heat insulating member and forming a vacuum heat insulating layer, the tube wall temperature at the central portion in the discharge tube becomes minimum, And, in order to form a temperature distribution of the inner wall of the discharge tube having a bimodal characteristic in which the temperature of the wall between the center of the discharge tube and the end of the discharge tube becomes maximum, the heat insulating member located in the center of the discharge tube in the axial direction is formed. A metal vapor laser device characterized in that the inner peripheral length is made longer than the inner peripheral length of the end portion.
【請求項5】ガス中の放電エネルギーにより金属源を加
熱・蒸発させて金属蒸気を発生させ、その金属蒸気から
成るレーザ媒質を形成させる放電管と、該放電管の外周
に同軸状に設けられた断熱部材と、該断熱部材の外周に
同軸状に設けられ、真空断熱層を形成する金属製レーザ
管とを備えた金属蒸気レーザ装置において、前記放電管
内中央部の管壁温度が極小となり、かつ、放電管中央部
と放電管端部の間の管壁温度が極大となる双峰特性の放
電管内管壁温度分布を形成するように、前記断熱部材の
軸方向中央部の断熱性能をその端部の断熱性能より低下
させたことを特徴とする金属蒸気レーザ装置。
5. A discharge tube for heating and evaporating a metal source by gas discharge energy to generate a metal vapor and forming a laser medium made of the metal vapor, and a discharge tube coaxially provided on the outer circumference of the discharge tube. In a metal vapor laser device provided with a heat insulating member and a metal laser tube coaxially provided on the outer periphery of the heat insulating member and forming a vacuum heat insulating layer, the tube wall temperature in the central portion of the discharge tube becomes minimum, In addition, the heat insulation performance of the axial center portion of the heat insulating member is adjusted so that a tube wall temperature distribution between the discharge tube central portion and the discharge tube end portion has a maximum bimodal characteristic. A metal vapor laser device characterized in that the heat insulation performance of the end portion is lowered.
【請求項6】軸方向中央部の厚みをその端部の厚みより
薄くした前記断熱部材は、全体が一体に形成されている
ことを特徴とする請求項2、又は3記載の金属蒸気レー
ザ装置。
6. The metal vapor laser device according to claim 2, wherein the heat insulating member having a thickness at a central portion in the axial direction smaller than a thickness at an end portion thereof is integrally formed. .
【請求項7】軸方向中央部の厚みをその端部の厚みより
薄くした前記断熱部材は、軸方向に3分割され、中央部
の厚みの薄い断熱部材とその両端部の厚みの厚い断熱部
材とが突き合わせ構造で形成されていることを特徴とす
る請求項2、又は3記載の金属蒸気レーザ装置。
7. The heat insulating member in which the thickness of the central portion in the axial direction is thinner than the thickness of the end portion thereof is divided into three in the axial direction, and the heat insulating member having the thin central portion and the thick thermal insulating members at both ends thereof. 4. The metal vapor laser device according to claim 2, wherein and are formed in a butted structure.
【請求項8】軸方向中央部の厚みをその端部の厚みより
薄くした前記断熱部材は、軸方向に3分割され、中央部
の厚みの薄い断熱部材とその両端部の厚みの厚い断熱部
材とがはめあい構造で形成されていることを特徴とする
請求項2、又は3記載の金属蒸気レーザ装置。
8. The heat insulating member having an axially central portion thinner than the end portions thereof is divided into three parts in the axial direction, and the central portion has a thin thermal insulating member and both ends thereof have a thick thermal insulating member. The metal vapor laser device according to claim 2 or 3, characterized in that the mating structure is formed.
【請求項9】軸方向中央部の厚みをその端部の厚みより
薄くした前記断熱部材は、前記中央部の厚みの薄い部分
で軸方向に2分割され、該部分が突き合わせ構造で形成
されていることを特徴とする請求項2、又は3記載の金
属蒸気レーザ装置。
9. The heat insulating member, wherein the thickness of the central portion in the axial direction is thinner than the thickness of the end portion thereof, is divided into two in the axial direction at the thin portion of the central portion, and the portion is formed in a butt structure. The metal vapor laser device according to claim 2 or 3, characterized in that:
【請求項10】軸方向中央部の厚みをその端部の厚みよ
り薄くした前記断熱部材は、前記中央部の厚みの薄い断
熱部材と一方の厚みの厚い断熱部材を一体構造とし、こ
れと残る厚みの厚い断熱部材とが突き合わせ構造で形成
されていることを特徴とする請求項2、又は3記載の金
属蒸気レーザ装置。
10. The heat insulating member, wherein the thickness of the central portion in the axial direction is smaller than the thickness of its end portion, has a structure in which the thin thermal insulating member of the central portion and one thick thermal insulating member are integrally formed, and remain. The metal vapor laser device according to claim 2 or 3, wherein the thick heat insulating member is formed in a butt structure.
【請求項11】軸方向中央部の厚みをその端部の厚みよ
り薄くした前記断熱部材は、前記中央部の厚みの薄い断
熱部材と一方の厚みの厚い断熱部材を一体構造とし、こ
れと残る厚みの厚い断熱部材とがはめあい構造で形成さ
れていることを特徴とする請求項2、又は3記載の金属
蒸気レーザ装置。
11. The heat insulating member, wherein the thickness of the central portion in the axial direction is made smaller than the thickness of the end portion thereof, has a structure in which a heat insulating member having a small thickness at the central portion and one heat insulating member having a large thickness are integrally formed, and this remains. The metal vapor laser device according to claim 2, wherein the heat insulating member having a large thickness is formed in a fitting structure.
【請求項12】軸方向中央部の厚みをその端部の厚みよ
り薄くした前記断熱部材は、前記中央部の厚みの薄い部
分で軸方向に2分割され、厚みの薄い中央部ではめあい
構造に形成されていることを特徴とする請求項2、又は
3記載の金属蒸気レーザ装置。
12. The heat insulating member in which the thickness of the central portion in the axial direction is thinner than the thickness of the end portion thereof is divided into two in the axial direction at the thin portion of the central portion, and a fitting structure is formed at the central portion of the thin thickness. It is formed, The metal vapor laser apparatus of Claim 2 or 3 characterized by the above-mentioned.
【請求項13】軸方向中央部の厚みをその端部の厚みよ
り薄くした前記断熱部材は、厚みが一様な一体の断熱部
材の端部外周に別の断熱部材を同軸状に配置して形成さ
れていることを特徴とする請求項2、又は3記載の金属
蒸気レーザ装置。
13. The heat insulating member, wherein the thickness of the central portion in the axial direction is smaller than the thickness of the end portion of the heat insulating member, wherein another heat insulating member is coaxially arranged on the outer periphery of the end portion of an integral heat insulating member having a uniform thickness. It is formed, The metal vapor laser apparatus of Claim 2 or 3 characterized by the above-mentioned.
【請求項14】軸方向中央部の厚みをその端部の厚みよ
り薄くした前記断熱部材は、厚みの厚い断熱部材の端部
外周をテーパ状にし、このテーパ状断熱部材と厚みの薄
い断熱部材とを突き合わせて形成されていることを特徴
とする請求項2、又は3記載の金属蒸気レーザ装置。
14. The heat insulating member, wherein the thickness of the central portion in the axial direction is smaller than the thickness of the end portion thereof, has a thicker heat insulating member with a tapered outer periphery of the end portion, and the tapered heat insulating member and the thinner heat insulating member. 4. The metal vapor laser device according to claim 2, wherein the metal vapor laser device is formed by butting.
【請求項15】軸方向中央部の厚みをその端部の厚みよ
り薄くした前記断熱部材は、厚みの厚い断熱部材の端部
外周をテーパ状にし、このテーパ状断熱部材同志を突き
合わせて形成されていることを特徴とする請求項2、又
は3記載の金属蒸気レーザ装置。
15. The heat insulating member in which the thickness of the central portion in the axial direction is thinner than the thickness of the end portion thereof, the outer circumference of the end portion of the thick heat insulating member is tapered, and the tapered heat insulating members are abutted to each other. The metal vapor laser device according to claim 2 or 3, characterized in that.
【請求項16】前記放電管軸方向中央部の内周長が、そ
の端部の内周長に比して長くなっている前記断熱部材
は、該断熱部材を軸方向に3分割し、その内の厚みの薄
い断熱部材を放電管軸方向中央部の外周側に配置して両
端部の厚みの厚い断熱部材と突き合わせ構造にして形成
したことを特徴とする請求項4記載の金属蒸気レーザ装
置。
16. The heat insulating member, wherein the inner peripheral length of the central portion in the axial direction of the discharge tube is longer than the inner peripheral length of its end portion, the heat insulating member is divided into three in the axial direction, and 5. The metal vapor laser device according to claim 4, wherein a heat insulating member having a small inner thickness is arranged on the outer peripheral side of a central portion in the axial direction of the discharge tube and has a butt structure with the heat insulating members having a thicker thickness at both ends. .
【請求項17】前記放電管軸方向中央部の内周長が、そ
の端部の内周長に比して長くなっている前記断熱部材
は、一方の端部に位置する厚みの厚い断熱部材と軸方向
中央部の外周側に位置する厚みの薄い断熱部材とを一体
構造にし、この一体構造の断熱部材の厚みの薄い先端部
と残りの端部に位置する厚みの厚い断熱部材とを突き合
わせ構造にして形成したことを特徴とする請求項4記載
の金属蒸気レーザ装置。
17. The heat insulating member, wherein the inner peripheral length of the central portion in the axial direction of the discharge tube is longer than the inner peripheral length of the end portion, the heat insulating member located at one end portion and having a large thickness. And a thin heat insulating member located on the outer peripheral side of the central portion in the axial direction are integrated with each other, and the thin end of the heat insulating member of this integrated structure and the thick heat insulating member located at the remaining end are butted against each other. The metal vapor laser device according to claim 4, wherein the metal vapor laser device has a structure.
【請求項18】前記放電管軸方向中央部の内周長が、そ
の端部の内周長に比して長くなっている前記断熱部材
は、一方の端部に位置する厚みの厚い断熱部材と軸方向
中央部の外周側に位置する厚みの薄い断熱部材とを一体
構造にし、この一体構造の断熱部材の厚みの薄い先端部
と残りの端部に位置する厚みの厚い断熱部材とをはめあ
い構造にして形成したことを特徴とする請求項4記載の
金属蒸気レーザ装置。
18. The heat insulating member, wherein the inner peripheral length of the central portion in the axial direction of the discharge tube is longer than the inner peripheral length of its end portion, the heat insulating member located at one end portion and having a large thickness. And a thin heat insulating member located on the outer peripheral side of the central portion in the axial direction are integrated into a structure, and the thin end of this integrated heat insulating member and the thick heat insulating member located at the remaining end are fitted together. The metal vapor laser device according to claim 4, wherein the metal vapor laser device has a structure.
【請求項19】前記放電管軸方向中央部の内周長が、そ
の端部の内周長に比して長くなっている前記断熱部材
は、該断熱部材を軸方向に3分割し、その内の厚みの薄
い断熱部材を放電管軸方向中央部の外周側に配置して両
端部の厚みの厚い断熱部材とはめあい構造にして形成し
たことを特徴とする請求項4記載の金属蒸気レーザ装
置。
19. The heat insulating member, wherein the inner peripheral length of the central portion in the axial direction of the discharge tube is longer than the inner peripheral length of its end portion, the heat insulating member is axially divided into three parts, 5. The metal vapor laser device according to claim 4, wherein a heat insulating member having a small inner thickness is arranged on the outer peripheral side of the central portion in the axial direction of the discharge tube to be fitted to the heat insulating members having a large thickness at both ends. .
【請求項20】前記放電管軸方向中央部の内周長が、そ
の端部の内周長に比して長くなっている前記断熱部材
は、厚みが一様な一体の断熱部材の端部内周に別の断熱
部材を同軸状に配置して形成されていることを特徴とす
る請求項4記載の金属蒸気レーザ装置。
20. The heat insulating member, wherein the inner circumferential length of the central portion in the axial direction of the discharge tube is longer than the inner circumferential length of the end portion thereof, wherein the heat insulating member has a uniform thickness inside the end portion of the heat insulating member. The metal vapor laser device according to claim 4, wherein another heat insulating member is coaxially arranged on the circumference.
【請求項21】前記放電管軸方向中央部の内周長が、そ
の端部の内周長に比して長くなっている前記断熱部材
は、厚みの厚い断熱部材の端部内周をテーパ状にし、こ
のテーパ状断熱部材と厚みの薄い断熱部材とを突き合わ
せて形成されていることを特徴とする請求項4記載の金
属蒸気レーザ装置。
21. The heat insulating member, wherein the inner peripheral length of the central portion in the axial direction of the discharge tube is longer than the inner peripheral length of the end portion thereof, the inner peripheral end portion of the thick heat insulating member is tapered. The metal vapor laser device according to claim 4, wherein the tapered heat insulating member and the heat insulating member having a small thickness are abutted against each other.
【請求項22】前記放電管軸方向中央部の内周長が、そ
の端部の内周長に比して長くなっている前記断熱部材
は、厚みの厚い断熱部材の端部内周をテーパ状にし、こ
のテーパ状断熱部材同志を突き合わせて形成されている
ことを特徴とする請求項4記載の金属蒸気レーザ装置。
22. The heat insulating member, wherein the inner peripheral length of the central portion in the axial direction of the discharge tube is longer than the inner peripheral length of the end portion thereof, the inner peripheral end portion of the thick heat insulating member is tapered. 5. The metal vapor laser device according to claim 4, wherein the tapered heat insulating members are formed by abutting each other.
【請求項23】ガス中の放電エネルギーにより金属源を
加熱・蒸発させて金属蒸気を発生させ、その金属蒸気か
ら成るレーザ媒質を形成させる放電管と、該放電管の外
周に同軸状に設けられた断熱部材と、該断熱部材の外周
に同軸状に設けられた耐熱ガラス管と、該耐熱ガラス管
の外周に同軸状に設けられ、真空断熱層を形成する金属
製レーザ管とを備えた金属蒸気レーザ装置において、前
記耐熱ガラス管の外周側で、かつ、前記放電管の中央部
を除く部位に別の断熱部材を同軸状に配置し、これら断
熱部材は前記放電管内中央部の管壁温度が極小となり、
かつ、放電管中央部と放電管端部の間の管壁温度が極大
となる双峰特性の放電管内管壁温度分布を形成する断熱
特性を具備していることを特徴とする金属蒸気レーザ装
置。
23. A discharge tube for heating and evaporating a metal source by a discharge energy in a gas to generate a metal vapor and forming a laser medium composed of the metal vapor, and a discharge tube coaxially provided on the outer circumference of the discharge tube. A heat-insulating member, a heat-resistant glass tube coaxially provided on the outer circumference of the heat-insulating member, and a metal laser tube coaxially provided on the outer circumference of the heat-resistant glass tube to form a vacuum heat-insulating layer In the vapor laser device, another heat insulating member is coaxially arranged on the outer peripheral side of the heat-resistant glass tube, and at a portion other than the central portion of the discharge tube, and these heat insulating members are provided at a tube wall temperature in the central portion of the discharge tube. Becomes extremely small,
In addition, the metal vapor laser device is provided with adiabatic characteristics for forming a tube wall temperature distribution in the discharge tube having a bimodal characteristic in which the tube wall temperature between the discharge tube central portion and the discharge tube end portion is maximized. .
【請求項24】ガス中の放電エネルギーにより金属源を
加熱・蒸発させて金属蒸気を発生させ、その金属蒸気か
ら成るレーザ媒質を形成させる放電管と、該放電管の外
周に同軸状に設けられた断熱部材と、該断熱部材の外周
に同軸状に設けられた耐熱ガラス管と、該耐熱ガラス管
の外周に同軸状に設けられ、真空断熱層を形成する金属
製レーザ管とを備えた金属蒸気レーザ装置において、前
記耐熱ガラス管の外周側で、かつ、前記放電管の中央部
を除く部位に少なくとも1枚の熱放射板を設けたことを
特徴とする金属蒸気レーザ装置。
24. A discharge tube for heating and evaporating a metal source by the discharge energy in a gas to generate a metal vapor and forming a laser medium made of the metal vapor, and a discharge tube coaxially provided on the outer periphery of the discharge tube. A heat-insulating member, a heat-resistant glass tube coaxially provided on the outer circumference of the heat-insulating member, and a metal laser tube coaxially provided on the outer circumference of the heat-resistant glass tube to form a vacuum heat-insulating layer In the vapor laser device, at least one heat radiation plate is provided on the outer peripheral side of the heat-resistant glass tube and in a region other than the central portion of the discharge tube, the metal vapor laser device.
【請求項25】前記熱放射板には複数の開孔部が設けら
れていることを特徴とする請求項24記載の金属蒸気レ
ーザ装置。
25. The metal vapor laser device according to claim 24, wherein the heat radiation plate is provided with a plurality of openings.
【請求項26】ガス中の放電エネルギーにより金属源を
加熱・蒸発させて金属蒸気を発生させ、その金属蒸気か
ら成るレーザ媒質を形成させる放電管と、該放電管の外
周に同軸状に設けられた断熱部材と、該断熱部材の外周
に同軸状に設けられた耐熱ガラス管と、該耐熱ガラス管
の外周に同軸状に設けられ、真空断熱層を形成する金属
製レーザ管とを備えた金属蒸気レーザ装置において、前
記真空断熱層内の放電管の中央部に位置する金属製レー
ザ管本体の内面に熱吸収体を設けると共に、この熱吸収
体で吸収した熱を除去する冷却層を前記真空断熱層の外
周に設けたことを特徴とする金属蒸気レーザ装置。
26. A discharge tube for heating and evaporating a metal source by gas discharge energy to generate metal vapor and forming a laser medium composed of the metal vapor, and a discharge tube coaxially provided on the outer circumference of the discharge tube. A heat-insulating member, a heat-resistant glass tube coaxially provided on the outer circumference of the heat-insulating member, and a metal laser tube coaxially provided on the outer circumference of the heat-resistant glass tube to form a vacuum heat-insulating layer In the vapor laser device, a heat absorber is provided on the inner surface of the metal laser tube main body located at the center of the discharge tube in the vacuum heat insulating layer, and the cooling layer for removing the heat absorbed by the heat absorber is formed in the vacuum. A metal vapor laser device provided on the outer periphery of a heat insulating layer.
【請求項27】ガス中の放電エネルギーにより金属源を
加熱・蒸発させて金属蒸気を発生させ、その金属蒸気か
ら成るレーザ媒質を形成させる放電管と、該放電管の外
周に同軸状に設けられた断熱部材と、該断熱部材の外周
に同軸状に設けられた耐熱ガラス管と、該耐熱ガラス管
の外周に同軸状に設けられ、真空断熱層を形成する金属
製レーザ管とを備えた金属蒸気レーザ装置において、前
記真空断熱層の外周に同軸状に冷却層を設けると共に、
該冷却層を前記金属製レーザ管の軸方向に設けられた複
数の金属フランジにより複数の部屋に隔離し、かつ、前
記放電管の軸方向中央部に位置する冷却層隔室の冷却用
冷媒の温度を、その両側に位置する冷却層隔室に流す冷
却用冷媒の温度より低くすることを特徴とする金属蒸気
レーザ装置。
27. A discharge tube for heating and evaporating a metal source by gas discharge energy to generate a metal vapor and forming a laser medium made of the metal vapor, and a discharge tube coaxially provided on the outer periphery of the discharge tube. A heat-insulating member, a heat-resistant glass tube coaxially provided on the outer circumference of the heat-insulating member, and a metal laser tube coaxially provided on the outer circumference of the heat-resistant glass tube to form a vacuum heat-insulating layer In the vapor laser device, a cooling layer is provided coaxially on the outer periphery of the vacuum heat insulating layer,
The cooling layer is separated into a plurality of chambers by a plurality of metal flanges provided in the axial direction of the metal laser tube, and a cooling medium for cooling the cooling layer compartment located in the axial center of the discharge tube. A metal vapor laser device characterized in that a temperature is made lower than a temperature of a cooling medium to be flown into cooling layer compartments located on both sides thereof.
【請求項28】ガス中の放電エネルギーにより金属源を
加熱・蒸発させて金属蒸気を発生させ、その金属蒸気か
ら成るレーザ媒質を形成させる放電管と、該放電管の外
周に同軸状に設けられた断熱部材と、該断熱部材の外周
に同軸状に設けられた耐熱ガラス管と、該耐熱ガラス管
の外周に同軸状に設けられ、真空断熱層を形成する金属
製レーザ管とを備えた金属蒸気レーザ装置において、前
記真空断熱層の外周に同軸状に冷却層を設けると共に、
該冷却層を前記金属製レーザ管の軸方向に設けられた複
数の金属フランジにより複数の部屋に隔離し、このうち
の1つの部屋を放電管軸方向中央部に位置する前記耐熱
ガラス管と金属製レーザ管で囲まれた領域に形成し、こ
の放電管の軸方向中央部に位置する冷却層隔室の冷却用
冷媒の温度を、その両側に位置する冷却層隔室に流す冷
却用冷媒の温度より低くすることを特徴とする金属蒸気
レーザ装置。
28. A discharge tube for heating and evaporating a metal source by gas discharge energy to generate metal vapor and forming a laser medium composed of the metal vapor, and a discharge tube coaxially provided on the outer periphery of the discharge tube. A heat-insulating member, a heat-resistant glass tube coaxially provided on the outer circumference of the heat-insulating member, and a metal laser tube coaxially provided on the outer circumference of the heat-resistant glass tube to form a vacuum heat-insulating layer In the vapor laser device, a cooling layer is provided coaxially on the outer periphery of the vacuum heat insulating layer,
The cooling layer is separated into a plurality of chambers by a plurality of metal flanges provided in the axial direction of the metal laser tube, and one of the chambers is located in the central portion of the discharge tube in the axial direction and the heat-resistant glass tube and the metal. Formed in a region surrounded by a laser tube made of laser, the temperature of the cooling refrigerant in the cooling layer compartment located in the axial center of the discharge tube, the cooling refrigerant flow to the cooling layer compartments located on both sides of it. A metal vapor laser device characterized in that the temperature is lower than the temperature.
【請求項29】ガス中の放電エネルギーにより金属源を
加熱・蒸発させて金属蒸気を発生させ、その金属蒸気か
ら成るレーザ媒質を形成させる放電管と、該放電管の外
周に同軸状に設けられた断熱部材と、該断熱部材の外周
に同軸状に設けられた耐熱ガラス管と、該耐熱ガラス管
の外周に同軸状に設けられ、真空断熱層を形成する金属
製レーザ管とを備えた金属蒸気レーザ装置において、前
記真空断熱層の放電管軸方向中央部に位置する部位に熱
良導体から成るバネ状板を、前記耐熱ガラス管の外周面
と金属製レーザ管の内周面とに接触するように設けたこ
とを特徴とする金属蒸気レーザ装置。
29. A discharge tube for heating and evaporating a metal source by discharge energy in gas to generate metal vapor and forming a laser medium made of the metal vapor, and a discharge tube coaxially provided on the outer periphery of the discharge tube. A heat-insulating member, a heat-resistant glass tube coaxially provided on the outer circumference of the heat-insulating member, and a metal laser tube coaxially provided on the outer circumference of the heat-resistant glass tube to form a vacuum heat-insulating layer In the vapor laser device, a spring-shaped plate made of a good heat conductor is brought into contact with the outer peripheral surface of the heat-resistant glass tube and the inner peripheral surface of the metal laser tube at a portion located in the central portion of the vacuum heat insulating layer in the axial direction of the discharge tube. A metal vapor laser device characterized by being provided as described above.
【請求項30】前記バネ状板はリング状に形成されてい
ることを特徴とする請求項29記載の金属蒸気レーザ装
置。
30. The metal vapor laser device according to claim 29, wherein the spring-shaped plate is formed in a ring shape.
【請求項31】前記放電管の軸方向中央部に位置する断
熱部材のかさ密度をその端部に位置する断熱部材のかさ
密度より小さくし、前記放電管の軸方向中央部からの放
熱をその端部より促進させたことを特徴とする請求項5
記載の金属蒸気レーザ装置。
31. The bulk density of the heat insulating member located at the central portion of the discharge tube in the axial direction is made smaller than the bulk density of the heat insulating member located at the end portion thereof to dissipate heat from the central portion of the discharge tube in the axial direction. 6. The structure according to claim 5, which is accelerated from the end.
The described metal vapor laser device.
【請求項32】前記断熱部材の軸方向中央部に、該断熱
部材より高熱伝導率を有する複数の別の断熱部材を前記
断熱部材と交互に配列したことを特徴とする請求項5記
載の金属蒸気レーザ装置。
32. The metal according to claim 5, wherein a plurality of other heat insulating members having a higher thermal conductivity than the heat insulating member are arranged alternately with the heat insulating member at an axial center portion of the heat insulating member. Steam laser device.
【請求項33】ガス中の放電エネルギーにより金属源を
加熱・蒸発させて金属蒸気を発生させ、その金属蒸気か
ら成るレーザ媒質を形成させる放電管と、該放電管の外
周に同軸状に設けられた断熱部材と、該断熱部材の外周
に同軸状に設けられた耐熱ガラス管と、該耐熱ガラス管
の外周に同軸状に設けられ、真空断熱層を形成する金属
製レーザ管とを備えた金属蒸気レーザ装置において、前
記耐熱ガラス管の外周面の少なくとも前記放電管の軸方
向中央部を除いた部位に、電気絶縁被覆された発熱体を
配置し、該発熱体により前記耐熱ガラス管を加熱するこ
とを特徴とする金属蒸気レーザ装置。
33. A discharge tube for heating and evaporating a metal source by the discharge energy in a gas to generate a metal vapor and forming a laser medium made of the metal vapor, and a discharge tube coaxially provided on the outer periphery of the discharge tube. A heat-insulating member, a heat-resistant glass tube coaxially provided on the outer circumference of the heat-insulating member, and a metal laser tube coaxially provided on the outer circumference of the heat-resistant glass tube to form a vacuum heat-insulating layer In the vapor laser device, a heat-generating body coated with electric insulation is arranged on a portion of the outer peripheral surface of the heat-resistant glass tube except at least a central portion in the axial direction of the discharge tube, and the heat-resistant glass tube is heated by the heat-generating body. A metal vapor laser device characterized by the above.
【請求項34】ガス中の放電エネルギーにより金属源を
加熱・蒸発させて金属蒸気を発生させ、その金属蒸気か
ら成るレーザ媒質を形成させる放電管と、該放電管の外
周に同軸状に設けられた断熱部材と、該断熱部材の外周
に同軸状に設けられた耐熱ガラス管と、該耐熱ガラス管
の外周に同軸状に設けられ、真空断熱層を形成する金属
製レーザ管とを備えた金属蒸気レーザ装置において、前
記放電管の外周面の少なくとも該放電管の軸方向中央部
を除いた部位に、電気絶縁被覆された発熱体を配置し、
該発熱体により前記放電管を加熱することを特徴とする
金属蒸気レーザ装置。
34. A discharge tube for heating and evaporating a metal source by gas discharge energy to generate metal vapor and forming a laser medium composed of the metal vapor, and a discharge tube coaxially provided on the outer periphery of the discharge tube. A heat-insulating member, a heat-resistant glass tube coaxially provided on the outer circumference of the heat-insulating member, and a metal laser tube coaxially provided on the outer circumference of the heat-resistant glass tube to form a vacuum heat-insulating layer In the vapor laser device, at least a portion of the outer peripheral surface of the discharge tube except an axial center portion of the discharge tube, an electrically insulating coated heating element is disposed,
A metal vapor laser device characterized in that the discharge tube is heated by the heating element.
JP19187292A 1992-07-20 1992-07-20 Metal vapor laser device Pending JPH0637406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19187292A JPH0637406A (en) 1992-07-20 1992-07-20 Metal vapor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19187292A JPH0637406A (en) 1992-07-20 1992-07-20 Metal vapor laser device

Publications (1)

Publication Number Publication Date
JPH0637406A true JPH0637406A (en) 1994-02-10

Family

ID=16281883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19187292A Pending JPH0637406A (en) 1992-07-20 1992-07-20 Metal vapor laser device

Country Status (1)

Country Link
JP (1) JPH0637406A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089504A (en) * 2001-07-09 2003-03-28 Mitsubishi Heavy Ind Ltd Apparatus for reforming fuel
JP2008538162A (en) * 2005-03-31 2008-10-09 サイマー インコーポレイテッド Gas discharge laser system of 6KHz and above

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089504A (en) * 2001-07-09 2003-03-28 Mitsubishi Heavy Ind Ltd Apparatus for reforming fuel
JP2008538162A (en) * 2005-03-31 2008-10-09 サイマー インコーポレイテッド Gas discharge laser system of 6KHz and above

Similar Documents

Publication Publication Date Title
JP4687305B2 (en) Thermoelectric generator
US3654567A (en) Vapor discharge cell
US3544915A (en) Gas laser plasma guide
JPS62501461A (en) Gas laser, especially ion laser
JPH0637406A (en) Metal vapor laser device
JP2007037318A (en) Thermoelectronic power generating element
JP2008228386A (en) Manufacturing method of electrode for thermoelectronic power generation element, its electrode thereof, and thermoelectric power generation element using this electrode
JP2725493B2 (en) Air-cooled argon ion laser tube
US20130153568A1 (en) Induction heated buffer gas heat pipe for use in an extreme ultraviolet source
JP2598009B2 (en) Metal vapor laser oscillation tube
JPH0222002B2 (en)
US5682399A (en) Ion laser tube with a discharge tubule adopted for a high discharge current and a high laser output
JPS63199471A (en) Metallic vapor laser oscillating tube
JPS62130Y2 (en)
JPS5915511Y2 (en) laser discharge tube
GB2196177A (en) Discharge tubes
JPH06310041A (en) Thyratron
JP2980381B2 (en) Laser equipment
JPH04288888A (en) Metal vapor laser device
JPS61180488A (en) Ion laser tube
US5396513A (en) Metal vapor laser including hot electrodes and integral wick
JPS6157650B2 (en)
US6738400B1 (en) Large diameter lasing tube cooling arrangement
JPH10177899A (en) Tandem accelerator
JPS63252489A (en) Metal vapor laser device