JPH06346171A - Oxide-dispersed-type alloy and its production - Google Patents

Oxide-dispersed-type alloy and its production

Info

Publication number
JPH06346171A
JPH06346171A JP5163776A JP16377693A JPH06346171A JP H06346171 A JPH06346171 A JP H06346171A JP 5163776 A JP5163776 A JP 5163776A JP 16377693 A JP16377693 A JP 16377693A JP H06346171 A JPH06346171 A JP H06346171A
Authority
JP
Japan
Prior art keywords
oxide
dispersed
alloy
rare earth
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5163776A
Other languages
Japanese (ja)
Other versions
JP3472882B2 (en
Inventor
Narimitsu Tanabe
成光 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tungsten Co Ltd
Original Assignee
Tokyo Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Tungsten Co Ltd filed Critical Tokyo Tungsten Co Ltd
Priority to JP16377693A priority Critical patent/JP3472882B2/en
Publication of JPH06346171A publication Critical patent/JPH06346171A/en
Application granted granted Critical
Publication of JP3472882B2 publication Critical patent/JP3472882B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To produce an oxide-dispersed-type alloy consisting of a rare-earth- containing refractory metal, where oxides are uniformly contained even in the inner part and which is free from dispersion in characteristics and has uniform quality. CONSTITUTION:In this oxide-dispersed-type alloy, a refractory metal, such as W, Mo, and alloy containing W and/or Mo, is used as master alloy and rare earth oxides, such as cerium oxide and samarium oxide, are uniformly dispersed in the inner part of this master alloy. This oxide-dispersed-type alloy can be produced by subjecting a refractory metal powder containing rare earth oxides to compacting at (4 to 5)tons/cm<2> and then to four-stage sintering containing at least four-stage temp.-keeping stages including temporary sintering for strength improvement.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,タングステン(W),
モリブデン(Mo)及びこれらを含む合金等の高融点金
属に酸化物を分散した酸化物分散型合金に関し,詳しく
は,ワイヤ放電加工用電極線(以下,カットワイヤと呼
ぶ)に用いられる酸化物分散型合金およびその製造方法
に関する。
The present invention relates to tungsten (W),
Regarding oxide-dispersion-type alloys in which oxides are dispersed in refractory metals such as molybdenum (Mo) and alloys containing these, in detail, oxide dispersion used in electrode wires for wire electric discharge machining (hereinafter referred to as cut wires) A mold alloy and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来,カットワイヤとして酸化セリウム
等の希土類酸化物を添加した高融点金属,例えば,タン
グステン合金(W合金)が使用されている。例えば,W
の場合は,希土類酸化物を添加した粉末を,粉末冶金の
常法によってプレス後,直接通電法によって焼結してい
る。
2. Description of the Related Art Conventionally, a refractory metal to which a rare earth oxide such as cerium oxide is added is used as a cut wire, for example, a tungsten alloy (W alloy). For example, W
In the case of 1, the powder to which the rare earth oxide is added is pressed by the usual method of powder metallurgy and then sintered by the direct current method.

【0003】このWやモリブデン(Mo)等の高融点金
属の特長を活かしつつ更に,再結晶組織制御や電子放出
特性等を付与するため,直接通電加熱法により,希土類
酸化物を分散させる方法が試みられている。
A method of dispersing a rare earth oxide by a direct current heating method in order to impart recrystallized structure control and electron emission characteristics while utilizing the characteristics of refractory metals such as W and molybdenum (Mo). Being tried.

【0004】[0004]

【発明が解決しようとする課題】しかし,直接通電加熱
法により製造されたタングステン合金焼結体は焼結時に
酸化セリウムが外周方向に移動するため,焼結体断面の
中心部には酸化セリウムが少なく,外周部には多くなる
ことが判明した。この結果,焼結体の断面方向に組織ム
ラが生じ,転打加工中の表面クラックの原因となったり
放電加工中の断線原因となったりすることもわかった。
ここで,直接通電加熱焼結法を使用した場合,添加され
た希土類酸化物の融点が焼結温度より低いため(所謂温
度勾配が単に急峻であるという意味),熔融した酸化物
が低温側である外周部に移動し,中央には酸化物が少な
く外周部には多いという濃度差を生じる。この濃度差に
よって焼結体の結晶粒子は中央では大きく外周部では小
さいというように大きさが異なるという現象が見られ
た。又,焼結条件によってはその逆の現象も発生するこ
ともあった。
However, in the tungsten alloy sintered body produced by the direct current heating method, the cerium oxide moves toward the outer periphery during sintering, so that the cerium oxide is not present in the center of the cross section of the sintered body. It was found that the number was small and the number was large in the outer peripheral portion. As a result, it was also found that unevenness in structure occurs in the cross-sectional direction of the sintered body, causing surface cracks during rolling and disconnection during electrical discharge machining.
Here, when the direct current heating sintering method is used, the melting point of the added rare earth oxide is lower than the sintering temperature (so-called temperature gradient is simply steep). It moves to a certain outer circumference, and there is a concentration difference that there is less oxide in the center and more oxide in the outer circumference. Due to this difference in concentration, a phenomenon was observed in which the crystal grains of the sintered body differed in size, such as being large in the center and small in the outer periphery. The reverse phenomenon may also occur depending on the sintering conditions.

【0005】前者の焼結体の中央には酸化物が少なく外
周部には多い場合,外周部の加工性が内部より悪くなる
ため転打加工時の表面クラックの発生を引き起こす。更
に,カットワイヤのように,放電特性のみならず放電加
工時の高温での引張り強さも要求される場合には,濃度
差に起因する内部と外周部との組織ムラは大きな害とな
る。
If the center of the former sintered body has a small amount of oxide and a large amount of oxide in the outer peripheral portion, the workability of the outer peripheral portion becomes worse than that of the inside, causing surface cracks during rolling. Furthermore, when not only the electrical discharge characteristics but also the tensile strength at high temperature during electrical discharge machining are required as in the case of a cut wire, the unevenness of the structure between the inside and the outside due to the difference in concentration becomes a great harm.

【0006】逆に後者の焼結体の中央には酸化物が多く
外周部には少ない場合には,外周部に酸化物が少ないた
め放電特性改善という目的が充分に達成できない。又,
酸化物添加の目的が,再結晶組織制御の場合には前者で
あれ後者であれ,濃度差がそのまま再結晶組織の不均一
として現れ,悪影響を及ぼす。
On the other hand, when the latter sintered body has a large amount of oxide in the center and a small amount in the outer peripheral portion, the amount of oxide in the outer peripheral portion is small, so that the purpose of improving discharge characteristics cannot be sufficiently achieved. or,
When the purpose of the oxide addition is to control the recrystallized structure, whether the former or the latter, the difference in concentration appears as a nonuniformity of the recrystallized structure and has an adverse effect.

【0007】そこで,本発明の技術的課題は,希土類酸
化物,特に,酸化セリウムの不均一な分散によって生じ
る表面クラック及び放電加工中の断線を少なくできる酸
化物分散型合金及びその製造方法を提供することにあ
る。
Therefore, the technical problem of the present invention is to provide an oxide-dispersed alloy capable of reducing surface cracks caused by uneven distribution of rare earth oxides, especially cerium oxide, and disconnection during electric discharge machining, and a method for producing the same. To do.

【0008】さらに,本発明の他の技術的課題は,内部
にまで均一に酸化物が含まれ,特性にバラツキが少な
く,したがって品質の揃った希土類含有高融点金属から
なる酸化物分散型合金とその製造方法を提供することに
ある。
Further, another technical problem of the present invention is to provide an oxide-dispersed alloy containing a rare-earth-containing high-melting-point metal that contains an oxide evenly inside and has little variation in characteristics, and therefore has uniform quality. It is to provide the manufacturing method.

【0009】[0009]

【課題を解決するための手段】本発明者は,W,Mo等
に希土類酸化物を添加した粉末を粉末冶金の常法に従い
プレス後焼結させた焼結体において,添加された希土類
酸化物を焼結体内部にほぼ均一に分布させた合金焼結体
およびその製造法を見出し,本発明を為すに至ったもの
である。
Means for Solving the Problems The present inventor has found that a rare earth oxide added to a sintered body obtained by pressing and sintering a powder obtained by adding a rare earth oxide to W, Mo or the like according to a conventional method of powder metallurgy. The present invention has been accomplished by finding an alloy sintered body in which is distributed almost uniformly inside the sintered body and a manufacturing method thereof.

【0010】本発明によれば,高融点金属を母合金と
し,この母合金内部に希土類酸化物が均一に分散してい
ることを特徴とする酸化物分散型合金が得られる。
According to the present invention, there can be obtained an oxide-dispersed alloy characterized in that a refractory metal is used as a master alloy and rare earth oxides are uniformly dispersed in the master alloy.

【0011】本発明によれば,希土類酸化物を含む高融
点金属粉末を4〜5トン/cm2 で加圧圧縮し,強度向
上のための仮焼結を含めて少なくとも4段階の温度維持
段階を有する4段階焼結を行うことを特徴とする酸化物
分散型合金の製造方法が得られる。
According to the present invention, a refractory metal powder containing a rare earth oxide is pressed and compressed at 4 to 5 ton / cm 2 , and at least four temperature maintaining steps including pre-sintering for improving strength are performed. A method for producing an oxide-dispersed alloy is obtained, which comprises performing four-step sintering having

【0012】ここで,本発明において,前記高融点金属
は,W,及びMoのうちの少なくとも一種を含むことが
好ましい。また,本発明において,前記希土類酸化物
は,酸化セリウム及び酸化サマリウムのうちの少なくと
も一種であることが好ましい。
Here, in the present invention, the refractory metal preferably contains at least one of W and Mo. Further, in the present invention, the rare earth oxide is preferably at least one of cerium oxide and samarium oxide.

【0013】本発明を更に具体的に説明すると,W,M
o等に希土類酸化物を添加した合金焼結体の製造におい
て,加圧して圧縮された成型体に,少なくとも4段階の
温度維持段階を含む加熱焼結を加えることによって,希
土類酸化物が均一に分布した合金焼結体を得る。
The present invention will be described in more detail. W, M
In the production of an alloy sintered body in which a rare earth oxide is added to o or the like, the heated rare earth oxide is uniformly added to the compacted body that is pressed and compressed, which includes at least four temperature maintaining steps. Obtain a distributed alloy sintered body.

【0014】例えば,W粉末と希土類酸化物粉末を,擂
潰機及びV型混合機を用いて混合し,酸化物が均一に分
散した粉末を作る。この粉末を4〜5トン/cm2 でプ
レスし角棒状の成型体とする。この成型体に,次焼結工
程に対応できる強度を持たせるために,4段階焼結のう
ちの第1段階として水素及び真空雰囲気中で加熱仮焼結
を施す。次に本焼結工程に入る。先ず4段階焼結の第2
段階として,成型体に含まれる添加酸化物以外の不純物
を抜くことと成型体の緻密化を目的に,酸化物の融点以
下で且つ充分焼結し得ない温度に昇温し数分間保持す
る。次に,4段階焼結の第3段階として,酸化物を移動
させずに焼結を進行させるため,酸化物の融点以下で且
つ第2段階より高い温度に加熱し,数分間〜十数分間保
持する。この段階で焼結はかなり進行するが,酸化物は
均一に分散した状態が維持されている。更に第4段階と
して焼結を完了させるため酸化物の融点以上の温度に加
熱し数分間〜十数分間保持後所定の焼結体とする。こう
して得られた焼結体の密度は理論値の90%以上であ
り,添加された酸化物は焼結体内部にほぼ均一に分散し
て存在している。なお,Moについても同様な効果が得
られた。
For example, W powder and rare earth oxide powder are mixed using a crusher and a V-type mixer to prepare a powder in which oxide is uniformly dispersed. This powder is pressed at 4 to 5 ton / cm 2 to obtain a rectangular rod-shaped molded body. In order to provide the molded body with strength that can be used in the subsequent sintering step, heat pre-sintering is performed in hydrogen and a vacuum atmosphere as the first step of the four-step sintering. Next, the main sintering process starts. First, the second of the four-stage sintering
As a step, in order to remove impurities other than the added oxide contained in the molded body and to densify the molded body, the temperature is raised to a temperature not higher than the melting point of the oxide and insufficient for sintering, and kept for several minutes. Next, as the third step of the four-step sintering, in order to proceed the sintering without moving the oxide, it is heated to a temperature lower than the melting point of the oxide and higher than the second step for a few minutes to a dozen minutes. Hold. At this stage, sintering proceeds considerably, but the oxide is maintained in a uniformly dispersed state. Further, as a fourth step, in order to complete the sintering, it is heated to a temperature equal to or higher than the melting point of the oxide and kept for a few minutes to a few dozen minutes to obtain a predetermined sintered body. The density of the thus obtained sintered body is 90% or more of the theoretical value, and the added oxide is present in the sintered body in a substantially uniformly dispersed state. Similar effects were obtained with Mo.

【0015】[0015]

【実施例】以下に本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

【0016】純度99.9%以上で平均粒径2.5μm
のW粉末に,純度99.99%,BET粒度測定法で7
2 /gの酸化セリウム粉(融点2600℃)を0.1
wt%,0.7wt%,1.0wt%添加し,それぞれ
擂潰機およびV型混合機を用いて合計3時間混合し,酸
化セリウムが均一に分散した混合粉末を作製した。これ
らの粉末を5トン/cm2 の圧力で加圧し角棒状の成型
体を作製した。この成型体に強度を付与するため,4段
階焼結の第1段階として水素雰囲気中,1250℃で3
0分間加熱し仮焼結を行った。次に仮焼結体に水素雰囲
気中でさらに3段階に渡る加熱焼結を施した。
A purity of 99.9% or more and an average particle diameter of 2.5 μm
W powder of 99.99% purity, 7 by BET particle size measurement method
m 2 / g cerium oxide powder (melting point 2600 ° C.) 0.1
wt%, 0.7 wt%, and 1.0 wt% were added and mixed for 3 hours in total using a crusher and a V-type mixer, to prepare a mixed powder in which cerium oxide was uniformly dispersed. These powders were pressed at a pressure of 5 ton / cm 2 to prepare a rectangular rod-shaped molded body. In order to give strength to this molded body, the first step of the four-step sintering was 3
Pre-sintering was performed by heating for 0 minutes. Next, the pre-sintered body was further heat-sintered in three steps in a hydrogen atmosphere.

【0017】まず,4段階焼結の第2段階として,1分
間で1850℃まで昇温させ,昇温完了後3分間この温
度に維持した。この温度は酸化物の融点よりかなり低い
ため,酸化物の熔融移動は起きず,添加酸化物以外の不
純物を熔融物あるいはガスとして焼結体の外部へ抜くこ
とと成型体の緻密化が狙いである。
First, as the second step of the four-step sintering, the temperature was raised to 1850 ° C. in 1 minute and maintained at this temperature for 3 minutes after the completion of the temperature increase. Since this temperature is much lower than the melting point of the oxide, no melt migration of the oxide occurs, so that impurities other than the added oxide can be extracted as a melt or gas to the outside of the sintered body and the compacted body can be densified. is there.

【0018】更に第3段階として,1分間かけて185
0℃から2300℃まで昇温し,昇温完了後10分間こ
の温度に保持した。この段階では酸化セリウムの融点2
600℃より低い温度で且つ前述の第2段階の温度より
高い温度で焼結することによって,酸化セリウムの熔融
移動を抑制しながら焼結を進行させる。
Further, as a third step, 185 is spent for 1 minute.
The temperature was raised from 0 ° C to 2300 ° C, and the temperature was maintained at this temperature for 10 minutes after the completion of the temperature increase. At this stage, the melting point of cerium oxide is 2
By sintering at a temperature lower than 600 ° C. and higher than the temperature of the above-mentioned second stage, the sintering proceeds while suppressing the melt transfer of cerium oxide.

【0019】10分間の保持終了後,1分間で2800
℃まで昇温し,昇温完了後15分間この温度に保持し
た。この第4段階で焼結を完了させるため,酸化セリウ
ムの融点以上の温度で焼結を行うが,もう既にかなり焼
結が進んでいるため熔融酸化物の粒界移動は殆ど行われ
ない。このようにして得られた焼結体の密度は理論値の
93.3%であった。
After holding for 10 minutes, 2800 for 1 minute
The temperature was raised to 0 ° C., and the temperature was maintained for 15 minutes after the temperature was completed. In order to complete the sintering in the fourth stage, the sintering is performed at a temperature higher than the melting point of cerium oxide, but since the sintering has already progressed considerably, the grain boundary migration of the molten oxide is hardly performed. The density of the sintered body thus obtained was 93.3% of the theoretical value.

【0020】次に,上記した方法によって得られた焼結
体における酸化セリウムの分散状態を検査した。
Next, the dispersion state of cerium oxide in the sintered body obtained by the above method was inspected.

【0021】図1に示すように,まず,焼結体から検査
されるべき試料を採取する。焼結後の角棒状タングステ
ン合金を切断し,更に図2で示すように9分割して分析
用試料中のCeO2 を分析した結果を下記の表1乃至表
3に示す。また,図3は,焼結後のスラグ断面について
はEPMAによるセリウムの分散をマッピングしたもの
である。尚,他の希土類酸化物についても同様の結果が
得られた。
As shown in FIG. 1, first, a sample to be inspected is taken from the sintered body. The results of analyzing the CeO 2 in the analysis sample by cutting the square bar-shaped tungsten alloy after sintering and further dividing it into 9 parts as shown in FIG. 2 are shown in Tables 1 to 3 below. Further, FIG. 3 is a map of the dispersion of cerium by EPMA for the cross section of the slag after sintering. Similar results were obtained for other rare earth oxides.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【表3】 表1乃至表3,及び,図3の実施例から焼結体断面のセ
リウムの分布をみるとほぼ均一に分散残存していること
が判明した。
[Table 3] From the examples of Tables 1 to 3 and FIG. 3, it was found from the distribution of cerium in the cross section of the sintered body that the dispersion remained almost uniformly.

【0025】又Moの場合は各段階の温度を第1段階1
250℃,第2段階1450℃,第3段階2100℃,
第4段階2300℃にして,Wの場合と同じ結果を得
た。
In the case of Mo, the temperature of each step is set to the first step 1
250 ° C, 2nd stage 1450 ° C, 3rd stage 2100 ° C,
In the fourth step, the temperature was set to 2300 ° C., and the same result as in the case of W was obtained.

【0026】尚,同様の効果が得られる希土類酸化物と
しては酸化サマリウム(Sm2 3,融点2300℃)
が例示できる。
As a rare earth oxide having the same effect, samarium oxide (Sm 2 O 3 , melting point 2300 ° C.)
Can be illustrated.

【0027】一方,第2段階を1700℃×5分,第3
段階を1900℃×30分処理し他は上述実施と同様に
行なった酸化セリウム−タングステン系の結果は密度で
理論密度の89%,バラツキは上記表2の比較例で示す
内容となり,且つカットワイヤとしての特性も所望のレ
ベルに達しなかった。
On the other hand, the second stage is 1700 ° C. × 5 minutes, the third stage
The result of the cerium oxide-tungsten system was the same as the above-described embodiment except that the treatment was performed at 1900 ° C. for 30 minutes, and the density was 89% of the theoretical density, and the variation was as shown in the comparative example of Table 2 above, and the cut wire Also did not reach the desired level.

【0028】図3は,焼結後のスラグ断面について,合
金内のCeO2 の分布を測る尺度として電子プローブマ
イクロアナライザー(EPMA)によるCeの分散をマ
ッピングしたもので,(a)は本発明の実施例(1)に
係る合金,(b)は比較例(1)に係る合金を示す。図
3で示すように,本発明の実施例に係る酸化物分散型合
金は,比較例に係る酸化物分散型合金よりもCeが均一
に分散していることが確認された。
FIG. 3 is a map of the dispersion of Ce by an electron probe microanalyzer (EPMA) as a scale for measuring the distribution of CeO 2 in the alloy with respect to the cross section of slag after sintering. The alloy according to Example (1) and (b) show the alloy according to Comparative Example (1). As shown in FIG. 3, it was confirmed that Ce was more uniformly dispersed in the oxide-dispersed alloy according to the example of the present invention than in the oxide-dispersed alloy according to the comparative example.

【0029】[0029]

【発明の効果】以上の説明の通り,本発明による焼結体
は希土類酸化物が均一に分散しているため,結晶粒もほ
ぼ均一である。その結果,転打加工時には加工ムラや表
面クラックが発生しにくく,添加目的である再結晶組織
制御にも大きな効果を呈する。しかるに一般的線径のカ
ットワイヤはもとより極細線(φ50μm)のカットワ
イヤとしても繊維組織にムラがないため,断線が少なく
しかも切断面に段差も生じない。よって切断の能率向上
に大きく寄与する。
As described above, since the rare earth oxide is uniformly dispersed in the sintered body according to the present invention, the crystal grains are also substantially uniform. As a result, processing irregularities and surface cracks are less likely to occur during rolling processing, and it has a great effect on the control of the recrystallization structure, which is the purpose of addition. However, since not only a cut wire having a general wire diameter but also an ultrafine wire (φ50 μm) is used as the cut wire, there is no unevenness in the fiber structure, so that there are few breaks and no step is formed on the cut surface. Therefore, it greatly contributes to the improvement of cutting efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る酸化物分散型合金試料の
採取の方法を示す図である。
FIG. 1 is a diagram showing a method of collecting an oxide-dispersed alloy sample according to an example of the present invention.

【図2】図1の試料を9分割した試料の作製方法を示す
図である。
FIG. 2 is a diagram showing a method of manufacturing a sample obtained by dividing the sample of FIG. 1 into nine parts.

【図3】(a)本発明の実施例(1)に係る酸化物分散
型合金の粒子構造を示すEPMAによるCeのイメージ
像である。 (b)比較例(1)に係る合金の粒子構造を示すEPM
AによるCeのイメージ像である。
FIG. 3 (a) is an image image of Ce by EPMA showing a particle structure of an oxide-dispersed alloy according to Example (1) of the present invention. (B) EPM showing the grain structure of the alloy according to Comparative Example (1)
It is an image image of Ce by A.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 高融点金属を母合金とし,この母合金内
部に希土類酸化物が均一に分散していることを特徴とす
る酸化物分散型合金。
1. An oxide-dispersed alloy characterized in that a refractory metal is used as a master alloy, and rare earth oxides are uniformly dispersed in the master alloy.
【請求項2】 請求項1記載の酸化物分散型合金におい
て,前記母合金は,W,及びMoのうちの少なくとも一
種を含むことを特徴とする酸化物分散型合金。
2. The oxide dispersion type alloy according to claim 1, wherein the master alloy contains at least one of W and Mo.
【請求項3】 請求項1記載の酸化物分散型合金におい
て,前記希土類酸化物は,酸化セリウム及び酸化サマリ
ウムのうちの少なくとも一種であることを特徴とする酸
化物分散型合金。
3. The oxide dispersion type alloy according to claim 1, wherein the rare earth oxide is at least one of cerium oxide and samarium oxide.
【請求項4】 希土類酸化物を含む高融点金属粉末を4
〜5トン/cm2 で加圧圧縮し,強度向上のための仮焼
結を含めて少なくとも4段階の温度維持段階を有する4
段階焼結を行うことを特徴とする酸化物分散型合金の製
造方法。
4. A high melting point metal powder containing a rare earth oxide
Compressed at ~ 5 ton / cm 2 and has at least 4 temperature maintenance steps including pre-sintering to improve strength 4
A method for producing an oxide-dispersed alloy, which comprises performing stepwise sintering.
【請求項5】 請求項4記載の酸化物分散型合金の製造
方法において,前記4段階焼結は,本焼結の工程に対応
できるような強度をもたせるための仮焼結を行うことを
含む第1段階と,前記希土類酸化物の融点以下で且つ十
分焼結しない温度で数分保持することを含む第2段階
と,前記希土類酸化物の融点以下で且つ前記第2段階よ
りも高い温度で加熱することを含む第3段階と,前記酸
化物の融点以上で数分間保持することを含む第4段階と
からなることを特徴とする酸化物分散型合金の製造方
法。
5. The method for producing an oxide-dispersed alloy according to claim 4, wherein the four-step sintering includes performing preliminary sintering for providing strength enough to cope with a main sintering process. A first step, a second step including holding for a few minutes at a temperature not higher than the melting point of the rare earth oxide and not sufficiently sintered, and at a temperature not higher than the melting point of the rare earth oxide and higher than the second step. A method for producing an oxide-dispersed alloy, comprising: a third step including heating; and a fourth step including holding at a temperature equal to or higher than the melting point of the oxide for several minutes.
【請求項6】 請求項4又は5記載の酸化物分散型合金
の製造方法において,前記高融点金属は,W,及びMo
のうちの少なくとも一種を含むことを特徴とする酸化物
分散型合金の製造方法。
6. The method for producing an oxide-dispersed alloy according to claim 4, wherein the refractory metal is W or Mo.
A method for producing an oxide dispersion type alloy, comprising at least one of the above.
【請求項7】 請求項4又は5記載の酸化物分散型合金
の製造方法において,前記希土類酸化物は,酸化セリウ
ム及び酸化サマリウムのうちの少なくとも一種であるこ
とを特徴とする酸化物分散型合金の製造方法。
7. The oxide dispersion type alloy according to claim 4 or 5, wherein the rare earth oxide is at least one of cerium oxide and samarium oxide. Manufacturing method.
JP16377693A 1993-06-10 1993-06-10 Oxide dispersion type alloy and method for producing the same Expired - Lifetime JP3472882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16377693A JP3472882B2 (en) 1993-06-10 1993-06-10 Oxide dispersion type alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16377693A JP3472882B2 (en) 1993-06-10 1993-06-10 Oxide dispersion type alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06346171A true JPH06346171A (en) 1994-12-20
JP3472882B2 JP3472882B2 (en) 2003-12-02

Family

ID=15780508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16377693A Expired - Lifetime JP3472882B2 (en) 1993-06-10 1993-06-10 Oxide dispersion type alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP3472882B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111575566A (en) * 2020-06-24 2020-08-25 安徽工业大学 Preparation method of high-performance samarium molybdate alloy and high-performance samarium molybdate alloy
CN112251622A (en) * 2020-09-17 2021-01-22 洛阳科威钨钼有限公司 Production method of stirrer for rare earth doped smelting metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111575566A (en) * 2020-06-24 2020-08-25 安徽工业大学 Preparation method of high-performance samarium molybdate alloy and high-performance samarium molybdate alloy
CN112251622A (en) * 2020-09-17 2021-01-22 洛阳科威钨钼有限公司 Production method of stirrer for rare earth doped smelting metal

Also Published As

Publication number Publication date
JP3472882B2 (en) 2003-12-02

Similar Documents

Publication Publication Date Title
JP2911862B2 (en) Crucible for growing single crystal, method for producing the same and use thereof
JP5911576B2 (en) Tungsten alloy parts, and discharge lamps, transmitter tubes and magnetrons using the same
JP5204124B2 (en) Method for repairing sputtering target
US20180073107A1 (en) Tungsten alloy, tungsten alloy part, discharge lamp, transmitting tube, and magnetron
US20190333729A1 (en) Tungsten alloy part, and discharge lamp, transmitting tube, and magnetron using the same
CN115679174A (en) Super-strong tungsten filament and preparation method thereof
JPS62224495A (en) Tungsten electrode material
EP2801629A1 (en) Tungsten alloy, tungsten alloy part using same, discharge lamp, transmission tube, and magnetron
JP2003217438A (en) Cathode and its manufacturing method
JP3472882B2 (en) Oxide dispersion type alloy and method for producing the same
US3231332A (en) Electrodes for electric discharge apparatus
JP3764315B2 (en) Tungsten material and manufacturing method thereof
JP4011208B2 (en) Tungsten material used for discharge lamp electrodes, discharge lamp electrodes, and discharge lamps using the same
JP5086503B2 (en) Method for manufacturing thorium tungsten wire
CN109666833B (en) Cobalt-thorium-tungsten alloy material for magnetron cathode coil and preparation method thereof
JP4295491B2 (en) Copper-tungsten alloy and method for producing the same
JP3121400B2 (en) Manufacturing method of tungsten sintered body
JP4256126B2 (en) Tungsten-rhenium material and method for producing the same, cathode heater for cathode ray tube made of this tungsten-rhenium material, tube filament, and probe pin for electrical property inspection
JP2669436B2 (en) Electrode wire for electrical discharge machining
JPH0811815B2 (en) Molybdenum crucible and manufacturing method thereof
JPH04308048A (en) Production of porous tungsten material
JP2015517030A (en) Manufacturing method of oxide dispersion strengthened platinum-gold alloy
JP3320650B2 (en) Tungsten or molybdenum metal material, method for manufacturing secondary product material using the metal material, and heat treatment apparatus for performing the method
JPH032219B2 (en)
JPH0475294B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030820

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 10

EXPY Cancellation because of completion of term