JPH0634402B2 - Heat dissipating substrate having boron compound semiconductor and its manufacturing method - Google Patents

Heat dissipating substrate having boron compound semiconductor and its manufacturing method

Info

Publication number
JPH0634402B2
JPH0634402B2 JP63069706A JP6970688A JPH0634402B2 JP H0634402 B2 JPH0634402 B2 JP H0634402B2 JP 63069706 A JP63069706 A JP 63069706A JP 6970688 A JP6970688 A JP 6970688A JP H0634402 B2 JPH0634402 B2 JP H0634402B2
Authority
JP
Japan
Prior art keywords
substrate
boron
compound semiconductor
heat dissipation
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63069706A
Other languages
Japanese (ja)
Other versions
JPH01243563A (en
Inventor
幸伸 熊代
武文 三橋
伸一 岡谷
史仁 牟田
毅 小代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP63069706A priority Critical patent/JPH0634402B2/en
Publication of JPH01243563A publication Critical patent/JPH01243563A/en
Publication of JPH0634402B2 publication Critical patent/JPH0634402B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はリン化ホウ素(BP),ヒ化ホウ素(BAs)な
どホウ素系化合物の高熱伝導性を利用した新規な放熱基
板とその製法およびホウ素系化合物半導体素子に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention relates to a novel heat dissipation substrate utilizing the high thermal conductivity of boron compounds such as boron phosphide (BP) and boron arsenide (BAs), a method for producing the same, and boron. The present invention relates to a compound semiconductor device.

[従来の技術] 半導体素子の高集積化,高出力化の進展に伴って、素子
の動作中に発生する熱をいかに放散させるかが重要な課
題となっている。
[Prior Art] With the progress of higher integration and higher output of semiconductor elements, how to dissipate heat generated during the operation of the element has become an important issue.

これまで半導体素子用の放熱基板として、 Al2O3,SiC,
AlN などが用いられているが、これらの熱伝導性は必ず
しも十分ではない。より高い熱伝導性を有するものとし
て、BeO やダイヤモンドがある。しかし、BeO は毒性が
あるため国内では製造されていない。ダイヤモンドは価
格が高い上に広い面積にわたって作成することができ
ず、実用化に大きな障壁となっている。そこで電子機器
の高速度化,小型,軽量化,高出力化,高信頼性化への
強い要求から、素子の発熱を効率よく系外に逃がす高性
能の高熱伝導基板の開発が望まれている。
Until now, as a heat dissipation substrate for semiconductor elements, Al 2 O 3 , SiC,
Although AlN is used, their thermal conductivity is not always sufficient. BeO and diamond have higher thermal conductivity. However, BeO is not manufactured domestically because it is toxic. Diamond is expensive and cannot be produced over a wide area, which is a major obstacle to its practical application. Therefore, there is a strong demand for higher speed, smaller size, lighter weight, higher output, and higher reliability of electronic devices, and thus it is desired to develop a high-performance, high-thermal-conductivity substrate that efficiently dissipates the heat generated by the element outside the system. .

一方、半導体素子の使用環境の拡大に伴って、耐熱性お
よび耐放射線性にすぐれた半導体素子が求められている
が、いまだ実用の域に達していない。
On the other hand, a semiconductor element having excellent heat resistance and radiation resistance has been demanded along with the expansion of the usage environment of the semiconductor element, but it has not yet reached the practical range.

[発明が解決しようとする課題] 本発明はこのような事実に鑑みてなされたもので、熱伝
導性が高く、放熱効率の高い放熱基板およびそのような
放熱基板を容易に製造し得る方法を提供すること、さら
に耐熱性,耐放射線性にすぐれた半導体素子を提供する
ことを目的とする。
[Problems to be Solved by the Invention] The present invention has been made in view of such a fact, and provides a heat dissipation board having high heat conductivity and high heat dissipation efficiency, and a method for easily manufacturing such a heat dissipation board. It is an object of the present invention to provide a semiconductor element having excellent heat resistance and radiation resistance.

[課題を解決するための手段] このような目的を達成するために、本発明放熱基板は基
板と該基板上に形成されたリン化ホウ素およびヒ化ホウ
素の一方またはそれらの混晶を主成分とするホウ素系化
合物半導体からなる放熱基板であって、前記ホウ素系化
合物半導体が基板上の1次成長層と該1次成長層上の2
次成長層からなる二層構造を有することを特徴とする。
[Means for Solving the Problems] In order to achieve such an object, the heat dissipation substrate of the present invention comprises a substrate and one or more of boron phosphide and boron arsenide formed on the substrate as a main component. A heat dissipation substrate made of a boron-based compound semiconductor, wherein the boron-based compound semiconductor has a primary growth layer on the substrate and a second growth layer on the primary growth layer.
It is characterized by having a two-layer structure composed of a next growth layer.

本発明製造方法は基板上に上述したホウ素系化合物半導
体を成長させるに際して、成長の途中で基板温度を急激
に上昇させた後、成長を続行することを特徴とする。
The manufacturing method of the present invention is characterized in that, when the above-described boron-based compound semiconductor is grown on the substrate, the substrate temperature is rapidly raised during the growth and then the growth is continued.

[作 用] リン化ホウ素(BP)をSi基板上に成長させることはすで
に行われている。しかしリン化ホウ素の物性値、特に熱
伝導率などの熱的性質はこれまで実験的に明らかにされ
ていない。HP,BAsなどのホウ素系化合物半導体が高い熱
伝導率を有し、さらに高い電気絶縁性をも有することが
本発明者らによって明らかにされた。
[Operation] Growing boron phosphide (BP) on a Si substrate has already been performed. However, the physical properties of boron phosphide, especially thermal properties such as thermal conductivity, have not been clarified experimentally so far. The present inventors have revealed that boron-based compound semiconductors such as HP and BAs have high thermal conductivity and also have high electric insulation.

本発明の放熱基板はホウ素系化合物半導体の高熱伝導率
を利用しているので、放熱効率が高く、さらにSiなどの
ICやLSI 基板に直接積層した膜を放熱板として利用でき
るので、半導体装置の構造が簡単となり、組立て工数を
低減することができる。さらに、本発明によるホウ素系
化合物半導体は熱膨張係数が小さいので、高い信頼性を
有している。
Since the heat dissipation substrate of the present invention utilizes the high thermal conductivity of the boron-based compound semiconductor, it has high heat dissipation efficiency,
Since the film directly laminated on the IC or LSI substrate can be used as a heat sink, the structure of the semiconductor device can be simplified and the number of assembling steps can be reduced. Furthermore, the boron-based compound semiconductor according to the present invention has a small coefficient of thermal expansion, and thus has high reliability.

本発明製造方法によれば、ホウ素系化合物半導体の電気
抵抗を極めて高くすることができるので、半導体素子用
に好適な放熱基板を作製することができる。
According to the manufacturing method of the present invention, the electrical resistance of the boron-based compound semiconductor can be made extremely high, so that a heat dissipation substrate suitable for a semiconductor element can be manufactured.

本発明によるホウ素系化合物半導体を用いた半導体素子
は、耐熱性および耐放射線性および放熱特性がすぐれて
いる。
The semiconductor device using the boron-based compound semiconductor according to the present invention has excellent heat resistance, radiation resistance and heat dissipation characteristics.

[実施例] 以下に実施例によって本発明を詳細に説明する。[Examples] Hereinafter, the present invention will be described in detail with reference to Examples.

第1図は本発明に係る放熱基板を用いた半導体装置の模
式図である。図において、1はSi基板、2は基板1上に
構成された素子構造である。3はBP放熱基板であり、絶
縁板を兼ねている。放熱基板3はSi基板1上に直接成長
させた層であり、そのSi基板側と反対の面は銅などによ
ってメタライズされている。メタライズ層4をはんだ5
によってフィン6にはんだ付けして半導体装置の冷却構
造が完成する。
FIG. 1 is a schematic view of a semiconductor device using a heat dissipation board according to the present invention. In the figure, 1 is a Si substrate and 2 is an element structure formed on the substrate 1. 3 is a BP heat dissipation board, which also serves as an insulating plate. The heat dissipation substrate 3 is a layer directly grown on the Si substrate 1, and the surface opposite to the Si substrate side is metallized with copper or the like. Metallization layer 4 solder 5
Thus, the fins 6 are soldered to complete the cooling structure of the semiconductor device.

第2図は比較のために示した従来の半導体装置の冷却構
造の一例の模式図である。Si基板1に、両面にメタライ
ズ層7および8を有するSIC 放熱基板9がはんだ付けさ
れ、さらにSIC 放熱基板9はフィン6にはんだ付けされ
ている。10,11 ははんだ層である。第1図と第2図との
比較から明らかなように、本発明の放熱板を用いた冷却
構造は従来例に比してその構成が簡単である。従って製
造工程も簡略化することができる。
FIG. 2 is a schematic view of an example of a conventional semiconductor device cooling structure shown for comparison. The SIC heat dissipation substrate 9 having the metallization layers 7 and 8 on both sides is soldered to the Si substrate 1, and the SIC heat dissipation substrate 9 is soldered to the fins 6. 10 and 11 are solder layers. As is clear from the comparison between FIG. 1 and FIG. 2, the cooling structure using the heat sink of the present invention has a simpler structure than the conventional example. Therefore, the manufacturing process can be simplified.

次にSi基板上へのBP膜の成長法について説明する。Next, a method of growing the BP film on the Si substrate will be described.

リン化ホウ素(BP)を含めたホウ素系III−V族化合物
半導体は、反応ガスを高周波加熱したSi単結晶上に流
し、基板上での熱分解法で得る方法が一般的である。し
かし従来の方法ではSi基板からのSiのオートドーピング
のために高純度のBPを得ることができなかった。
The boron-based III-V group compound semiconductor containing boron phosphide (BP) is generally obtained by causing a reaction gas to flow on a high-frequency-heated Si single crystal and subjecting it to a thermal decomposition method on a substrate. However, it was not possible to obtain high-purity BP by the conventional method because of Si autodoping from the Si substrate.

第3図に、本発明のBP膜を形成するためのCVD 装置を示
す。図において、12は反応管、13は冷却水を通す冷却
管、14は高周波コイルである。反応管12内にグラファイ
ト製のサセプタ15が設置され、その上にSi基板16が支持
されている。
FIG. 3 shows a CVD apparatus for forming the BP film of the present invention. In the figure, 12 is a reaction tube, 13 is a cooling tube for passing cooling water, and 14 is a high frequency coil. A graphite susceptor 15 is installed in the reaction tube 12, and a Si substrate 16 is supported on the susceptor 15.

サセプタ15は、石英棒などからなる傾斜したフレーム17
上に載せられ、さらに前後を石英からなる2個の傾斜体
18,19 によって挟まれている。反応管のガス入口12A か
らB2H6,PH3およびH2の混合ガスを流し、加熱されたSi基
板16上にBPを形成する。反応管内部の構成を第3図のよ
うにすることによって、反応ガスの流れを整流し、さら
に傾斜体19に適度の質量を持たせることによって、Si基
板上の温度の均一性を向上させることができた。
The susceptor 15 is an inclined frame 17 made of quartz rod or the like.
Two tilted bodies placed on top and further made of quartz in front and back
It is sandwiched by 18,19. A mixed gas of B 2 H 6 , PH 3 and H 2 is caused to flow from the gas inlet 12A of the reaction tube to form BP on the heated Si substrate 16. By improving the temperature uniformity on the Si substrate by rectifying the flow of the reaction gas by providing the inside of the reaction tube as shown in FIG. 3 and by giving the inclined body 19 an appropriate mass. I was able to.

原料ガスとしてB2H6およびPHを用い、Si(111)基板
上にBP膜を成長させた。成長条件はB2H6(5%水素希
釈)50〜60cc/min,PH3(5%水素希釈) 300〜500cc/m
in ,水素ガス(キャリア)3000〜5000cc/min,基板温
度900 〜1200℃である。
A BP film was grown on a Si (111) substrate using B 2 H 6 and PH 3 as source gases. Growth conditions are B 2 H 6 (5% hydrogen diluted) 50-60cc / min, PH 3 (5% hydrogen diluted) 300-500cc / m
in, hydrogen gas (carrier) 3000 to 5000 cc / min, substrate temperature 900 to 1200 ° C.

以上の条件で高熱伝導率のBP膜をSi基板上に成長させる
ことができた。
Under the above conditions, a high thermal conductivity BP film could be grown on a Si substrate.

次に本発明によるBP膜の熱的性質の測定例について述べ
る。
Next, an example of measuring the thermal properties of the BP film according to the present invention will be described.

本発明のBP膜の熱膨張係数は4×10-6/℃と極めて小さ
い。
The thermal expansion coefficient of the BP film of the present invention is extremely small at 4 × 10 −6 / ° C.

BP膜の熱拡散率をレーザフラッシュ法によって求めた。The thermal diffusivity of BP film was obtained by the laser flash method.

従来のレーザフラッシュ法では不可能な薄膜・薄板に対
してレーザ光を試料の中心軸上に合せてリング状に照射
し、試料の裏面の中心の温度変化を測定し、熱拡散率を
求めた。その結果室温で1.8cm2/secの値が得られた。
A thin film / thin plate, which was impossible with the conventional laser flash method, was irradiated with a laser beam in a ring shape along the central axis of the sample, and the temperature change at the center of the back surface of the sample was measured to determine the thermal diffusivity. . As a result, a value of 1.8 cm 2 / sec was obtained at room temperature.

BP膜の比熱をパーキンソンのDSC によって測定した結
果、0.9(J/g℃)の値が得られた。BP膜の密度は2.97/cm
3であり、以上の結果よりBPの熱伝導率を求めると、室
温で4.8(J/cm℃・S)となる。
The specific heat of the BP film was measured by Parkinson's DSC, and a value of 0.9 (J / g ° C) was obtained. BP film density is 2.97 / cm
3 , and the thermal conductivity of BP obtained from the above results is 4.8 (J / cm ° C · S) at room temperature.

次にBPの熱伝導率を高温まで測定した。その結果を他の
材料と比較して第4図に示す。図示のように、本発明の
BP膜は全温度領域にわたって、他の材料より高い熱伝導
率をもっている。このBP膜の高い熱伝導率は本発明者ら
によって、はじめて明らかにされたものである。
Next, the thermal conductivity of BP was measured up to a high temperature. The results are shown in FIG. 4 in comparison with other materials. As shown,
The BP film has higher thermal conductivity than other materials over the entire temperature range. The high thermal conductivity of this BP film was first clarified by the present inventors.

このような高い熱伝導率に加え、BP膜に高い電気抵抗を
付与する方法が見出された。
In addition to such high thermal conductivity, a method of giving a high electrical resistance to the BP film has been found.

第5図はBP膜を成長させるためのSi基板の加熱条件の一
例を示すダイアグラムである。はじめ基板温度を1050℃
としてBP膜をSi基板上に成長させた後、図示するように
温度を1080℃まで急激に上昇させて成長をつづけ、所定
膜厚の成長が完了した後、温度を再び1050℃に下げて一
定時間保持した後に徐冷する。このようにして成長させ
たBP膜の断面構造を第6図に示す。
FIG. 5 is a diagram showing an example of heating conditions of the Si substrate for growing the BP film. Initially the substrate temperature is 1050 ℃
As shown in the figure, after growing the BP film on the Si substrate, the temperature is rapidly raised to 1080 ° C to continue the growth, and after the growth of the predetermined film thickness is completed, the temperature is lowered to 1050 ° C again and kept constant. After holding for a while, slowly cool. The sectional structure of the BP film thus grown is shown in FIG.

最初にSiを含んだ1次成長層22がSi基板21上に成長し、
さらに温度を上げることにより2次成長層23として、う
ろこ状の成長が始まり、2層からなるBP膜が得られた。
First, the primary growth layer 22 containing Si grows on the Si substrate 21,
When the temperature was further increased, scaly growth started as the secondary growth layer 23, and a BP film consisting of two layers was obtained.

この2次成長したBP膜について、4端子法によるホール
測定を行った。得られたBP膜の抵抗率は10〜10Ωcm
であり、従来の1次成長だけのBPの抵抗率10〜10Ω
cmに比べて絶縁性を大きくすることが出来た。なお2次
成長したBP膜の熱伝導率には変化はなかった。
The hole was measured by the four-terminal method for the secondarily grown BP film. The resistivity of the obtained BP film is 10 6 to 10 8 Ωcm
And the resistivity of the conventional BP only for primary growth 10 1 to 10 2 Ω
The insulation was able to be increased compared to cm. There was no change in the thermal conductivity of the BP film grown secondarily.

1次成長のための基板温度は1050℃に限られず、成長さ
せるべき膜の種類,性質に応じ選定することができる。
2次成長は、1次成長温度に対して10〜60℃程度急激に
昇温して反応を行わせればよい。1次成長層としての必
要な厚さは厳密ではなく、数10μm以上であればよく、
2次成長層の厚さは必要に応じて定められる。2次成長
終了後、1次成長温度と同じ温度に保持することは省略
することもできる。
The substrate temperature for primary growth is not limited to 1050 ° C, and can be selected according to the type and properties of the film to be grown.
The secondary growth may be performed by rapidly raising the temperature by about 10 to 60 ° C. with respect to the primary growth temperature. The thickness required for the primary growth layer is not critical and may be several tens of μm or more,
The thickness of the secondary growth layer is set as needed. After completion of the secondary growth, it may be omitted to keep the same temperature as the primary growth temperature.

このように本発明のBP膜は高熱伝導性と高絶縁性とをあ
わせもっているので、半導体素子の放熱基板として極め
て有用である。
As described above, the BP film of the present invention has both high thermal conductivity and high insulating properties, and is therefore extremely useful as a heat dissipation substrate for semiconductor elements.

最後に本発明のBP膜を有する半導体素子の実施例につい
て述べる。第7図は本発明によるp-n 接合ダイオードの
実施例を示す。図において、24はSi基板、25はn-BP層、
26はp-BP層、27および28は Al電極層である。この素子
はSi基板上にn型BP層とp型BP層を積層することによっ
て作られる。n型層は反応ガス中のPHの比率を高く
し、また反応温度を低く制御することによって、p型層
はPHの比率を低くし、または反応温度を高く制御する
ことによって形成することができる。n型層とp型層の
積層順序は逆であってもよい。
Finally, examples of the semiconductor device having the BP film of the present invention will be described. FIG. 7 shows an embodiment of a pn junction diode according to the present invention. In the figure, 24 is a Si substrate, 25 is an n-BP layer,
26 is a p-BP layer and 27 and 28 are Al electrode layers. This device is manufactured by stacking an n-type BP layer and a p-type BP layer on a Si substrate. The n-type layer is formed by increasing the ratio of PH 3 in the reaction gas and controlling the reaction temperature to be low, and forming the p-type layer by decreasing the ratio of PH 3 or controlling the reaction temperature to be high. You can The order of stacking the n-type layer and the p-type layer may be reversed.

本実施例のダイオードは従来のダイオードに比べて耐熱
性にすぐれ、さらに放射線(α線,中性子線,X線等)
に対して強い特徴をもち、さらに放熱特性が良好であ
る。
The diode of this embodiment is superior in heat resistance to the conventional diode, and further radiation (α-ray, neutron ray, X-ray, etc.)
In addition, it has a strong characteristic and has excellent heat dissipation characteristics.

このほか表面障壁型ダイオードでも同様のことは可能で
ある。
In addition, the same can be done with the surface barrier diode.

上の実施例はBPについて示したが、BAs やこれらの液晶
の場合についても同等の効果が得られる。すなわちBAs
も結晶構造がせん亜鉛鉱型で、電子構造,化学結合なら
びに電気的,光学的特性などがBPのものと極めて近く、
半導体物性が極めて類似しているので、BPと同等の効果
が得られる。
Although the above example shows BP, the same effect can be obtained for BAs and these liquid crystals. Ie BAs
Also has a zincblende crystal structure, and its electronic structure, chemical bond, electrical and optical properties are very close to those of BP,
Since the semiconductor properties are very similar, the same effect as BP can be obtained.

また、他の元素を添加した多成分系においても同様の効
果が得られている。なお本発明は単結晶膜に限定される
ものでなく、多結晶,非結晶,焼結体などからなるホウ
素系化合物半導体に適用できる。
Similar effects are also obtained in a multi-component system to which other elements are added. The present invention is not limited to a single crystal film, but can be applied to a boron-based compound semiconductor composed of a polycrystalline, non-crystalline, sintered body or the like.

[発明の効果] 以上説明したように、この発明は高い熱伝導率を利用し
てIC,レーザダイオード等の放熱板に用いるものであ
る。この発明によって得られる効果を列挙すると、 (1) IC,レーザ等に用いられるSiやGaAs等の上に成長
させた膜を放熱板にすれば、材料構造が単純になり、部
品点数や組立て工数が低減でき、デバイスの小型軽量
化,信頼性向上などの効果が大きい。
[Effects of the Invention] As described above, the present invention utilizes a high thermal conductivity and is used for a heat sink of an IC, a laser diode, or the like. The effects obtained by the present invention are listed as follows: (1) If a film grown on Si, GaAs, etc. used for IC, laser, etc. is used as a heat sink, the material structure becomes simple and the number of parts and the number of assembling steps are increased. Can be reduced, and the effects of reducing the size and weight of the device and improving reliability are significant.

(2) 絶縁性が大きく、熱膨張係数が小さいので、信頼性
が高い。
(2) High insulative property and small thermal expansion coefficient, so high reliability.

(3) 宇宙通信や自動車電話などに用いるマイクロ波発振
用トランジスタ,光通信用レーザダイオードのように、
高電流密度で作動させるために、発熱が特に激しいもの
に効果が大きい。
(3) Like microwave oscillation transistors and optical communication laser diodes used in space communications and car phones,
Since it operates at a high current density, it is particularly effective for those that generate a lot of heat.

さらに、本発明によるホウ素系化合物半導体を用いた半
導体素子は、放熱特性,耐熱性,耐放射線性にすぐれて
いるので、広い適用範囲をもっている。
Further, the semiconductor device using the boron-based compound semiconductor according to the present invention has excellent heat dissipation characteristics, heat resistance, and radiation resistance, and thus has a wide range of application.

本発明は電子計算機,光通信等の情報産業の広い分野に
わたって適用可能である。
INDUSTRIAL APPLICABILITY The present invention can be applied to a wide range of information industries such as electronic computers and optical communications.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の放熱基板を用いた半導体装置の模式
図、 第2図は従来の放熱基板を用いた半導体装置の模式図、 第3図は本発明BP膜を形成するCVD 装置の断面図、 第4図はBPの熱伝導率を他の材料と比較して示した特性
図、 第5図は本発明BP膜の成長方法の一例を示すダイアグラ
ム、 第6図はBP膜の2次成長を説明する断面図、 第7図は本発明によるp-n 接合ダイオードの実施例の構
造を示す図である。 1……Si基板、 2……素子構造、 3……BP放熱基板、 4……メタライズ層、 5……はんだ、 6……フィン、 7,8……メタライズ層、 9……放熱基板(SiC)、 10,11……はんだ、 12……反応管、 14……高周波コイル、 15……サセプタ、 16……Si基板、 18,19……傾斜体、 21……Si基板。 22……1次成長層、 23……2次成長層、 24……Si基板、 25……n-BP層、 26……p-BP層、 27,28…… Al電極層。
FIG. 1 is a schematic view of a semiconductor device using a heat dissipation substrate of the present invention, FIG. 2 is a schematic view of a semiconductor device using a conventional heat dissipation substrate, and FIG. 3 is a cross section of a CVD device for forming a BP film of the present invention. Fig. 4, Fig. 4 is a characteristic diagram showing the thermal conductivity of BP in comparison with other materials, Fig. 5 is a diagram showing an example of the growth method of the BP film of the present invention, and Fig. 6 is a secondary diagram of the BP film. FIG. 7 is a sectional view for explaining the growth, and FIG. 7 is a diagram showing the structure of an embodiment of a pn junction diode according to the present invention. 1 ... Si substrate, 2 ... element structure, 3 ... BP heat dissipation substrate, 4 ... metallization layer, 5 ... solder, 6 ... fin, 7,8 ... metallization layer, 9 ... heat dissipation substrate (SiC ), 10, 11 …… Solder, 12 …… Reaction tube, 14 …… High frequency coil, 15 …… Susceptor, 16 …… Si substrate, 18,19 …… Inclined body, 21 …… Si substrate. 22 …… Primary growth layer, 23 …… Secondary growth layer, 24 …… Si substrate, 25 …… n-BP layer, 26 …… p-BP layer, 27,28 …… Al electrode layer.

フロントページの続き (72)発明者 三橋 武文 茨城県つくば市並木1丁目1番地 科学技 術庁無機材質研究所内 (72)発明者 岡谷 伸一 東京都昭島市松原町3丁目9番12号 理学 計測株式会社内 (72)発明者 牟田 史仁 東京都昭島市松原町3丁目9番12号 理学 計測株式会社内 (72)発明者 小代 毅 東京都昭島市松原町3丁目9番12号 理学 計測株式会社内 審査官 川真田 秀男 (56)参考文献 特開 昭49−53787(JP,A) 特開 昭62−8600(JP,A)Front page continuation (72) Takefumi Mitsuhashi 1-chome Namiki, Tsukuba, Ibaraki Prefectural Institute of Inorganic Materials (72) Inventor Shinichi Okaya 3-9-12 Matsubara-cho, Akishima-shi, Tokyo Rikagaku Co., Ltd. (72) Inventor Fumihito Muta, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo Science & Measurement Co., Ltd. (72) Inventor Takeshi Koshiro, 3-9-12, Matsubara-cho, Akishima-shi, Tokyo Examiner, Science & Technology Co., Ltd. Kawamada Hideo (56) Reference JP-A-49-53787 (JP, A) JP-A-62-8600 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基板と該基板上に形成されたリン化ホウ素
およびヒ化ホウ素の一方またはそれらの混晶を主成分と
するホウ素系化合物半導体からなる放熱基板であって、 前記ホウ素系化合物半導体が基板上の1次成長層と該1
次成長層上の2次成長層からなる二層構造を有すること
を特徴とする放熱基板。
1. A heat dissipation substrate comprising a substrate and a boron-based compound semiconductor having a boron phosphide or boron arsenide formed on the substrate or a mixed crystal thereof as a main component, the boron-based compound semiconductor. Is the primary growth layer on the substrate and
A heat dissipation substrate having a two-layer structure comprising a secondary growth layer on a next growth layer.
【請求項2】前記ホウ素系化合物半導体を半導体装置の
基板上に成長させたことを特徴とする請求項1記載の放
熱基板。
2. The heat dissipation substrate according to claim 1, wherein the boron-based compound semiconductor is grown on a substrate of a semiconductor device.
【請求項3】基板上にリン化ホウ素およびヒ化ホウ素の
一方またはそれらの混晶を主成分とするホウ素系化合物
半導体を成長させるに際して、成長の途中で基板温度を
急激に上昇させた後、成長を続行することを特徴とする
ホウ素系化合物半導体層を有する放熱基板の製造方法。
3. When growing a boron-based compound semiconductor containing, as a main component, one of boron phosphide and boron arsenide or a mixed crystal thereof on a substrate, after the substrate temperature is rapidly raised during the growth, A method for manufacturing a heat dissipation substrate having a boron-based compound semiconductor layer, characterized by continuing growth.
JP63069706A 1988-03-25 1988-03-25 Heat dissipating substrate having boron compound semiconductor and its manufacturing method Expired - Lifetime JPH0634402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63069706A JPH0634402B2 (en) 1988-03-25 1988-03-25 Heat dissipating substrate having boron compound semiconductor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63069706A JPH0634402B2 (en) 1988-03-25 1988-03-25 Heat dissipating substrate having boron compound semiconductor and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH01243563A JPH01243563A (en) 1989-09-28
JPH0634402B2 true JPH0634402B2 (en) 1994-05-02

Family

ID=13410551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63069706A Expired - Lifetime JPH0634402B2 (en) 1988-03-25 1988-03-25 Heat dissipating substrate having boron compound semiconductor and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH0634402B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7919855B2 (en) * 2006-02-21 2011-04-05 Lockheed Martin Topside thermal management of semiconductor devices using boron phosphide contacting a gate terminal

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241036B2 (en) * 1972-09-28 1977-10-15
JPH0680909B2 (en) * 1985-07-04 1994-10-12 ティーディーケイ株式会社 Heat sink for semiconductor device

Also Published As

Publication number Publication date
JPH01243563A (en) 1989-09-28

Similar Documents

Publication Publication Date Title
US8617669B1 (en) Laser formation of graphene
JP3445393B2 (en) Method of making electronic component with heat sink and electronic component
US7618880B1 (en) Apparatus and method for transformation of substrate
JP5642970B2 (en) Method and associated apparatus for depositing epitaxial thermoelectric films with reduced crack and / or surface defect density
Chatterjee et al. Electro-thermal co-design of β-(AlxGa1-x) 2O3/Ga2O3 modulation doped field effect transistors
JP2002124611A (en) Heat sink for electronic device, method for manufacturing the same and semiconductor laser module employing the heat sink
Bar-Cohen et al. Near-junction microfluidic cooling for wide bandgap devices
US7811914B1 (en) Apparatus and method for increasing thermal conductivity of a substrate
US4139401A (en) Method of producing electrically isolated semiconductor devices on common crystalline substrate
JP3528375B2 (en) Substrate and heat dissipation substrate using the same, semiconductor device, element mounting device
Soleimanzadeh et al. Near-junction heat spreaders for hot spot thermal management of high power density electronic devices
US20220308471A1 (en) Photoconductive charge trapping apparatus
CN107615447A (en) Gallium nitride device with trap rich region
Zeng et al. ErAs:(InGaAs) 1− x (InAlAs) x alloy power generator modules
JP3549228B2 (en) Highly oriented diamond heat dissipation substrate
JPH0634402B2 (en) Heat dissipating substrate having boron compound semiconductor and its manufacturing method
US3401449A (en) Method of fabricating a metal base transistor
JP2010045184A (en) Thermally conductive plate component and electronic component with the same
Fan et al. Integrated cooling for Si-based microelectronics
US4542037A (en) Laser induced flow of glass bonded materials
JPS63283014A (en) Silicon carbide semiconductor element
Ramesham et al. Fabrication of microchannels in synthetic polycrystalline diamond thin films for heat sinking applications
Petritz Contributions of materials technology to semiconductor devices
JP3479957B2 (en) Diamond heat sink and method of manufacturing the same
Morkoç New approaches in heteroepitaxy and related devices

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term