JPH06343478A - Micro-injection method and apparatus - Google Patents

Micro-injection method and apparatus

Info

Publication number
JPH06343478A
JPH06343478A JP5137246A JP13724693A JPH06343478A JP H06343478 A JPH06343478 A JP H06343478A JP 5137246 A JP5137246 A JP 5137246A JP 13724693 A JP13724693 A JP 13724693A JP H06343478 A JPH06343478 A JP H06343478A
Authority
JP
Japan
Prior art keywords
needle
cell
substance
cells
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5137246A
Other languages
Japanese (ja)
Inventor
Noritaka Uchida
憲孝 内田
Yuji Sasaki
裕次 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5137246A priority Critical patent/JPH06343478A/en
Publication of JPH06343478A publication Critical patent/JPH06343478A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/02Electrical or electromagnetic means, e.g. for electroporation or for cell fusion

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To surely inject an extraneous substance into a cell while suppressing the damage on the cell using a micro-injection apparatus for injecting a substance into a biotissue or cell. CONSTITUTION:A plate 10 holding regularly arranged cells is placed on a micromanipulation stage and a needle 20 fixed to a fine-adjustment positioning apparatus 13 is approached to a cell 11 and slowly inserted into the cell while observing the cell with a stereo-microscope 14. A substance to be injected into the cell is preparatorily applied to the tip of the needle by electrodeposition. A needle 22 different from the needle coated with the injection substance is inserted into the cell at a side opposite to the coated needle and a voltage is applied between the needles with a power source 15. The injection substance fixed to the needle by electrodeposition is actively released into the cell by this process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、生体組織及び細胞内に
物質を注入するためのマイクロインジェクション方法お
よびその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microinjection method and an apparatus for injecting a substance into living tissues and cells.

【0002】[0002]

【従来の技術】従来、物理的機械的操作によって遺伝子
や蛋白質、生理活性物質を生体組織や細胞に注入した
り、生体組織や細胞から物質を取り出して検出する手法
としてガラス針を細胞及び組織にさして物質を注入する
機械式マイクロインジェクション装置(例えば実験生物
学講座8、細胞生物学、P277ー297「マイクロマニピュ
レーション」丸善(株)、特開平3ー119989「微小イン
ジェクション装置及びそのインジェクションの制御方
法」参照)がある。また物質を注入する手法としては、
電気パルスを印加することによって細胞膜に穴を開ける
エレクトロポーレーション(例えばNeumannらによるマ
ウス細胞へのチミジンキナーゼ遺伝子の導入に関する実
験例(Neumann,E., Schaefer-Ridder,M., Wang, Y., Ho
fschneider,P.H. : EMBO J.,1, 841-845 (1982))参照)
や、レーザによって細胞膜に穴を開けるレーザマイクロ
インジェクション(例えば「レーザ式セルプロセッサに
よる遺伝子導入」植物細胞工学,Vol.3 No.2 (1991)
135-138参照)、さらには、微細な粒子に物質を塗布
して組織あるいは細胞に打ち込むパーティクルガン(例
えば「パーティクルガンによる植物細胞への遺伝子の導
入と発現」植物細胞工学,Vol.2 No.5 (1991) 631-6
37参照)等がある。
2. Description of the Related Art Conventionally, a glass needle has been used as a technique for injecting a gene, protein, or physiologically active substance into a living tissue or cell by a physical mechanical operation or for extracting a substance from the living tissue or cell and detecting it. Now, a mechanical microinjection device for injecting substances (for example, Experimental Biology Course 8, Cell Biology, P277-297 "Micromanipulation" Maruzen Co., Ltd., Japanese Patent Laid-Open No. 3-119989 "Microinjection device and its injection control method". There is). Moreover, as a method of injecting a substance,
Electroporation in which a cell membrane is perforated by applying an electric pulse (for example, an experimental example regarding the introduction of a thymidine kinase gene into a mouse cell by Neumann et al. (Neumann, E., Schaefer-Ridder, M., Wang, Y., Ho
fschneider, PH: EMBO J., 1, 841-845 (1982)))
Or laser microinjection to make a hole in the cell membrane by laser (eg "Gene transfer by laser cell processor" Plant Cell Engineering, Vol.3 No.2 (1991)
135-138), and further, a particle gun in which a substance is applied to fine particles and bombarded in a tissue or a cell (for example, “Transfection and Expression of Gene into Plant Cell by Particle Gun”, Plant Cell Engineering, Vol.2 No. 5 (1991) 631-6
(See 37).

【0003】[0003]

【発明が解決しようとする課題】従来行なわれていた機
械式マイクロインジェクションでは、特定の細胞に物質
を注入することができるが、注入する針として中空状の
ガラスキャピラリを用いていたためその外径を小さくす
ることには限界があった。そのために細胞に針を注入し
た際に細胞が破裂したり致命的なダメージを受けてしま
う、操作が煩雑であるなどの問題点があった。また、エ
レクトロポーレーションやレーザマイクロインジェクシ
ョン、パーティクルガンでは一度に大量の細胞に物質を
注入できるが、特定の細胞だけに物質を注入することは
困難であった。
In the conventional mechanical microinjection, it is possible to inject a substance into a specific cell, but since the hollow glass capillary is used as an injecting needle, its outer diameter is changed. There was a limit to making it smaller. Therefore, when the needle is injected into the cell, the cell may be ruptured or fatally damaged, and the operation is complicated. Further, in electroporation, laser microinjection, and particle gun, a substance can be injected into a large number of cells at one time, but it is difficult to inject the substance into only specific cells.

【0004】[0004]

【課題を解決するための手段】本発明の目的は、特定の
細胞あるいは複数の細胞にできるだけダメージが少なく
物質を注入する方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for injecting a substance into a specific cell or a plurality of cells with minimal damage.

【0005】上記課題を解決するためには、針先に物質
を塗布しその物質を針先に保持したまま細胞内に注入
し、細胞内の目的の位置で物質を針先から開放すること
によって達成される。
In order to solve the above-mentioned problems, a substance is applied to the needle tip, the substance is injected into the cell while being held at the needle tip, and the substance is released from the needle tip at the target position in the cell. To be achieved.

【0006】[0006]

【作用】本発明では、針表面に注入したい物質を保持す
るため、細胞内に物質を注入する際に用いる針を従来用
いていたものよりも細くすることができる。その結果、
細胞への針注入時における細胞膜での穴は小さくなり細
胞にたいするダメージを軽減し、細胞破壊が少なくな
る。
In the present invention, since the substance to be injected is retained on the surface of the needle, the needle used for injecting the substance into cells can be made thinner than that used conventionally. as a result,
When the needle is injected into the cell, the hole in the cell membrane becomes smaller, which reduces damage to the cell and reduces cell destruction.

【0007】[0007]

【実施例】本発明の第1の実施例を図を用いて説明す
る。
EXAMPLE A first example of the present invention will be described with reference to the drawings.

【0008】図1に本実施例を行なうための全体の構成
図を示す。図2は針部分が組織に挿入されたときの拡大
模式図である。図中1はXYステージ、2は針支持台、3
はZ方向ステージ、4は倒立顕微鏡、5はシャーレ、6
は生物組織を収納したシャーレ、7は針、8は生体組織
である。次に本装置の動作を説明する。生体組織はシャ
ーレ5の中に固定する。固定の方法は寒天やゼラチン上
に押しつけることにより可能である。生体組織を固定し
たシャーレ5の下部からは顕微鏡によって生体組織の観
察が可能である。
FIG. 1 shows an overall configuration diagram for carrying out this embodiment. FIG. 2 is an enlarged schematic diagram when the needle portion is inserted into the tissue. In the figure, 1 is an XY stage, 2 is a needle support base, 3
Is a Z-direction stage, 4 is an inverted microscope, 5 is a petri dish, 6
Is a petri dish containing biological tissue, 7 is a needle, and 8 is biological tissue. Next, the operation of this device will be described. The biological tissue is fixed in the petri dish 5. The fixing method can be performed by pressing on agar or gelatin. From the bottom of the petri dish 5 on which the living tissue is fixed, the living tissue can be observed with a microscope.

【0009】生体組織を固定したシャーレをXYステージ
の定位置に固定する。次に針支持台に固定された針の先
端をシャーレ6の中の溶液、例えばDNAを含む溶液に浸
し、針の先端部分に組織内に注入したい物質を塗布し、
乾燥する。針7の先端部分での物質の固定法は、溶液を
針先端部分で凍結したり電気を流すことによって固定す
る電着法を用いてもよい。続いて針7を倒立顕微鏡で観
察しながら所望の生体組織の上部に配置しZ方向ステー
ジ3によって静かに針7を降ろして、図2で示すように
生体組織に差し込む。差し込む深度は対象となる組織に
よって異なる。注入したい物質が細胞に拡散した後、続
いて針を元の位置まで引き上げ、再び前述の方法で針の
先端部分に溶液を塗布し針7を組織のへ差し込む。
The petri dish on which the living tissue is fixed is fixed at a fixed position on the XY stage. Next, the tip of the needle fixed to the needle support is immersed in a solution in the dish 6, for example, a solution containing DNA, and the tip of the needle is coated with a substance to be injected into the tissue,
dry. As a method for fixing the substance at the tip portion of the needle 7, an electrodeposition method may be used in which the solution is fixed at the tip portion of the needle by freezing or applying an electric current. Subsequently, while observing the needle 7 with an inverted microscope, the needle 7 is placed on the desired living tissue, and the needle 7 is gently lowered by the Z-direction stage 3 and inserted into the living tissue as shown in FIG. The depth of penetration depends on the target tissue. After the substance to be injected diffuses into the cells, the needle is then pulled up to its original position, the solution is applied again to the tip of the needle by the above-described method, and the needle 7 is inserted into the tissue.

【0010】以上の操作を繰り返し、組織の異なる部分
に順次針を注入することで多数の細胞に外来物質を注入
することが出来る。
The foreign substance can be injected into a large number of cells by repeating the above operation and sequentially injecting needles into different parts of the tissue.

【0011】本装置で用いる針の作成に関しては、例え
ば線径25から50ミクロンのタングステンのワイヤー
を電解研磨法によって作成する。この方法によれば数百
オングストロームの径の細さの針を作成することができ
る。また、針の先端に窪みを設けることで注入したい物
質をより多く針に保持させることができる。
Regarding the needle used in this apparatus, for example, a tungsten wire having a wire diameter of 25 to 50 microns is made by the electrolytic polishing method. According to this method, a needle having a diameter of several hundred angstroms can be produced. Further, by providing the depression at the tip of the needle, it is possible to hold more of the substance to be injected in the needle.

【0012】第2の実施例を図を用いて説明する。本実
施例では個々の細胞に確実に外来物質の注入を行なう方
法を示す。図3(a)は細胞を固定するためのプレート
の全体図。図3(b)はプレートの一部の正面図、図3
(c)はプレートの一部の断面図である。図4は本実施
例の模式図、図5はプレートを固定するホルダーの模式
図、図6は要部の拡大図である。
A second embodiment will be described with reference to the drawings. In this example, a method for surely injecting a foreign substance into individual cells will be described. FIG. 3 (a) is an overall view of a plate for fixing cells. 3 (b) is a front view of a part of the plate, FIG.
(C) is a sectional view of a part of the plate. FIG. 4 is a schematic view of this embodiment, FIG. 5 is a schematic view of a holder for fixing a plate, and FIG. 6 is an enlarged view of a main part.

【0013】細胞を固定するプレート9は単結晶シリコ
ンウエハを異方性エッチングすることで得られる。本プ
レートでは細胞11を固定する細胞保持孔10がすりば
ち状で、底面に一辺約5ミクロンの正方形の穴が開いて
おり裏面まで通じている。まず、プレートへの細胞の固
定の方法を図5を用いて説明する。プレート9をプレー
トホルダー19に固定する。プレートは緩衝液21に浸
してあり、プレートの裏面から吸引装置17によって緩
く吸引されている。吸引された液はシリコンチューブ1
8を通って再びプレートホルダー19に戻る。プレート
9上に細胞懸濁液をまくと、細胞は1個1個細胞保持孔
10に固定される。実体顕微鏡12で細胞が固定された
ことを確認した後、余分な細胞を洗い流す。次にこのプ
レートホルダー19をXYステージ14に固定する。
The plate 9 for fixing cells is obtained by anisotropically etching a single crystal silicon wafer. In this plate, the cell-retaining holes 10 for fixing the cells 11 are in the shape of a skirt, and a square hole with a side of about 5 μm is opened on the bottom surface and communicates with the back surface. First, a method of fixing cells on the plate will be described with reference to FIG. The plate 9 is fixed to the plate holder 19. The plate is immersed in the buffer solution 21, and is gently sucked by the suction device 17 from the back surface of the plate. Aspirated liquid is silicone tube 1
Return to the plate holder 19 again through 8. When the cell suspension is spread on the plate 9, the cells are fixed in the cell holding holes 10 one by one. After confirming that the cells have been fixed with the stereoscopic microscope 12, excess cells are washed away. Next, the plate holder 19 is fixed to the XY stage 14.

【0014】動作について図4を用いて説明する。これ
らの細胞に微動な動作が可能な位置決め装置13に固定
された針20を実体顕微鏡12で観察しながら細胞に近
づけゆっくりと挿入する。ここでは直径25ミクロンの
タングステンワイヤーを電解研磨法によって作製した直
径が0.5ミクロン以下の針を用いる。針の先にはあら
かじめ細胞に注入したい物質を電着法により塗布してお
く。次に図5に示すように注入したい物質を塗布した針
20とは別の針22を最初の針の反対側から挿入し、両
方の針の間に電源15からリード線16により電圧を加
えることにより針20に電着固定されていた注入したい
物質を針20から能動的に細胞内に開放する。
The operation will be described with reference to FIG. While observing the needle 20 fixed to the positioning device 13 capable of finely moving these cells with the stereoscopic microscope 12, the needles 20 are slowly inserted into the cells. Here, a needle having a diameter of 0.5 micron or less, which is produced by electrolytic polishing a tungsten wire having a diameter of 25 micron, is used. A substance to be injected into cells is previously applied to the tip of the needle by an electrodeposition method. Next, as shown in FIG. 5, a needle 22 other than the needle 20 coated with the substance to be injected is inserted from the opposite side of the first needle, and a voltage is applied by a lead wire 16 from a power source 15 between both needles. The substance to be injected, which has been electrodeposited and fixed on the needle 20, is actively released into the cell from the needle 20.

【0015】次に細胞から針をゆっくりと抜き、一方の
針に再び導入したい物質を塗布し、次の細胞に同様の操
作を行なう。多数の細胞に同時に確実に外来物質の注入
を行ないたいときは、上記プレート上に細胞を固定し、
固定した細胞に対応したピッチで規則正しく並べた針を
それぞれの細胞に注入することによって実現できる。
Next, the needle is slowly removed from the cell, the substance to be reintroduced is applied to one needle, and the same operation is performed on the next cell. If you want to surely inject foreign substances into many cells at the same time, fix the cells on the plate,
This can be achieved by injecting into each cell needles arranged regularly at a pitch corresponding to the fixed cells.

【0016】[0016]

【発明の効果】以上説明したように、本発明によれば細
胞に対するダメージを軽減することができるので、特定
の細胞に物質を注入する際の成功の確立を向上すること
ができる。
As described above, according to the present invention, damage to cells can be reduced, so that success rate at the time of injecting a substance into specific cells can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の全体を示す模式図。FIG. 1 is a schematic diagram showing an entire example 1.

【図2】実施例1の要部を示す模式図。FIG. 2 is a schematic diagram showing a main part of the first embodiment.

【図3】(a)、(b)および(c)は実施例2で用い
る細胞固定用プレートの模式図、細胞固定用プレートの
正面図および細胞固定用プレートの断面図。
3 (a), (b) and (c) are a schematic view of a cell fixing plate used in Example 2, a front view of the cell fixing plate and a sectional view of the cell fixing plate.

【図4】実施例2の全体を示す模式図。FIG. 4 is a schematic diagram showing an entire example 2.

【図5】実施例2の要部を示す模式図。FIG. 5 is a schematic diagram showing a main part of the second embodiment.

【図6】実施例2の要部の拡大図である。FIG. 6 is an enlarged view of a main part of the second embodiment.

【符号の説明】[Explanation of symbols]

1…XYステージ、2…針支持台、3…Z方向ステージ、
4…倒立顕微鏡、5…シャーレ、6…生物組織を収納し
たシャーレ、7…針、8…生体組織、9…プレート、1
0…細胞保持孔、11…細胞、12…実体顕微鏡、13
…微動な動作が可能な位置決め装置、14…XYステー
ジ、15…電源、16…ワイヤー、17…吸引装置、1
8…シリコンチューブ、19…プレートホルダー、20
…針、21…緩衝液、22…針。
1 ... XY stage, 2 ... needle support, 3 ... Z direction stage,
4 ... Inverted microscope, 5 ... Petri dish, 6 ... Petri dish containing biological tissue, 7 ... Needle, 8 ... Living tissue, 9 ... Plate, 1
0 ... Cell holding hole, 11 ... Cell, 12 ... Stereomicroscope, 13
... Positioning device capable of fine movement, 14 ... XY stage, 15 ... Power supply, 16 ... Wire, 17 ... Suction device, 1
8 ... Silicon tube, 19 ... Plate holder, 20
... needle, 21 ... buffer solution, 22 ... needle.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 8412−4B C12N 5/00 D Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location 8412-4B C12N 5/00 D

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】針の先端に核酸、蛋白質、その他生理活性
物質を塗布し、その針を細胞または微細な組織の目的部
分に差し込むんで目的部分に物質を導入することを特徴
とするマイクロインジェクション方法。
1. A microinjection method comprising applying a nucleic acid, a protein or other physiologically active substance to the tip of a needle and inserting the needle into the target portion of cells or fine tissues to introduce the substance into the target portion. .
【請求項2】先端に核酸、蛋白質、その他生理活性物質
を塗布された針、前記針に対向した位置に配置され核
酸、蛋白質、その他生理活性物質を収納した容器、前記
針を前記容器内の細胞または微細な組織の目的部分に差
し込む為の手段よりなることをを特徴とするマイクロイ
ンジェクション装置。
2. A needle having a tip coated with a nucleic acid, a protein, or other physiologically active substance, a container arranged at a position facing the needle and containing the nucleic acid, protein, or another physiologically active substance, and the needle inside the container. A microinjection device comprising means for inserting into a target portion of cells or fine tissues.
【請求項3】前記針を冷却することで針表面に注入物質
を凍結させて固定することを特徴とする請求項2記載の
マイクロインジェクション装置。
3. The microinjection device according to claim 2, wherein the injected substance is frozen and fixed on the needle surface by cooling the needle.
【請求項4】上記針に電着によって針表面に注入物質を
固定することを特徴とする請求項2記載のマイクロイン
ジェクション装置。
4. The microinjection device according to claim 2, wherein the injection substance is fixed to the needle surface by electrodeposition on the needle.
【請求項5】上記針を複数個備えたことを特徴とする請
求項2記載のマイクロインジェクション装置。
5. The microinjection device according to claim 2, further comprising a plurality of the needles.
【請求項6】上記針の先端に微小な窪みを設けたことを
特徴とする請求項2ないし5のいずれかに記載のマイク
ロインジェクション装置。
6. The microinjection device according to claim 2, wherein a minute recess is provided at the tip of the needle.
JP5137246A 1993-06-08 1993-06-08 Micro-injection method and apparatus Pending JPH06343478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5137246A JPH06343478A (en) 1993-06-08 1993-06-08 Micro-injection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5137246A JPH06343478A (en) 1993-06-08 1993-06-08 Micro-injection method and apparatus

Publications (1)

Publication Number Publication Date
JPH06343478A true JPH06343478A (en) 1994-12-20

Family

ID=15194191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5137246A Pending JPH06343478A (en) 1993-06-08 1993-06-08 Micro-injection method and apparatus

Country Status (1)

Country Link
JP (1) JPH06343478A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6593129B1 (en) 2000-08-25 2003-07-15 Hitachi, Ltd. Apparatus for microinjection of sample into amphibian oocytes
JP2004041023A (en) * 2002-07-09 2004-02-12 Japan Science & Technology Corp Method for transfecting intracellular transfecting material into animal cell using electroinjection method and apparatus therefor
WO2004092369A1 (en) * 2003-04-11 2004-10-28 Riken Method of microinjection and device therefor
KR100712603B1 (en) * 2006-04-18 2007-05-02 김병진 Working block for removal of a nucleus from an egg
JP2008011741A (en) * 2006-07-04 2008-01-24 Fujitsu Ltd Micro-injection device
US7479388B2 (en) 2004-04-28 2009-01-20 Fujitsu Limited Apparatus for injecting solution into cell
WO2009009610A3 (en) * 2007-07-09 2009-03-12 Univ Brigham Young Methods and devices for charged molecule manipulation
KR100894128B1 (en) * 2006-04-26 2009-04-20 후지쯔 가부시끼가이샤 Microinjection device and microinjection method
WO2009075236A1 (en) * 2007-12-10 2009-06-18 Olympus Corporation Needle
WO2009075234A1 (en) * 2007-12-10 2009-06-18 Olympus Corporation Chip drive
WO2009084374A1 (en) * 2007-12-27 2009-07-09 Olympus Corporation Chip driver and cantilever chip
WO2010079580A1 (en) * 2009-01-09 2010-07-15 Ntn株式会社 Microinjection apparatus and microinjection method
CN108070618A (en) * 2017-12-12 2018-05-25 浙江海洋大学 A kind of method of microinjection operation
CN111693196A (en) * 2020-06-16 2020-09-22 梁诗豪 Live embryo surface zona pellucida tension detection device

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6593129B1 (en) 2000-08-25 2003-07-15 Hitachi, Ltd. Apparatus for microinjection of sample into amphibian oocytes
JP2004041023A (en) * 2002-07-09 2004-02-12 Japan Science & Technology Corp Method for transfecting intracellular transfecting material into animal cell using electroinjection method and apparatus therefor
WO2004092369A1 (en) * 2003-04-11 2004-10-28 Riken Method of microinjection and device therefor
JPWO2004092369A1 (en) * 2003-04-11 2006-07-06 独立行政法人理化学研究所 Microinjection method and apparatus
US8304240B2 (en) 2003-04-11 2012-11-06 Olympus Corporation Microinjection method and device
JP4530991B2 (en) * 2003-04-11 2010-08-25 独立行政法人理化学研究所 Microinjection method and apparatus
US7479388B2 (en) 2004-04-28 2009-01-20 Fujitsu Limited Apparatus for injecting solution into cell
KR100712603B1 (en) * 2006-04-18 2007-05-02 김병진 Working block for removal of a nucleus from an egg
KR100894128B1 (en) * 2006-04-26 2009-04-20 후지쯔 가부시끼가이샤 Microinjection device and microinjection method
JP2008011741A (en) * 2006-07-04 2008-01-24 Fujitsu Ltd Micro-injection device
EP2167632A2 (en) * 2007-07-09 2010-03-31 Brigham Young University Methods and devices for charged molecule manipulation
US10119151B2 (en) 2007-07-09 2018-11-06 Brigham Young University Methods and devices for charged molecule manipulation
EP2167632A4 (en) * 2007-07-09 2013-12-18 Univ Brigham Young Methods and devices for charged molecule manipulation
WO2009009610A3 (en) * 2007-07-09 2009-03-12 Univ Brigham Young Methods and devices for charged molecule manipulation
JP2009136262A (en) * 2007-12-10 2009-06-25 Olympus Corp Needle
CN101889076A (en) * 2007-12-10 2010-11-17 奥林巴斯株式会社 Chip drive
JP2009136260A (en) * 2007-12-10 2009-06-25 Olympus Corp Tip driver
WO2009075234A1 (en) * 2007-12-10 2009-06-18 Olympus Corporation Chip drive
WO2009075236A1 (en) * 2007-12-10 2009-06-18 Olympus Corporation Needle
WO2009084374A1 (en) * 2007-12-27 2009-07-09 Olympus Corporation Chip driver and cantilever chip
WO2010079580A1 (en) * 2009-01-09 2010-07-15 Ntn株式会社 Microinjection apparatus and microinjection method
CN108070618A (en) * 2017-12-12 2018-05-25 浙江海洋大学 A kind of method of microinjection operation
CN108070618B (en) * 2017-12-12 2021-03-05 浙江海洋大学 Microinjection operation method
CN111693196A (en) * 2020-06-16 2020-09-22 梁诗豪 Live embryo surface zona pellucida tension detection device

Similar Documents

Publication Publication Date Title
JPH06343478A (en) Micro-injection method and apparatus
JP4467793B2 (en) Cell specific site perforation technology
US8304240B2 (en) Microinjection method and device
JP4842512B2 (en) Combined parallel drug delivery and electroporation of cellular structures and uses thereof
JP3035608B2 (en) Microcapillary array, method for manufacturing the same, and substance injection device
JP5659024B2 (en) Apparatus and method for aligning chips in a multiwell plate
JP2016504022A (en) Heart tissue construct and method for producing the same
US20130330378A1 (en) Anisotropic biological pacemakers and av bypasses
EP0497885A1 (en) Array-type multiple cell injector
CN105164531A (en) Nanopipette device and method for subcellular analysis
Ma et al. Laser-patterned stem-cell bridges in a cardiac muscle model for on-chip electrical conductivity analyses
CA2201315A1 (en) Direct introduction of foreign materials into cells
Tamargo et al. milliPillar: a platform for the generation and real-time assessment of human engineered cardiac tissues
US6537800B1 (en) Apparatus for automatically measuring minute membrane potential
US7521224B2 (en) Microelectronic cell electroporation array
US8283132B2 (en) Method and devices for treating individual biological cells
US6383813B1 (en) Microfabrication of a nuclear transfer array for high-throughput animal cloning
Fan et al. The insertion mechanism of a living cell determined by the stress segmentation effect of the cell membrane during the tip–cell interaction
JP2966904B2 (en) Cell processing method and processing apparatus
Fraser Iontophoretic dye labeling of embryonic cells
Bursac et al. Characterizing functional stem cell–cardiomyocyte interactions
Sharf et al. Non-contact monitoring of extra-cellular field potentials with a multi-electrode array
US20220213424A1 (en) Culture apparatus for drug discovery research
JP4204913B2 (en) Cell or tissue culture control apparatus and method
Bukauskas Inducing De Novo Formation of Gap Juntion Channels