JPH06341410A - Universal hydraulic device - Google Patents

Universal hydraulic device

Info

Publication number
JPH06341410A
JPH06341410A JP5132088A JP13208893A JPH06341410A JP H06341410 A JPH06341410 A JP H06341410A JP 5132088 A JP5132088 A JP 5132088A JP 13208893 A JP13208893 A JP 13208893A JP H06341410 A JPH06341410 A JP H06341410A
Authority
JP
Japan
Prior art keywords
hydraulic
unit
hydraulic pressure
power
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5132088A
Other languages
Japanese (ja)
Other versions
JP3207294B2 (en
Inventor
Atsuyuki Hirai
淳之 平井
Yoshiji Hiraga
義二 平賀
Yoshio Aoyama
義雄 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP13208893A priority Critical patent/JP3207294B2/en
Priority to KR1019950705342A priority patent/KR100290160B1/en
Priority to US08/556,922 priority patent/US5887430A/en
Priority to PCT/JP1993/001255 priority patent/WO1994028315A1/en
Priority to DE4397414T priority patent/DE4397414T1/en
Publication of JPH06341410A publication Critical patent/JPH06341410A/en
Application granted granted Critical
Publication of JP3207294B2 publication Critical patent/JP3207294B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Actuator (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

PURPOSE:To enable a hydraulic actuator to mode freely and to be replaced without generation of problem in hydraulic piping and electric wiring between a hydraulic actuator and its driving means and with a simple structure. CONSTITUTION:A feeder unit 30 has a primary side power transmission part 31a and primary side information signal transmission part 31b to which high frequency voltage is applied by a high frequency inverter 32 and a feeding side control part 34 respectively. A hydraulic pressure generation unit 10 has a hermetical structure and is provided with a hydraulic circuit composed of a hydraulic pump 15, solenoid valve 16 and check valve 18, a hydraulic cylinder 23 controlled by the hydraulic circuit, and a secondary side power transmission part 11a and a secondary side information signal transmission part 11b to which part 11a power is supplied and to which part 11b information signal is transmitted respectively from the primary side information signal transmission part 31b and the primary side power transmission part 31a, by a noncontact manner by high frequency electromagnetic induction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自在油圧装置に関す
る。
FIELD OF THE INVENTION The present invention relates to a universal hydraulic system.

【0002】[0002]

【従来の技術】近年、工作機械を取り扱う職場の多く
は、作業環境が厳しいことによる労働者の不足と、多品
種少量生産への生産形態という社会背景のもとで、工作
機械の段取り工程の自動化は着実に進んできている。自
動化治具や産業用ロボットの先端ツールなど大きな力を
発生する必要のあるアクチュエータの駆動源は未だ油圧
が中心である。油圧アクチュエータの駆動は、一般に電
動機で油圧ポンプを加圧して行なっているが、そのため
には必ず油圧配管や電気配線が必要となる。これは、自
動化治具を自律移動させる場合すなわち油圧アクチュエ
ータの駆動手段に対する自律移動を考えた場合や、産業
用ロボットの先端ツールの交換対応を考えた場合、油圧
配管や電気配線の接続の問題が生じることになるが、最
近は自動油圧カップラなどの実用化が進められその解決
が図られようとしている。
2. Description of the Related Art In recent years, most of the workplaces handling machine tools have a shortage of workers due to a severe working environment and the social background of production mode for high-mix low-volume production has led to Automation is steadily progressing. Hydraulic pressure is still the main driving source for actuators that need to generate large forces, such as automation jigs and advanced tools for industrial robots. The hydraulic actuator is generally driven by pressurizing a hydraulic pump with an electric motor, but for this purpose, hydraulic piping and electric wiring are always required. This is because when the automated jig is moved autonomously, that is, when considering the autonomous movement of the driving means of the hydraulic actuator, or when considering the replacement of the tip tool of the industrial robot, there is a problem of connection of hydraulic piping and electric wiring. Although it will occur, the practical application of automatic hydraulic couplers and the like has been advanced recently, and its solution is being attempted.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、油圧カ
ップラを用いても依然として油圧アクチュエータと駆動
手段との間の油圧配管や電気配線の必要性はあり、油の
リークの問題などが完全に解決されているわけではない
し、油圧カップラ操作自体も自動化が容易でなく、駆動
手段に対する油圧アクチュエータの自律移動や産業用ロ
ボットの先端ツールの交換対応を考えた場合に、信頼性
の不安が残る。また、情報信号の伝送を平行して行なわ
ないと、動作させる治具アクチュエータの数が増えるに
つれてカップラの数も増え、信頼性低下と装置の大型化
につながることになる。そこで本発明は、油圧アクチュ
エータとその駆動手段との間の油圧配管や電気配線の問
題を生じることなく、しかも簡単な構成で油圧アクチュ
エータの自律移動や交換を行なえる自在油圧装置を提供
することを目的とする。
However, even if the hydraulic coupler is used, there is still a need for hydraulic piping and electric wiring between the hydraulic actuator and the drive means, and the problem of oil leak is completely solved. However, the operation of the hydraulic coupler itself is not easy to automate, and the reliability remains uncertain when considering autonomous movement of the hydraulic actuator with respect to the drive means and replacement of the tip tool of the industrial robot. Also, if information signals are not transmitted in parallel, the number of couplers increases as the number of jig actuators to be operated increases, leading to lower reliability and an increase in size of the apparatus. Therefore, the present invention provides a universal hydraulic device capable of autonomously moving or exchanging the hydraulic actuator with a simple structure without causing problems of hydraulic piping or electric wiring between the hydraulic actuator and its driving means. To aim.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
本発明の自在油圧装置は、高周波電圧が印加される一次
側伝送部を有する給電ユニットと、前記給電ユニットか
らの電力が供給され、該電力により油圧力を発生させて
油圧アクチュエータに所定の作業を行なわせるための油
圧シリンダを駆動する油圧発生ユニットとからなり、該
油圧発生ユニットは、前記高周波電圧の印加により生じ
る高周波電磁誘導を利用して前記一次側伝送部と無接触
で前記給電ユニットから電力の供給および情報信号の伝
送が行なわれる二次側伝送部と、該二次側伝送部を経由
して前記給電ユニットから供給される電力により駆動さ
れる油圧ポンプと、該油圧ポンプと前記油圧シリンダと
の間に設けられ、前記二次側伝送部を経由して前記給電
ユニットから伝送される情報信号により制御されるソレ
ノイドバルブと、該ソレノイドバルブと前記油圧シリン
ダとの間に設けられたチェックバルブと、前記油圧シリ
ンダとが一つの密閉された構造体の中に設けられている
ことを特徴とする。
In order to achieve the above object, the universal hydraulic apparatus of the present invention is provided with a power feeding unit having a primary side transmission portion to which a high frequency voltage is applied, and power supplied from the power feeding unit. And a hydraulic pressure generating unit that drives a hydraulic cylinder for generating a hydraulic pressure by electric power to cause the hydraulic actuator to perform a predetermined work.The hydraulic pressure generating unit utilizes high frequency electromagnetic induction generated by applying the high frequency voltage. And a secondary side transmission section in which power is supplied and information signals are transmitted from the power feeding unit without contact with the primary side transmission section, and power supplied from the power feeding unit via the secondary side transmission section. Is provided between the hydraulic pump and the hydraulic cylinder, and is transmitted from the power feeding unit via the secondary side transmission unit. That the solenoid valve controlled by the information signal, the check valve provided between the solenoid valve and the hydraulic cylinder, and the hydraulic cylinder are provided in one sealed structure. Characterize.

【0005】この場合、前記給電ユニットに、前記一次
側伝送部へ高周波電圧を印加する手段を駆動するための
バッテリを内蔵したものであってもよい。また、高周波
電圧が印加される一次側伝送部を有する給電ユニット
と、前記給電ユニットからの電力が供給され、該電力に
より油圧力を発生させて油圧アクチュエータに所定の作
業を行なわせるための油圧シリンダを駆動する油圧発生
ユニットからなり、該油圧発生ユニットは、前記高周波
電圧の印加により生じる高周波電磁誘導を利用して前記
一次側伝送部と無接触で前記給電ユニットから電力の供
給および情報信号の伝送が行なわれる二次側伝送部と、
前記給電ユニットからの電力の供給および情報信号の伝
送により制御される油圧回路と、前記油圧シリンダとが
一つの密閉された構造体の中に設けられるとともに、前
記給電ユニットおよび前記油圧発生ユニットには、前記
一次側伝送部と前記二次側伝送部とが互いに対向して配
置されるように、前記給電ユニットと前記油圧発生ユニ
ットとを機械的にかつ着脱自在に結合する結合手段が設
けられていることを特徴とするものとし、前記油圧発生
ユニットは、産業用ロボットのアーム部の先端に、前記
結合手段により結合可能となっているものでもよい。
In this case, the power supply unit may have a built-in battery for driving a means for applying a high frequency voltage to the primary side transmission section. Further, a power supply unit having a primary side transmission unit to which a high frequency voltage is applied, and power supplied from the power supply unit, hydraulic pressure is generated by the power, and a hydraulic cylinder for causing a hydraulic actuator to perform a predetermined work is provided. A hydraulic pressure generating unit for driving electric power, and the hydraulic pressure generating unit utilizes high frequency electromagnetic induction generated by applying the high frequency voltage to supply power and transmit information signals from the power feeding unit without contact with the primary side transmission unit. And a secondary side transmission unit, in which
A hydraulic circuit controlled by power supply and information signal transmission from the power supply unit and the hydraulic cylinder are provided in one sealed structure, and the power supply unit and the hydraulic pressure generation unit have Connecting means for mechanically and detachably connecting the power feeding unit and the hydraulic pressure generating unit so that the primary side transmitting section and the secondary side transmitting section are arranged to face each other. The hydraulic pressure generating unit may be connectable to the tip of the arm portion of the industrial robot by the connecting means.

【0006】さらに、高周波電圧が印加される、細長い
ループ状の一次側巻線が基台上に固定して配置された一
次側伝送部を有する給電ユニットと、前記給電ユニット
からの電力が供給され、該電力により油圧力を発生させ
て油圧アクチュエータに所定の作業を行なわせるための
油圧シリンダを駆動する油圧発生ユニットからなり、該
油圧発生ユニットは、前記高周波電圧の印加により生じ
る高周波電磁誘導を利用して前記一次側伝送部と無接触
で前記給電ユニットから電力の供給および情報信号の伝
送が行なわれる二次側伝送部と、前記給電ユニットから
の電力の供給および情報信号の伝送により制御される油
圧回路と、前記油圧シリンダとが一体となって設けられ
ているとともに、前記二次側伝送部は、前記一次側巻線
を二つの中空部に遊嵌して、前記基台上を前記一次側巻
線の長手方向に移動自在に設けられた二次側コアと、前
記一次側巻線に対向して前記二次側コアに巻回された二
次側巻線とを有するものであってももよく、この場合に
は、前記一次側巻線を基台上に複数設けるとともに、前
記油圧発生ユニットを前記各一次側巻線毎に設け、前記
一次側巻線へ高周波電圧を印加する手段を、高周波電磁
誘導を利用して電力および情報信号を無接触で伝送す
る、さらにもう1段の一次側伝送部および二次側伝送部
を介して設けたものとしてもよい。
Further, a power supply unit having a primary-side transmission unit in which a long and narrow loop-shaped primary-side winding to which a high-frequency voltage is applied is fixedly arranged on a base, and power from the power-supply unit is supplied. A hydraulic pressure generating unit that drives a hydraulic cylinder for generating hydraulic pressure by the electric power to cause a hydraulic actuator to perform a predetermined work, and the hydraulic pressure generating unit uses high frequency electromagnetic induction generated by applying the high frequency voltage. Then, the secondary side transmission section, in which power is supplied from the power feeding unit and the information signal is transmitted without contact with the primary side transmission section, is controlled by the power supply and the information signal transmission from the power feeding unit. A hydraulic circuit and the hydraulic cylinder are integrally provided, and the secondary side transmission unit includes the primary side winding in two hollow portions. A secondary side core that is fitted to the secondary side and is movably provided in the longitudinal direction of the primary side winding on the base; and a secondary side core facing the primary side winding and wound around the secondary side core. A secondary winding may be provided, and in this case, a plurality of the primary windings are provided on a base, and the hydraulic pressure generation unit is provided for each of the primary windings. Means for applying a high-frequency voltage to the primary winding is provided via a primary-stage transmission section and a secondary-side transmission section that transmit electric power and information signals in a contactless manner using high-frequency electromagnetic induction. It may be good.

【0007】そして、上記本発明の各自在油圧装置にお
いて、前記給電ユニットには、前記一次側伝送部に印加
する高周波電圧の周波数を複数種に変換する周波数変換
手段が設けられるとともに、前記油圧発生ユニットに
は、前記高周波電磁誘導により前記二次側伝送部に生じ
た高周波電圧の周波数を測定する周波数測定回路と、該
周波数測定回路で測定された高周波電圧の周波数に対応
して、前記油圧回路の制御を行なうための情報信号を発
生させるデコーダとが設けられているものでもよい。
In each of the universal hydraulic devices of the present invention, the power supply unit is provided with frequency conversion means for converting the frequency of the high frequency voltage applied to the primary side transmission portion into a plurality of types, and the hydraulic pressure generation is performed. The unit includes a frequency measuring circuit for measuring the frequency of the high frequency voltage generated in the secondary side transmission section by the high frequency electromagnetic induction, and the hydraulic circuit corresponding to the frequency of the high frequency voltage measured by the frequency measuring circuit. And a decoder for generating an information signal for controlling the above.

【0008】[0008]

【作用】上記のとおり構成された請求項1に記載の発明
では、給電ユニットから油圧発生ユニットへは、高周波
電磁誘導を利用して無接触で電力の供給および情報信号
の伝送が行なわれるので、給電ユニットと油圧発生ユニ
ットとの間には油圧配管や電気配線が必要なくなり、油
の漏れや電気回路の接続不良がなくなる。また、ソレノ
イドバルブと油圧シリンダとの間にチェックバルブが設
けられているので、給電ユニットから油圧発生ユニット
への電力の供給およびソレノイドバルブの制御信号の入
出力は、油圧シリンダの動作の開始時と終了時以外は必
要なくなる。よって、それ以外には給電ユニットと油圧
発生ユニットとを分離しても、油圧シリンダはその状態
を維持し続け、油圧アクチュエータの機能を維持した状
態で油圧発生ユニットを自在に移動できる。
In the invention according to claim 1 configured as described above, since electric power is supplied and information signals are transmitted from the power feeding unit to the hydraulic pressure generating unit contactlessly using high frequency electromagnetic induction. No hydraulic piping or electrical wiring is required between the power supply unit and the hydraulic pressure generation unit, and oil leaks and poor electrical circuit connections are eliminated. Further, since the check valve is provided between the solenoid valve and the hydraulic cylinder, the power supply from the power supply unit to the hydraulic pressure generation unit and the input / output of the control signal of the solenoid valve are performed at the start of the operation of the hydraulic cylinder. It is no longer needed except when finished. Therefore, even if the power feeding unit and the hydraulic pressure generating unit are separated from each other, the hydraulic cylinder continues to maintain that state, and the hydraulic pressure generating unit can freely move while maintaining the function of the hydraulic actuator.

【0009】[0009]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。 (第1実施例)図1は、本発明の自在油圧装置の第1実
施例の概略構成図である。図1に示すように、この自在
油圧装置は密閉構造の油圧発生ユニット10と、油圧発
生ユニット10と分離可能な給電ユニット30とに大別
される。まず、油圧発生ユニット10について説明す
る。油圧発生ユニット10は、油圧ポンプ駆動モータ1
4からの駆動力により油タンク22内の油を汲み上げて
油圧力を発生させ、この油圧力により油圧シリンダ23
のロッド23aを図示矢印方向に前進させたり、その逆
方向に後退させるものであり、ロッド23aの移動方向
を切り換えるためのソレノイドバルブ16を有する。油
タンク22は、油温の変化による容積変化と、アクチュ
エータの移動に伴う容積変化に追従するために、容積変
化型のものが用いられている。
Embodiments of the present invention will now be described with reference to the drawings. (First Embodiment) FIG. 1 is a schematic configuration diagram of a first embodiment of a universal hydraulic system according to the present invention. As shown in FIG. 1, the universal hydraulic device is roughly divided into a hydraulic pressure generating unit 10 having a closed structure and a power feeding unit 30 separable from the hydraulic pressure generating unit 10. First, the hydraulic pressure generation unit 10 will be described. The hydraulic pressure generation unit 10 includes a hydraulic pump drive motor 1
The oil in the oil tank 22 is pumped up by the driving force from the hydraulic pressure generator 4 to generate an oil pressure.
The rod 23a is moved forward in the direction of the arrow in the drawing and is moved backward in the opposite direction, and has a solenoid valve 16 for switching the moving direction of the rod 23a. The oil tank 22 is of a volume change type in order to follow the volume change due to the change of the oil temperature and the volume change due to the movement of the actuator.

【0010】また、ソレノイドバルブ16と油圧シリン
ダ23のロッド前進側油室とを連通する配管には、チェ
ックバルブ18と、ロッド23aの前進移動が完了した
ことを検知するための前進用圧力スイッチ19と、油圧
回路を密閉構造の中に収めた場合の温度変化による油量
の変化を吸収し、油圧発生特性の変化が生じないように
するためのアキュームレータ21とが設けられている。
一方、ソレノイドバルブ16と油圧シリンダ23のロッ
ド後退側油室とを連通する配管には、ロッド23aの後
退移動が完了したことを検知するための後退用圧力スイ
ッチ20が設けられている。さらに、油圧ポンプ15と
ソレノイドバルブ16とを連通する配管にはリリーフバ
ルブ17が設けられている。ここで、前進用圧力スイッ
チ19と、後退用圧力スイッチ20は、それぞれマイク
ロスイッチ等を用いた近接スイッチで代用することがで
きる。
Further, a check valve 18 and a forward pressure switch 19 for detecting the completion of the forward movement of the rod 23a are provided in the pipe connecting the solenoid valve 16 and the rod forward side oil chamber of the hydraulic cylinder 23. And an accumulator 21 for absorbing a change in the amount of oil due to a temperature change when the hydraulic circuit is housed in a closed structure and preventing a change in the hydraulic pressure generation characteristic.
On the other hand, a pipe connecting the solenoid valve 16 and the rod retreating side oil chamber of the hydraulic cylinder 23 is provided with a retreating pressure switch 20 for detecting the completion of the retreating movement of the rod 23a. Further, a relief valve 17 is provided in the pipe that connects the hydraulic pump 15 and the solenoid valve 16. Here, the forward pressure switch 19 and the backward pressure switch 20 may be replaced by proximity switches each using a micro switch or the like.

【0011】二次側電力伝送部11aおよび二次側情報
信号伝送部11bは、それぞれ後述する給電ユニット3
0から高周波電磁誘導により電力および情報信号を授受
するためのものであり、コアと、それに巻回された巻線
とからなる。二次側情報信号伝送部11bを通じて伝送
された情報信号は制御部13のCPUに入力され、この
情報信号に基づいて制御部13では、I/Oインターフ
ェイスを介してソレノイドバルブ16を制御したり、各
圧力スイッチ19、20の確認信号を二次側情報信号伝
送部11bを介して給電ユニットにフィードバックす
る。情報信号伝送の点数が少ないときには、制御部13
のCPUによるシリアル通信ではなく、信号点数分の高
周波電磁カップリングを備えてCPUを用いない並列通
信を行なうことができる。一方、二次側電力伝送部11
aを通じて伝送された高周波電圧は、制御部13の電源
回路に供給されるとともに、整流平滑回路12において
整流および平滑されて直流電圧に変換された後油圧ポン
プ駆動モータ14に供給される。また、整流平滑回路1
2で生成された直流電圧の一部は、必要に応じて制御部
13の電源回路に供給される。
The secondary side power transmission section 11a and the secondary side information signal transmission section 11b are respectively provided with a power feeding unit 3 which will be described later.
It is for transmitting and receiving electric power and information signals from 0 by high frequency electromagnetic induction, and includes a core and a winding wound around the core. The information signal transmitted through the secondary side information signal transmission unit 11b is input to the CPU of the control unit 13, and the control unit 13 controls the solenoid valve 16 via the I / O interface based on the information signal. The confirmation signals of the pressure switches 19 and 20 are fed back to the power feeding unit via the secondary side information signal transmission unit 11b. When the number of information signal transmissions is small, the control unit 13
Instead of serial communication by the CPU, parallel communication can be performed without using the CPU by providing high-frequency electromagnetic couplings corresponding to the number of signal points. On the other hand, the secondary power transmission unit 11
The high frequency voltage transmitted through a is supplied to the power supply circuit of the control unit 13 and is rectified and smoothed by the rectifying / smoothing circuit 12 to be converted into a DC voltage and then supplied to the hydraulic pump drive motor 14. In addition, the rectifying and smoothing circuit 1
Part of the DC voltage generated in 2 is supplied to the power supply circuit of the control unit 13 as needed.

【0012】次に、給電ユニット30について説明す
る。給電ユニット30は、上位コントローラであるシー
ケンサー35からの信号が入力される給電側制御部34
と、給電側制御部34で生成された情報信号を高周波電
磁誘導により二次側情報信号伝送部11bに無接触で伝
送するための、二次側情報信号伝送部11bに対向して
配置された一次側情報信号伝送部31bと、交流電源3
6からの交流電圧を整流および平滑して直流電圧に変換
する整流平滑回路33と、給電側制御部34および整流
平滑回路33からの直流電圧をそれぞれ高周波電圧に変
換する二つの高周波インバータ32と、各高周波インバ
ータ32からの高周波電圧を高周波電磁誘導により二次
側電力伝送部11aに無接触で供給するための、二次側
電力伝送部11aに対向して配置された一次側電力伝送
部31aとを有する。一次側電力伝送部31aおよび一
次側情報信号伝送部31bについても、二次側電力伝送
部11aおよび二次側情報信号伝送部11bと同様に、
それぞれコアと、それに巻回された巻線とからなる。
Next, the power supply unit 30 will be described. The power supply unit 30 includes a power supply side control unit 34 to which a signal from a sequencer 35, which is a host controller, is input.
And an information signal generated by the power supply side control unit 34, which is arranged to face the secondary side information signal transmission unit 11b for contactless transmission to the secondary side information signal transmission unit 11b by high frequency electromagnetic induction. Primary side information signal transmission unit 31b and AC power supply 3
A rectifying / smoothing circuit 33 that rectifies and smoothes the AC voltage from 6 to convert it into a DC voltage; and two high-frequency inverters 32 that convert the DC voltage from the power supply side control unit 34 and the rectifying / smoothing circuit 33 into a high-frequency voltage, respectively. A primary-side power transmission section 31a arranged facing the secondary-side power transmission section 11a for supplying the high-frequency voltage from each high-frequency inverter 32 to the secondary-side power transmission section 11a in a contactless manner by high-frequency electromagnetic induction; Have. As for the primary side power transmission section 31a and the primary side information signal transmission section 31b, similarly to the secondary side power transmission section 11a and the secondary side information signal transmission section 11b,
Each consists of a core and a winding wound around it.

【0013】ここで、給電ユニット30から油圧発生ユ
ニット10への電力供給の原理について説明する。高周
波インバータ32で作られた高周波電圧が一次側電力伝
送部31aの巻線に加えられると、二次側電力伝送部1
1aの巻線との巻線比に従って、電磁結合により二次側
電力伝送部11aの巻線に高周波電圧を生じさせる。そ
して、この誘導電圧が整流平滑回路12で整流、平滑化
され、油圧ポンプ駆動モータ14に供給される。また、
供給側制御部34と制御部13との間での情報信号の伝
送も、電力供給と同様の原理で行なわれる。上述した自
在油圧装置において油圧シリンダ23のロッド23aを
前進させる際には、交流電源36から供給されて給電ユ
ニット30で変換された高周波電圧は、一次側電力伝送
部31aから二次側電力伝送部11aに高周波電磁誘導
により無接触で供給される。二次側電力伝送部11aに
供給された高周波電圧は、整流平滑回路12で直流電圧
に変換されて油圧ポンプ駆動モータ14を駆動させる。
油圧ポンプ駆動モータ14の駆動により、油タンク22
に蓄えられた油が油圧ポンプ15で汲み上げられ、油圧
が発生する。油圧を発生させた後に、ソレノイドバルブ
16のロッド前進側バルブをオンするための信号が、給
電側制御部34から制御部13へ、一次側情報信号伝送
部31bと二次側情報信号伝送部11bとの間の高周波
電磁誘導により無接触で伝送される。これにより、油圧
シリンダ23のロッド前進側油室に加圧油が供給され、
ロッド23aが前進する。ロッド23aの前進端までの
移動完了は前進用圧力スイッチ19の信号を確認するこ
とによって行なわれるが、この信号は二次側情報信号伝
送部11bと一次側情報信号伝送部31bとの間の高周
波電磁誘導により無接触で給電側制御部34にフィード
バックされる。
Here, the principle of power supply from the power supply unit 30 to the hydraulic pressure generation unit 10 will be described. When the high frequency voltage generated by the high frequency inverter 32 is applied to the winding of the primary power transfer unit 31a, the secondary power transfer unit 1a
A high frequency voltage is generated in the winding of the secondary side power transmission unit 11a by electromagnetic coupling according to the winding ratio with the winding of 1a. Then, this induced voltage is rectified and smoothed by the rectifying / smoothing circuit 12 and supplied to the hydraulic pump drive motor 14. Also,
The transmission of the information signal between the supply side control unit 34 and the control unit 13 is also performed by the same principle as the power supply. In advancing the rod 23a of the hydraulic cylinder 23 in the above-described universal hydraulic device, the high frequency voltage supplied from the AC power supply 36 and converted by the power supply unit 30 is transferred from the primary power transmission unit 31a to the secondary power transmission unit 31a. 11a is contactlessly supplied by high frequency electromagnetic induction. The high frequency voltage supplied to the secondary side power transmission unit 11a is converted into a DC voltage by the rectifying and smoothing circuit 12 to drive the hydraulic pump drive motor 14.
By driving the hydraulic pump drive motor 14, the oil tank 22
The oil stored in is pumped up by the hydraulic pump 15 to generate hydraulic pressure. After the hydraulic pressure is generated, a signal for turning on the rod advancing side valve of the solenoid valve 16 is transmitted from the power feeding side control unit 34 to the control unit 13 to the primary side information signal transmission unit 31b and the secondary side information signal transmission unit 11b. It is transmitted contactlessly by high frequency electromagnetic induction between and. As a result, pressurized oil is supplied to the rod advancing side oil chamber of the hydraulic cylinder 23,
The rod 23a advances. Completion of the movement of the rod 23a to the forward end is performed by confirming the signal of the forward pressure switch 19, which is a high frequency signal between the secondary side information signal transmission section 11b and the primary side information signal transmission section 31b. It is fed back to the power supply side controller 34 in a contactless manner by electromagnetic induction.

【0014】ロッド23aの前進端までの移動完了の確
認後に、ソレノイドバルブ16をオフするための信号
を、給電側制御部34から制御部13へ、一次側情報信
号伝送部31bと二次側情報信号伝送部11bとの間の
高周波電磁誘導により伝送すると、ソレノイドバルブ1
6がオフされるが、このとき、チェックバルブ18の働
きにより油圧シリンダ23内の油圧は保持される。従っ
て、油圧発生ユニット10と給電ユニット30とを分離
しても、油圧発生ユニット10はサポートやジャッキな
どの強度メンバ、あるいはチャックやバイス、クランプ
装置として機能し続けることができるため、油圧配管も
電気配線もない自律した治具が形成される。このような
構成によって、加工物や被支持物と一体となって移動す
ることもできる、自在で有効な支持物が構成される。
After confirming the completion of the movement of the rod 23a to the forward end, a signal for turning off the solenoid valve 16 is sent from the power supply side control section 34 to the control section 13 to the primary side information signal transmission section 31b and the secondary side information. When transmission is performed by high frequency electromagnetic induction between the signal transmission unit 11b and the solenoid valve 1,
6 is turned off, but at this time, the hydraulic pressure in the hydraulic cylinder 23 is maintained by the action of the check valve 18. Therefore, even if the hydraulic pressure generation unit 10 and the power supply unit 30 are separated, the hydraulic pressure generation unit 10 can continue to function as a strength member such as a support or a jack, or as a chuck, a vise, or a clamp device. An autonomous jig without wiring is formed. With such a structure, a free and effective support that can move integrally with the workpiece or the supported object is configured.

【0015】一方、治具としての機能を解除する場合、
すなわち油圧シリンダ23のロッド23aを後退させる
場合には、再度、油圧ポンプ駆動モータ14を駆動させ
た後、ソレノイドバルブ16のロッド後退側バルブをオ
ンし、油圧シリンダ23のロッド23aを後退させる。
ロッド23aの後退完了の確認は後退用圧力スイッチ2
0からの信号を二次側情報信号伝送部11bから一次側
情報信号伝送部31bを経た情報信号の伝送によって行
なわれる。この信号が給電側制御部34に送られた時点
でソレノイドバルブ16をオフし、その後、油圧ポンプ
駆動モータ14を停止させる。そして、油圧発生ユニッ
ト10と給電ユニット30とを分離し、機能解除動作が
完了する。以上の動作において、油圧ポンプ駆動モータ
14の駆動と停止、およびソレノイドバルブ16のオン
とオフの制御は、いずれも給電側制御部34からの信号
による、一次側電力伝送部31aから二次側電力伝送部
11aへの高周波電圧の供給、および一次側情報信号伝
送部31bから二次側情報信号伝送部11bへの情報信
号の伝送を経て行なわれる。
On the other hand, when releasing the function as a jig,
That is, when the rod 23a of the hydraulic cylinder 23 is retracted, the hydraulic pump drive motor 14 is driven again, and then the rod retraction side valve of the solenoid valve 16 is turned on to retract the rod 23a of the hydraulic cylinder 23.
The confirmation of the completion of the retraction of the rod 23a is performed by the reversing pressure switch 2
The signal from 0 is transmitted by transmitting the information signal from the secondary side information signal transmission section 11b to the primary side information signal transmission section 31b. When this signal is sent to the power supply side control unit 34, the solenoid valve 16 is turned off, and then the hydraulic pump drive motor 14 is stopped. Then, the hydraulic pressure generation unit 10 and the power supply unit 30 are separated, and the function release operation is completed. In the above operation, the drive and stop of the hydraulic pump drive motor 14 and the on / off control of the solenoid valve 16 are controlled by a signal from the power supply side control unit 34 from the primary side power transmission unit 31a to the secondary side power supply. The high frequency voltage is supplied to the transmission unit 11a and the information signal is transmitted from the primary side information signal transmission unit 31b to the secondary side information signal transmission unit 11b.

【0016】図1に示したものでは、ソレノイドバルブ
16によって、油圧シリンダ23のロッド23aの前進
および後退を制御していたが、ソレノイドバルブ16に
代えて、図2に示すようにシングルソレノイドバルブ1
6’を設け、ソレノイド操作をばねの反力による単動操
作とすることで、制御を簡略することができるととも
に、アキュームレータ21(図1参照)をも省略でき
る。なお、給電ユニット30および油圧発生ユニット1
0のその他の構成は図1に示したものと同様であるの
で、その説明は省略する。本実施例では、油圧ポンプ駆
動モータ14の回転制御やソレノイドバルブ16(また
はシングルソレノイドバルブ16’)の制御のために、
油圧発生ユニット10と給電ユニット30との間での情
報信号の伝送を、電力の供給と同様に高周波電磁誘導に
より行なっているが、装置構成の単純簡素化のために
は、供給電力上に情報信号を重畳する方法が有効であ
る。
In the one shown in FIG. 1, the solenoid valve 16 controls the advance and retreat of the rod 23a of the hydraulic cylinder 23. Instead of the solenoid valve 16, the single solenoid valve 1 is used as shown in FIG.
6'is provided and the solenoid operation is a single-action operation by the reaction force of the spring, so that the control can be simplified and the accumulator 21 (see FIG. 1) can be omitted. The power supply unit 30 and the hydraulic pressure generation unit 1
The other configuration of 0 is similar to that shown in FIG. In this embodiment, in order to control the rotation of the hydraulic pump drive motor 14 and the solenoid valve 16 (or the single solenoid valve 16 '),
Information signals are transmitted between the hydraulic pressure generation unit 10 and the power supply unit 30 by high-frequency electromagnetic induction as in the case of power supply. However, in order to simplify and simplify the device configuration, information is supplied on the power supply. A method of superimposing signals is effective.

【0017】以下に、図3を参照して供給電力上に情報
信号を重畳する方法について説明する。図3は、図1に
示した自在油圧装置において供給電力上に情報信号を重
畳する場合の要部ブロック図であり、油圧回路について
は省略している。図3において、給電ユニット60は、
シーケンス指令スイッチパネル65と、シーケンス指令
スイッチパネル65からの指令に基づいて所定の周波数
の高周波電圧を発生する高周波インバータ62と、一次
側伝送部61とを有する。一方、油圧発生ユニット40
は、二次側伝送部41と、二次側伝送部41に生じた高
周波電圧を整流、平滑化し直流電圧に変換する整流平滑
回路42と、整流平滑回路42から得た信号用電源で駆
動する周波数測定回路54と、デコーダ55とを有す
る。上記構成に基づき、供給電力上への情報信号の重畳
は、電力伝送周波数を伝送特性が変化しない範囲で変化
させることで容易に行なうことができる。すなわち、シ
ーケンス指令スイッチパネル65によりn(n=0、,
±1,±2,・・・,±k)の値を指定し、このnの値
に基づき、高周波インバータ62では周波数がf0 +n
Δf(ただし、f0 =インバータ中心周波数、Δfは十
分にf0 よりも小さい、とする)なるパルス波形が作ら
れる。例えば、本実施例ではシーケンス指令は3ビット
(8通り)程度で十分であるので、整流平滑回路42で
の直流電圧変換後の供給電力が変化しない範囲で高周波
励磁周波数を8通りに変化させる。そして、周波数測定
回路54によって、分圧後の高周波励磁電圧の周波数を
測定し、周波数に対応する指令シーケンス信号をデコー
ダ55で発生させることによって情報信号を供給電力上
に重畳して伝送することができる。
A method of superimposing an information signal on the supplied power will be described below with reference to FIG. FIG. 3 is a block diagram of a main part when an information signal is superimposed on the supplied power in the universal hydraulic apparatus shown in FIG. 1, and the hydraulic circuit is omitted. In FIG. 3, the power feeding unit 60 is
It has a sequence command switch panel 65, a high frequency inverter 62 that generates a high frequency voltage of a predetermined frequency based on a command from the sequence command switch panel 65, and a primary side transmission unit 61. On the other hand, the hydraulic pressure generation unit 40
Is driven by the secondary-side transmission unit 41, a rectifying / smoothing circuit 42 that rectifies and smoothes a high-frequency voltage generated in the secondary-side transmission unit 41, and converts the high-frequency voltage into a DC voltage, and a signal power supply obtained from the rectifying / smoothing circuit 42. It has a frequency measuring circuit 54 and a decoder 55. Based on the above configuration, the superposition of the information signal on the supplied power can be easily performed by changing the power transmission frequency within a range in which the transmission characteristic does not change. That is, the sequence command switch panel 65 causes n (n = 0 ,,
(± 1, ± 2, ..., ± k), and the frequency is f 0 + n in the high frequency inverter 62 based on the value of n.
A pulse waveform of Δf (provided that f 0 = inverter center frequency, Δf is sufficiently smaller than f 0 ) is created. For example, in the present embodiment, about 3 bits (8 ways) are sufficient as the sequence command, so the high frequency excitation frequency is changed to 8 ways within the range in which the supply power after the DC voltage conversion in the rectifying and smoothing circuit 42 does not change. Then, the frequency measuring circuit 54 measures the frequency of the high-frequency excitation voltage after the voltage division, and the decoder 55 generates a command sequence signal corresponding to the frequency to superimpose the information signal on the power supply for transmission. it can.

【0018】一方、電力供給が間違いなくなされている
ことや、油圧ポンプ駆動モータ14により正常に油圧力
が発生し、油圧シリンダ23が所定の動作を行なってい
るかなどのシーケンスフィードバック確認は、電力供給
と同様の原理により、しかも別の無接触伝送ユニットに
より行なうこともできるが、人の目視確認で十分な場合
には外部から見えるLEDなどの表示で十分である。本
実施例では、図1に示したようにソレノイドバルブ16
と油圧シリンダ23との間にチェックバルブ18を設け
たものの例を示したが、特に、油圧シリンダ23をグリ
ッパなど、機能解除動作時に油圧力を保持する必要のな
い用途に用いる場合おいては、チェックバルブ18のよ
うな圧力保持機能は不要である。 (第2実施例)図4は、本発明の自在油圧装置の第2実
施例の概略構成図である。本実施例の自在油圧装置は、
ロボット先端のATC(自動工具交換)対応工具やAH
C(自動ヘッド交換)に適用することを考えた例であ
り、油圧発生ユニット110が、二次側電力伝送部11
1と、整流平滑回路112と、油圧ポンプ駆動モータ1
14と、油圧ポンプ115と、ロッド123aを後退さ
せる向き(図示右向き)に付勢するばね123bを内蔵
した油圧シリンダ123と、油圧シリンダ123と油圧
ポンプ115との間に設けられたリリーフバルブ116
と、油量調整のためのリザーバタンク117とを有す
る。このため、油は油圧ポンプ115と油圧シリンダ1
23との間で循環して使われ、油タンクを使わない構造
となっている。さらに、第1実施例で述べたようなクラ
ンプ治具やグリッパ用のものとは異なり、圧着や切断な
ど、油圧シリンダ123が移動している間のみ油圧が発
生していればよく、油圧シリンダ123が定位置におい
て力を保持する必要のないものに用いる構造となってい
る。
On the other hand, the sequence feedback confirmation such as whether the electric power is definitely supplied or whether the hydraulic pressure is normally generated by the hydraulic pump drive motor 14 and the hydraulic cylinder 23 is performing a predetermined operation is confirmed by the electric power supply. Although the same principle can be used and another contactless transmission unit can be used, if the visual confirmation by a person is sufficient, the display such as an LED visible from the outside is sufficient. In this embodiment, as shown in FIG. 1, the solenoid valve 16
Although the example in which the check valve 18 is provided between the hydraulic cylinder 23 and the hydraulic cylinder 23 has been shown, particularly when the hydraulic cylinder 23 is used for an application such as a gripper that does not need to maintain hydraulic pressure at the time of the function release operation, A pressure holding function such as the check valve 18 is unnecessary. (Second Embodiment) FIG. 4 is a schematic configuration diagram of a second embodiment of the universal hydraulic system of the present invention. The universal hydraulic system of this embodiment is
ATC (automatic tool change) compatible tools and AH at the tip of the robot
This is an example considering application to C (automatic head replacement).
1, a rectifying / smoothing circuit 112, and a hydraulic pump drive motor 1
14, a hydraulic pump 115, a hydraulic cylinder 123 having a built-in spring 123b for urging the rod 123a to retract (rightward in the drawing), and a relief valve 116 provided between the hydraulic cylinder 123 and the hydraulic pump 115.
And a reservoir tank 117 for adjusting the amount of oil. Therefore, the oil is hydraulic pump 115 and hydraulic cylinder 1.
It is circulated and used with 23 and has a structure that does not use an oil tank. Further, unlike the one for the clamp jig or the gripper as described in the first embodiment, the hydraulic pressure may be generated only while the hydraulic cylinder 123 is moving, such as crimping or cutting, and the hydraulic cylinder 123 may be used. Has a structure used for things that do not need to hold force in a fixed position.

【0019】また、油圧発生ユニット110と給電ユニ
ット130とは、互いにプルスタッド方式のチャックで
着脱自在に結合される構造となっており、二次側電力伝
送部111にはスタッド部124が一体的に設けられる
一方、給電ユニット130の一次側電力伝送部131に
はスタッド部124が着脱自在に嵌合されるソケット部
135が一体的に設けられている。そして、スタッド部
124がソケット部135に嵌合することにより、二次
側電力伝送部111が一次側電力伝送部131の内周面
に空隙を介して互いに対向配置される構成となってい
る。この自在油圧装置の動作開始時には、油圧シリンダ
123のロッド123aはばね123bの力によって後
退端(図示右端)に位置しているが、スタッド部124
とソケット部135との嵌合が確認された時点で、給電
ユニット130で生じた高周波電圧が、一次側電力伝送
部131と二次側電力伝送部111との間で生じる高周
波電磁誘導により油圧発生ユニット110に供給され
る。油圧発生ユニット110に供給された高周波電圧は
整流平滑回路112で直流電圧に変換された後、油圧ポ
ンプ駆動モータ114を駆動させる。これにより、油圧
ポンプ115内の油が圧縮されて油圧シリンダ123内
に送り込まれる。油圧シリンダ123内に油が充填され
ると、ロッド123aはばね123bの力に抗して図示
矢印方向に前進し始め、前進端まで移動する。このロッ
ド123aの前進移動を利用して加工物の圧縮や切断な
どの作業を行なう。
Further, the hydraulic pressure generating unit 110 and the power feeding unit 130 have a structure in which they are detachably coupled to each other by a pull stud type chuck, and the stud portion 124 is integrated with the secondary side power transmission section 111. On the other hand, the primary side power transmission part 131 of the power supply unit 130 is integrally provided with a socket part 135 into which the stud part 124 is detachably fitted. Then, by fitting the stud portion 124 into the socket portion 135, the secondary side power transmission section 111 is arranged on the inner peripheral surface of the primary side power transmission section 131 so as to face each other with a gap. At the start of operation of the universal hydraulic device, the rod 123a of the hydraulic cylinder 123 is positioned at the retracted end (right end in the figure) by the force of the spring 123b, but the stud portion 124
When it is confirmed that the socket unit 135 and the socket unit 135 are engaged with each other, the high frequency voltage generated in the power supply unit 130 is hydraulically generated by the high frequency electromagnetic induction generated between the primary power transmission unit 131 and the secondary power transmission unit 111. It is supplied to the unit 110. The high frequency voltage supplied to the hydraulic pressure generation unit 110 is converted into a DC voltage by the rectifying / smoothing circuit 112, and then the hydraulic pump drive motor 114 is driven. As a result, the oil in the hydraulic pump 115 is compressed and sent into the hydraulic cylinder 123. When the hydraulic cylinder 123 is filled with oil, the rod 123a begins to move forward in the direction of the arrow in the figure against the force of the spring 123b, and moves to the forward end. The forward movement of the rod 123a is used to perform work such as compression and cutting of the workpiece.

【0020】また、本実施例では油圧の保持機能を有し
ていないので、油圧シリンダ123が圧力を持続して発
生させるためにはリリーフバルブ116の開放後も油圧
ポンプ駆動モータ114を駆動し続ける必要があるが、
油圧ポンプ駆動モータ114が過負荷状態に達するおそ
れがある場合は、給電ユニット130側において電流の
大きさと通電時間とを監視することによってその状態を
検出し、一次側電力伝送部131への電圧供給を停止す
る。油圧ポンプ駆動モータ114の駆動を停止すれば、
油圧ポンプ115内部の隙間を通して油圧シリンダ12
3内の油圧が開放されるので油圧アクチュエータの発生
力はゼロに落ちる。 (第3実施例)図5は、本発明の自在油圧装置の第3実
施例の概略斜視図である。本実施例では、給電ユニット
230は、高周波インバータ232と、高周波インバー
タ232に接続され、細長いループ状に巻回された一次
側巻線231とを有する。一方、油圧発生ユニット21
0は、一次側巻線231を遊嵌する2つの中空部が形成
され、かつテーブル(不図示)上を一次側巻線231の
長手方向に直線移動可能に設けられた二次側コア211
aと、二次側コア211aの2つの中空部間にまたがっ
て巻回され、一次側巻線231と対向する二次側巻線2
11bとを有し、これら二次側コア211aと二次側巻
線211bとによって、二次側伝送部が構成されてい
る。また、油圧発生ユニット210の内部には、図1ま
たは図2に示した油圧回路および油圧回路からの油圧力
で動作する油圧シリンダ(不図示)を有し、このシリン
ダのロッド223aの前進および後退移動により駆動さ
れるクランパ225が搭載されている。そして、油圧発
生ユニット210の油圧回路の制御は、図3に示した回
路によって、給電ユニット230から供給される電力上
に油圧回路を制御するための情報信号を重畳して行なわ
れる構成となっている。
In addition, since the present embodiment does not have a hydraulic pressure holding function, the hydraulic pump drive motor 114 continues to be driven even after the relief valve 116 is opened in order for the hydraulic cylinder 123 to continuously generate pressure. Need, but
If the hydraulic pump drive motor 114 may reach an overload state, the state of the power supply unit 130 is detected by monitoring the magnitude of the current and the energization time, and the voltage is supplied to the primary side power transfer unit 131. To stop. If the drive of the hydraulic pump drive motor 114 is stopped,
Through the clearance inside the hydraulic pump 115, the hydraulic cylinder 12
Since the hydraulic pressure in 3 is released, the generated force of the hydraulic actuator drops to zero. (Third Embodiment) FIG. 5 is a schematic perspective view of a third embodiment of the universal hydraulic system of the present invention. In this embodiment, the power feeding unit 230 has a high frequency inverter 232 and a primary winding 231 that is connected to the high frequency inverter 232 and is wound in an elongated loop shape. On the other hand, the hydraulic pressure generation unit 21
0 is a secondary core 211 which is provided with two hollow portions in which the primary winding 231 is loosely fitted and which is linearly movable in the longitudinal direction of the primary winding 231 on a table (not shown).
a and the secondary winding 2 that is wound between two hollow portions of the secondary core 211a and faces the primary winding 231.
11b, the secondary side core 211a and the secondary side winding 211b constitute a secondary side transmission unit. Further, inside the hydraulic pressure generation unit 210, there is a hydraulic circuit (not shown) that operates with the hydraulic circuit shown in FIG. 1 or FIG. 2 and hydraulic pressure from the hydraulic circuit, and the rod 223a of this cylinder is moved forward and backward. A clamper 225 driven by movement is mounted. The control of the hydraulic circuit of the hydraulic pressure generation unit 210 is performed by the circuit shown in FIG. 3 by superimposing an information signal for controlling the hydraulic circuit on the electric power supplied from the power feeding unit 230. There is.

【0021】これにより、油圧発生ユニット210の移
動可能な範囲内であれば任意の位置において給電ユニッ
ト230からの電力および情報信号を無接触で油圧発生
ユニット210に伝送することができ、加工物の大きさ
や形状に応じて加工物のクランプ位置を変えられる自在
治具を構成することができる。また、油圧発生ユニット
210をテーブル上に固定するために、油圧発生ユニッ
ト210で発生した油圧を使ってくさびを打ち込むこと
による固定アクチュエータ(ロッカ227)を必要に応
じて設けてもよい。さらに、油圧発生ユニット210
に、ロッド223aの動作に連動して開閉動作を行なう
グリッパ226を搭載すれば、加工物を把持しながら搬
送する装置を構成することができる。また、図6に示す
ように、パレット240上に、3つの一次側巻線231
を電気的に並列に接続して放射状に配置するとともに、
各一次側巻線231に沿って移動可能に、クランパ22
5とロッカ227とが搭載された3つの油圧発生ユニッ
ト210を設ける。そして、各一次側巻線231への高
周波電圧の印加を、図3に示したものと同様の給電ユニ
ット60により、さらにもう1段の一次側伝送部61と
二次側伝送部241とを介して無接触で行なう。これに
より、パレット240に加工物245を固定した状態で
パレット240を移動させることができ、FMS対応の
フレキシブルな治具パレットを構成することができる。
As a result, the electric power and the information signal from the power feeding unit 230 can be transmitted to the hydraulic pressure generating unit 210 without contact at any position within the movable range of the hydraulic pressure generating unit 210, and the workpiece can be processed. It is possible to configure a flexible jig that can change the clamp position of the workpiece according to the size and shape. Further, in order to fix the hydraulic pressure generation unit 210 on the table, a fixed actuator (rocker 227) that drives the wedge using the hydraulic pressure generated by the hydraulic pressure generation unit 210 may be provided as necessary. Furthermore, the hydraulic pressure generation unit 210
Further, by mounting the gripper 226 that opens and closes in conjunction with the operation of the rod 223a, it is possible to configure an apparatus that conveys a workpiece while gripping it. In addition, as shown in FIG. 6, three primary windings 231 are provided on the pallet 240.
Are electrically connected in parallel and arranged radially,
The clamper 22 is movable along each primary winding 231.
The three hydraulic pressure generation units 210 on which the No. 5 and the rocker 227 are mounted are provided. Then, the high-frequency voltage is applied to each primary winding 231 by the power feeding unit 60 similar to that shown in FIG. 3 and via the primary side transmission unit 61 and the secondary side transmission unit 241 in the other stage. Contactlessly. Accordingly, the pallet 240 can be moved with the workpiece 245 fixed to the pallet 240, and a flexible jig pallet compatible with FMS can be configured.

【0022】ここで、図5および図6に示した油圧発生
ユニット210の移動機構について図7を参照して説明
する。図7は、図5および図6に示した油圧発生ユニッ
トの移動機構の概略斜視図である。図7において、サー
ボモータ250にはカップリング251およびサポート
軸受252を順次介してボールねじ253が連結されて
いる。一方、油圧発生ユニット210は、ボールねじナ
ット256が固定された移動クランプ台255に搭載さ
れており、ボールねじナット256にボールねじ253
が螺合している。これにより、サーボモータ250を駆
動してボールねじ253を回転させることで、油圧発生
ユニット210が図示矢印方向に往復移動可能な構成と
なっている。また、図5および図6には示していない
が、油圧発生ユニット210にはワーク基準面215を
有し、このワーク基準面215上に加工物(不図示)を
載置する。
The moving mechanism of the hydraulic pressure generating unit 210 shown in FIGS. 5 and 6 will be described with reference to FIG. FIG. 7 is a schematic perspective view of the moving mechanism of the hydraulic pressure generation unit shown in FIGS. 5 and 6. In FIG. 7, a ball screw 253 is connected to the servomotor 250 via a coupling 251 and a support bearing 252 in this order. On the other hand, the hydraulic pressure generation unit 210 is mounted on a movable clamp base 255 to which a ball screw nut 256 is fixed, and the ball screw nut 256 is attached to the ball screw 253.
Are screwed together. As a result, by driving the servo motor 250 and rotating the ball screw 253, the hydraulic pressure generation unit 210 is configured to be capable of reciprocating in the direction of the arrow in the figure. Although not shown in FIGS. 5 and 6, the hydraulic pressure generation unit 210 has a work reference surface 215, and a workpiece (not shown) is placed on the work reference surface 215.

【0023】なお、図5および図6では、油圧発生ユニ
ット210の固定をロッカ227により行なうものを示
したが、図7では、位置決め後の固定ボルトの代用とし
てTナット方式クランプを用いた場合の例を示す。以下
に、これについて説明する。移動クランプ台255に
は、油圧発生ユニット210で発生した油圧の一部を駆
動源とするTナットクランプシリンダ257が設けられ
ている。Tナットクランプシリンダ257にはTナット
方式クランプ片258が連結されている。Tナット方式
クランプ片258は、パレット240(図6参照)に、
油圧発生ユニット210の移動方向に沿って形成された
溝(不図示)に摺動自在に嵌合するものである。サーボ
モータ250で油圧発生ユニット210の位置決めを精
密に行なった後に、油圧発生ユニット210で発生する
油圧の一部を使ってTナットクランプシリンダ257を
駆動することで、Tナット方式クランプ片258がパレ
ット240の溝に押し付けられて油圧発生ユニット21
0が固定される。このように、Tナット方式クランプを
用いることで、油圧発生ユニット210をより確実に固
定することができる。
Although FIG. 5 and FIG. 6 show that the hydraulic pressure generating unit 210 is fixed by the rocker 227, FIG. 7 shows a case where a T-nut type clamp is used as a substitute for the fixed bolt after positioning. Here is an example: This will be described below. The movable clamp base 255 is provided with a T-nut clamp cylinder 257 that uses a part of the hydraulic pressure generated by the hydraulic pressure generation unit 210 as a drive source. A T-nut type clamp piece 258 is connected to the T-nut clamp cylinder 257. The T-nut type clamp piece 258 is attached to the pallet 240 (see FIG. 6).
It is slidably fitted in a groove (not shown) formed along the moving direction of the hydraulic pressure generation unit 210. After the hydraulic motor 210 is precisely positioned by the servo motor 250, the T nut clamp cylinder 257 is driven by using a part of the hydraulic pressure generated by the hydraulic generator 210 so that the T nut clamp piece 258 is moved to the pallet. The hydraulic pressure generation unit 21 is pressed against the groove of 240.
0 is fixed. As described above, by using the T-nut type clamp, the hydraulic pressure generation unit 210 can be more securely fixed.

【0024】図7において、油圧発生ユニット210へ
の給電方法は示していないが、図5および図6に示した
ように直動式の無接触給電を移動ストローク内で連続的
に行なったり、あるいは定位置における無接触給電によ
ってもよい。信号の伝送に関しても同様である。さら
に、油圧発生ユニット210を回転テーブル(不図示)
上に搭載し、回転型の給電装置と組み合せて駆動するこ
とで、外部の油圧発生設備および従来から回転体への油
圧供給に用いられてきた回転カップラを用いずに、回転
テーブル上の油圧アクチュエータを制御することも可能
である。 (第4実施例)図8は、本発明の自在油圧装置の第4実
施例の概略斜視図であり、ロボット先端ATC対応のグ
リッパに適用した例である。図8において、油圧発生ユ
ニット310は、図4に示したものと同様の油圧回路が
構成されているとともに、内蔵された油圧シリンダ(不
図示)に連動して加工物360を把持するグリッパ32
0を有する。一方、給電ユニットも図4に示したものと
同様な構成を有し、その一次側伝送部331はロボット
アーム340の先端に設けられている。
Although FIG. 7 does not show a method for supplying power to the hydraulic pressure generating unit 210, as shown in FIGS. 5 and 6, direct-acting contactless power supply is continuously performed within a moving stroke, or Contactless power supply at a fixed position may be used. The same applies to signal transmission. Further, the hydraulic pressure generating unit 210 is attached to a rotary table (not shown).
The hydraulic actuator on the rotary table can be mounted on the rotary table and driven by combining it with a rotary type power supply device, without using an external hydraulic pressure generation facility or a rotary coupler conventionally used to supply hydraulic pressure to a rotating body. It is also possible to control (Fourth Embodiment) FIG. 8 is a schematic perspective view of a fourth embodiment of the universal hydraulic system according to the present invention, which is applied to a gripper compatible with a robot tip ATC. 8, the hydraulic pressure generation unit 310 has a hydraulic circuit similar to that shown in FIG. 4, and the gripper 32 that grips the workpiece 360 by interlocking with a built-in hydraulic cylinder (not shown).
Has 0. On the other hand, the power feeding unit also has a configuration similar to that shown in FIG. 4, and the primary side transmission unit 331 thereof is provided at the tip of the robot arm 340.

【0025】また、油圧発生ユニット310とロボット
アーム340とは、互いにプルスタッド方式のチャック
で着脱自在に結合される構造となっており、二次側伝送
部311にはスタッド部324が一体的に設けられる一
方、ロボットアーム340の一次側伝送部331にはス
タッド部324が着脱自在に嵌合されるソケット部33
5が一体的に設けられている。そして、スタッド部32
4がソケット部335に嵌合することにより、二次側伝
送部311が一次側伝送部331の内周面に空隙を介し
て互いに対向配置される構成となっている。以上説明し
たように構成することにより、グリッパ320とロボッ
トアーム340との間の油圧配管や電気配線の必要がな
くなるため、自在な交換に対応できるツール(グリッ
パ)を構成することができる。
Further, the hydraulic pressure generating unit 310 and the robot arm 340 have a structure in which they are detachably coupled to each other by a pull stud type chuck, and a stud portion 324 is integrally formed on the secondary side transmission portion 311. Meanwhile, the stud portion 324 is detachably fitted to the primary side transmission portion 331 of the robot arm 340, and the socket portion 33 is detachably fitted thereto.
5 are integrally provided. And the stud portion 32
By fitting 4 into the socket portion 335, the secondary side transmission portion 311 is arranged on the inner peripheral surface of the primary side transmission portion 331 so as to face each other with a gap. With the configuration as described above, there is no need for hydraulic piping or electrical wiring between the gripper 320 and the robot arm 340, so that a tool (gripper) that can be freely exchanged can be configured.

【0026】(第5実施例)図9は、本発明の自在油圧
装置の第5実施例の給電ユニットの概略構成図である。
この給電ユニット430は、シーケンス指令スイッチ4
35からの指令で所定の周波数の高周波を発振する高周
波発振回路436と、高周波インバータ432と、高周
波磁性材料製の一次側コア431aおよび一次側巻線4
31bからなる一次側伝送部431とを有する。しか
も、高周波発振回路436および高周波インバータ43
2に電力を供給するためのバッテリ437も内蔵されて
おり、持ち運び自由となっている。これにより、図10
に示すような油圧発生ユニット410を用い、油圧発生
ユニット410によって基台450の所定の位置に加工
物460、460’を保持させることができる。保持の
際には、給電ユニット430の一次側伝送部431と油
圧発生ユニット410の二次側伝送部411を対向させ
て、油圧配管や電気配線を行なわずに油圧発生ユニット
410に電力の供給および情報信号の伝送を行ない、油
圧シリンダアクチュエータ420を動作させることによ
って行なう。なお、油圧発生ユニット410は図3に示
したような周波数測定回路およびデコーダを有し、情報
信号は供給電力上に重畳して行なわれる。また、給電ユ
ニット430は持ち運び自由なので、油圧発生ユニット
410の位置や向きに関わらず、油圧発生ユニット41
0へ電力の供給や情報信号の伝送を行なうことができ
る。従って、工作機械加工の段取り工程、あるいは車両
や船舶をはじめとする重量物の組立や、建設現場におい
て、油圧配管も電気配線もない状況のもとで大トルクを
発生させ、短時間に強度メンバを作り上げる必要のある
場合には、非常に有効である。
(Fifth Embodiment) FIG. 9 is a schematic configuration diagram of a power feeding unit of a fifth embodiment of the universal hydraulic system of the present invention.
The power supply unit 430 is provided with the sequence command switch 4
35, a high frequency oscillation circuit 436 that oscillates a high frequency of a predetermined frequency, a high frequency inverter 432, a primary core 431a and a primary winding 4 made of a high frequency magnetic material.
It has the primary side transmission part 431 which consists of 31b. Moreover, the high frequency oscillation circuit 436 and the high frequency inverter 43
The battery 437 for supplying electric power to 2 is also built in, and is freely portable. As a result, FIG.
By using the hydraulic pressure generation unit 410 as shown in FIG. 5, the hydraulic pressure generation unit 410 can hold the workpieces 460 and 460 ′ at predetermined positions on the base 450. At the time of holding, the primary side transmission part 431 of the power feeding unit 430 and the secondary side transmission part 411 of the hydraulic pressure generation unit 410 are opposed to each other, and power is supplied to the hydraulic pressure generation unit 410 without hydraulic piping or electric wiring. Information signals are transmitted and the hydraulic cylinder actuator 420 is operated. The hydraulic pressure generation unit 410 has a frequency measuring circuit and a decoder as shown in FIG. 3, and the information signal is superimposed on the supplied power. Further, since the power feeding unit 430 can be carried around freely, the hydraulic pressure generating unit 41 can be used regardless of the position and the direction of the hydraulic pressure generating unit 410.
It is possible to supply power to 0 and transmit information signals. Therefore, in the setup process of machine tool machining, assembly of heavy objects such as vehicles and ships, and construction sites, large torque is generated in the absence of hydraulic piping and electrical wiring, and strength members are quickly produced. It is very effective when it is necessary to build up.

【0027】[0027]

【発明の効果】本発明は以上説明したとおり構成されて
いるので、以下に記載する効果を奏する。請求項1に記
載の発明では、給電ユニットから油圧発生ユニットへ
は、高周波電磁誘導を利用して無接触で電力の供給およ
び情報信号の伝送が行なわれるので、給電ユニットと油
圧は性ユニットとの間には油圧配管や電気回路をなくす
ることができる。また、ソレノイドバルブと油圧シリン
ダとの間にはチェックバルブが設けられているので、油
圧シリンダの動作開始時と終了時以外には給電ユニット
と油圧発生ユニットとを分離しても、油圧シリンダはそ
の状態を維持することができ、さらに、油圧発生回路に
は二次側伝送部、油圧回路、および油圧シリンダが一つ
の構造体の中に設けられているので、給電ユニットと油
圧発生ユニットとを分離しても外部には油圧配管や電気
配線がない状態となる。その結果、油圧シリンダにより
油圧アクチュエータの機能を維持した状態で、油圧発生
ユニットを自在に移動させることができる。
Since the present invention is configured as described above, it has the following effects. In the invention described in claim 1, since the power supply and the information signal are transmitted from the power supply unit to the hydraulic pressure generation unit in a contactless manner using high frequency electromagnetic induction, the power supply unit and the hydraulic pressure are connected to each other. Hydraulic pipes and electric circuits can be eliminated in between. Further, since the check valve is provided between the solenoid valve and the hydraulic cylinder, even if the power feeding unit and the hydraulic pressure generating unit are separated from each other except when the operation of the hydraulic cylinder is started and ended, the hydraulic cylinder still operates. It is possible to maintain the state, and since the hydraulic pressure generation circuit is provided with the secondary side transmission unit, the hydraulic circuit, and the hydraulic cylinder in one structure, the power supply unit and the hydraulic pressure generation unit are separated. However, there will be no hydraulic piping or electrical wiring outside. As a result, the hydraulic pressure generating unit can be freely moved while the function of the hydraulic actuator is maintained by the hydraulic cylinder.

【0028】請求項2に記載の発明では、給電ユニット
に、一次側伝送部へ高周波電圧を印加する手段を駆動す
るためのバッテリを内蔵することで、給電ユニットをポ
ータブルなものとすることができ、重量物組立や建設の
現場において、油圧配管や電気配線も状況のもとで重量
物を支持する必要がある場合にも使用することができ
る。請求項3および4に記載の発明では、結合手段によ
り給電ユニットと油圧発生ユニットとを着脱自在に結合
することで、特に油圧発生ユニットを産業用ロボットの
先端ツールとして使用した場合、先端ツール交換時の油
圧配管や電気配線の問題がなくなり、自在な交換に対応
できる。請求項5および6に記載の発明では、給電ユニ
ットの一次側伝送部の巻線を細長いループ状とし、この
巻線の長手方向に沿って油圧発生ユニットを移動可能に
設けることで、加工物の大きさや形状に応じて油圧アク
チュエータの作用点の位置を自由に変えられる自在治具
を構成することができる。
According to the second aspect of the invention, the power feeding unit can be made portable by incorporating the battery for driving the means for applying the high frequency voltage to the primary side transmission unit in the power feeding unit. In the field of heavy object assembly and construction, hydraulic piping and electric wiring can also be used when it is necessary to support heavy objects under the circumstances. According to the third and fourth aspects of the present invention, the power feeding unit and the hydraulic pressure generating unit are detachably coupled by the coupling means, particularly when the hydraulic pressure generating unit is used as a tip tool of an industrial robot, when the tip tool is replaced. There is no problem with the hydraulic piping or electrical wiring, and it can be freely replaced. According to the fifth and sixth aspects of the present invention, the winding of the primary side transmission portion of the power feeding unit is formed into an elongated loop shape, and the hydraulic pressure generation unit is movably provided along the longitudinal direction of the winding, whereby the workpiece It is possible to configure a flexible jig in which the position of the action point of the hydraulic actuator can be freely changed according to the size and shape.

【0029】請求項7に記載の発明では、給電ユニット
に周波数変換手段を設けるとともに、ゆあつ発生ユニッ
トに周波数測定回路とデコーダとを設けることにより、
油圧発生ユニットの油圧回路を制御する情報信号を、一
次側伝送部から二次側伝送部への電力の供給に重畳して
伝送することができるので、装置構成を簡略化すること
ができる。
In the invention described in claim 7, the power supply unit is provided with the frequency converting means, and the distortion generating unit is provided with the frequency measuring circuit and the decoder.
Since the information signal for controlling the hydraulic circuit of the hydraulic pressure generation unit can be transmitted while being superimposed on the power supply from the primary side transmission unit to the secondary side transmission unit, the device configuration can be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の自在油圧装置の第1実施例の概略構成
図である。
FIG. 1 is a schematic configuration diagram of a first embodiment of a universal hydraulic system of the present invention.

【図2】図1に示した自在油圧装置を簡略した一例を示
す概略構成図である。
FIG. 2 is a schematic configuration diagram showing a simplified example of the universal hydraulic system shown in FIG.

【図3】図1に示した自在油圧装置において伝送電力上
に情報信号を重畳する場合の要部ブロック図である。
FIG. 3 is a block diagram of essential parts when an information signal is superimposed on transmission power in the universal hydraulic device shown in FIG.

【図4】本発明の自在油圧装置の第2実施例の概略構成
図である。
FIG. 4 is a schematic configuration diagram of a second embodiment of the universal hydraulic system of the present invention.

【図5】本発明の自在油圧装置の第3実施例の概略斜視
図である。
FIG. 5 is a schematic perspective view of a third embodiment of the universal hydraulic system of the present invention.

【図6】図5に示した自在油圧装置の応用例の概略平面
図である。
6 is a schematic plan view of an application example of the universal hydraulic apparatus shown in FIG.

【図7】図5および図6に示した油圧発生ユニットの移
動機構の概略斜視図である。
7 is a schematic perspective view of a moving mechanism of the hydraulic pressure generating unit shown in FIGS. 5 and 6. FIG.

【図8】本発明の自在油圧装置の第4実施例の概略斜視
図である。
FIG. 8 is a schematic perspective view of a fourth embodiment of the universal hydraulic system of the present invention.

【図9】本発明の自在油圧装置の第5実施例の給電ユニ
ットの概略構成図である。
FIG. 9 is a schematic configuration diagram of a power feeding unit of a fifth embodiment of the universal hydraulic system of the present invention.

【図10】図8に示した給電ユニットの使用状態の一例
を示す図である。
10 is a diagram showing an example of a usage state of the power feeding unit shown in FIG.

【符号の説明】[Explanation of symbols]

10、40、110、210、310、410 油圧
発生ユニット 11a、111 二次側電力伝送部 11b 二次側情報信号伝送部 12、33、42、112 整流平滑回路 13 制御部 14、114 油圧ポンプ駆動モータ 15、115 油圧ポンプ 16 ソレノイドバルブ 16’ シングルソレノイドバルブ 17、116 リリーフバルブ 18 チェックバルブ 19 前進用圧力スイッチ 20 後退用圧力スイッチ 21 アキュームレータ 22 油タンク 23、123 油圧シリンダ 23a、123a、223a ロッド 30、60、130、230、430 給電ユニット 31a、131 一次側電力伝送部 31b 一次側情報信号伝送部 32、62、232、432 高周波インバータ 34 給電側制御部 35 シーケンサー 36 交流電源 41、241、311、411 二次側伝送部 54 周波数測定回路 55 デコーダ 61、331、431 一次側伝送部 65 シーケンス指令スイッチパネル 117 リザーバタンク 123b ばね 124、324 スタッド部 135、335 ソケット部 211a 二次側コア 211b 二次側巻線 215 ワーク基準面 225 クランパ 226、320 グリッパ 227 ロッカ 231、431b 一次側巻線 240 パレット 245、360、460、460’ 加工物 250 サーボモータ 251 カップリング 252 サポート軸受 253 ボールねじ 255 移動クランプ台 256 ボールねじナット 257 Tナットクランプシリンダ 258 Tナット方式クランプ片 340 ロボットアーム 420 油圧シリンダアクチュエータ 435 シーケンス指令スイッチ 436 高周波発振回路 437 バッテリ 431a 一次側コア 450 基台
10, 40, 110, 210, 310, 410 Hydraulic pressure generation unit 11a, 111 Secondary side power transmission section 11b Secondary side information signal transmission section 12, 33, 42, 112 Rectification smoothing circuit 13 Control section 14, 114 Hydraulic pump drive Motor 15,115 Hydraulic pump 16 Solenoid valve 16 'Single solenoid valve 17,116 Relief valve 18 Check valve 19 Forward pressure switch 20 Reverse pressure switch 21 Accumulator 22 Oil tank 23, 123 Hydraulic cylinder 23a, 123a, 223a Rod 30, 60, 130, 230, 430 Power feeding unit 31a, 131 Primary side power transmission section 31b Primary side information signal transmission section 32, 62, 232, 432 High frequency inverter 34 Power feeding side control section 35 Sequencer 36 AC power supply 41, 2 41, 311, 411 Secondary side transmission section 54 Frequency measurement circuit 55 Decoder 61, 331, 431 Primary side transmission section 65 Sequence command switch panel 117 Reservoir tank 123b Spring 124, 324 Stud section 135, 335 Socket section 211a Secondary side core 211b Secondary side winding 215 Work reference surface 225 Clamper 226, 320 Gripper 227 Rocker 231 431b Primary side winding 240 Pallet 245, 360, 460, 460 'Workpiece 250 Servo motor 251 Coupling 252 Support bearing 253 Ball screw 255 Moving clamp base 256 Ball screw nut 257 T-nut clamp cylinder 258 T-nut type clamp piece 340 Robot arm 420 Hydraulic cylinder actuator 435 Sequence command switch Switch 436 High-frequency oscillator 437 Battery 431a Primary core 450 Base

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平賀 義二 福岡県北九州市八幡西区黒崎城石2番1号 株式会社安川電機内 (72)発明者 青山 義雄 愛知県名古屋市昭和区吹上町1丁目65番地 2 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Yoshiji Hiraga, No. 2 Kurosaki Shiroishi, Yawatanishi-ku, Kitakyushu City, Fukuoka Prefecture, Yasukawa Electric Co., Ltd. House number 2

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 高周波電圧が印加される一次側伝送部を
有する給電ユニットと、 前記給電ユニットからの電力が供給され、該電力により
油圧力を発生させて油圧アクチュエータに所定の作業を
行なわせるための油圧シリンダを駆動する油圧発生ユニ
ットとからなり、 該油圧発生ユニットは、前記高周波電圧の印加により生
じる高周波電磁誘導を利用して前記一次側伝送部と無接
触で前記給電ユニットから電力の供給および情報信号の
伝送が行なわれる二次側伝送部と、該二次側伝送部を経
由して前記給電ユニットから供給される電力により駆動
される油圧ポンプと、該油圧ポンプと前記油圧シリンダ
との間に設けられ、前記二次側伝送部を経由して前記給
電ユニットから伝送される情報信号により制御されるソ
レノイドバルブと、該ソレノイドバルブと前記油圧シリ
ンダとの間に設けられたチェックバルブと、前記油圧シ
リンダとが一つの密閉された構造体の中に設けられてい
ることを特徴とする自在油圧装置。
1. A power supply unit having a primary-side transmission section to which a high-frequency voltage is applied, and power supplied from the power supply unit for generating hydraulic pressure to cause the hydraulic actuator to perform a predetermined operation. And a hydraulic pressure generating unit for driving the hydraulic cylinder of, wherein the hydraulic pressure generating unit uses high frequency electromagnetic induction generated by applying the high frequency voltage to supply power from the power feeding unit without contact with the primary side transmission unit. Between the secondary side transmission section for transmitting the information signal, the hydraulic pump driven by the electric power supplied from the power feeding unit via the secondary side transmission section, and between the hydraulic pump and the hydraulic cylinder. And a solenoid valve controlled by an information signal transmitted from the power feeding unit via the secondary side transmission unit, and the solenoid valve. Universal hydraulic device comprising a check valve provided, in that said hydraulic cylinder is provided in a single enclosed structure between the valve and the hydraulic cylinder.
【請求項2】 前記給電ユニットに、前記一次側伝送部
へ高周波電圧を印加する手段を駆動するためのバッテリ
を内蔵した請求項1に記載の自在油圧装置。
2. The universal hydraulic apparatus according to claim 1, wherein the power feeding unit has a built-in battery for driving a means for applying a high frequency voltage to the primary side transmission unit.
【請求項3】 高周波電圧が印加される一次側伝送部を
有する給電ユニットと、 前記給電ユニットからの電力が供給され、該電力により
油圧力を発生させて油圧アクチュエータに所定の作業を
行なわせるための油圧シリンダを駆動する油圧発生ユニ
ットからなり、 該油圧発生ユニットは、前記高周波電圧の印加により生
じる高周波電磁誘導を利用して前記一次側伝送部と無接
触で前記給電ユニットから電力の供給および情報信号の
伝送が行なわれる二次側伝送部と、前記給電ユニットか
らの電力の供給および情報信号の伝送により制御される
油圧回路と、前記油圧シリンダとが一つの密閉された構
造体の中に設けられるとともに、 前記給電ユニットおよび前記油圧発生ユニットには、前
記一次側伝送部と前記二次側伝送部とが互いに対向して
配置されるように、前記給電ユニットと前記油圧発生ユ
ニットとを機械的にかつ着脱自在に結合する結合手段が
設けられていることを特徴とする自在油圧装置。
3. A power supply unit having a primary side transmission unit to which a high frequency voltage is applied, and power supplied from the power supply unit for generating hydraulic pressure to cause the hydraulic actuator to perform a predetermined work. The hydraulic pressure generating unit for driving the hydraulic cylinder is used for supplying power and information from the power feeding unit in a contactless manner with the primary side transmission unit by using high frequency electromagnetic induction generated by applying the high frequency voltage. A secondary side transmission unit for transmitting signals, a hydraulic circuit controlled by the supply of electric power from the power feeding unit and the transmission of information signals, and the hydraulic cylinder are provided in one sealed structure. In addition, in the power feeding unit and the hydraulic pressure generating unit, the primary side transmission unit and the secondary side transmission unit face each other. A universal hydraulic device, characterized in that a coupling means for mechanically and detachably coupling the power feeding unit and the hydraulic pressure generating unit is provided so as to be arranged.
【請求項4】 前記油圧発生ユニットは、産業用ロボッ
トのアーム部の先端に、前記結合手段により結合可能と
なっている請求項3に記載の自在油圧装置。
4. The universal hydraulic device according to claim 3, wherein the hydraulic pressure generation unit is connectable to a tip of an arm portion of an industrial robot by the connecting means.
【請求項5】 高周波電圧が印加される、細長いループ
状の一次側巻線が基台上に固定して配置された一次側伝
送部を有する給電ユニットと、 前記給電ユニットからの電力が供給され、該電力により
油圧力を発生させて油圧アクチュエータに所定の作業を
行なわせるための油圧シリンダを駆動する油圧発生ユニ
ットからなり、 該油圧発生ユニットは、前記高周波電圧の印加により生
じる高周波電磁誘導を利用して前記一次側伝送部と無接
触で前記給電ユニットから電力の供給および情報信号の
伝送が行なわれる二次側伝送部と、前記給電ユニットか
らの電力の供給および情報信号の伝送により制御される
油圧回路と、前記油圧シリンダとが一体となって設けら
れているとともに、 前記二次側伝送部は、前記一次側巻線を二つの中空部に
遊嵌して、前記基台上を前記一次側巻線の長手方向に移
動自在に設けられた二次側コアと、前記一次側巻線に対
向して前記二次側コアに巻回された二次側巻線とを有す
ることを特徴とする自在油圧装置。
5. A power supply unit having a primary-side transmission unit in which a long and narrow loop-shaped primary-side winding to which a high-frequency voltage is applied is fixedly arranged on a base, and power from the power-supply unit is supplied. A hydraulic pressure generating unit that drives a hydraulic cylinder for generating hydraulic pressure by the electric power to cause a hydraulic actuator to perform a predetermined work, and the hydraulic pressure generating unit uses high frequency electromagnetic induction generated by applying the high frequency voltage. Then, the secondary side transmission section, in which power is supplied from the power feeding unit and the information signal is transmitted without contact with the primary side transmission section, is controlled by the power supply and the information signal transmission from the power feeding unit. The hydraulic circuit and the hydraulic cylinder are integrally provided, and the secondary side transmission part loosely fits the primary side winding into the two hollow parts. A secondary side core movably provided on the base in the longitudinal direction of the primary side winding, and a secondary side wound around the secondary side core facing the primary side winding. A universal hydraulic device having a winding.
【請求項6】 前記一次側巻線を基台上に複数設けると
ともに、前記油圧発生ユニットを前記各一次側巻線毎に
設け、 前記一次側巻線へ高周波電圧を印加する手段を、高周波
電磁誘導を利用して電力および情報信号を無接触で伝送
する、さらにもう1段の一次側伝送部および二次側伝送
部を介して設けた請求項5に記載の自在油圧装置。
6. A means for applying a high frequency voltage to the primary side winding, wherein a plurality of the primary side windings are provided on a base, the hydraulic pressure generating unit is provided for each of the primary side windings, and a means for applying a high frequency voltage to the primary side winding is provided. The universal hydraulic system according to claim 5, wherein the electric power and the information signal are transmitted in a contactless manner by using induction and further provided via another primary side transmission part and secondary side transmission part.
【請求項7】 前記給電ユニットには、前記一次側伝送
部に印加する高周波電圧の周波数を複数種に変換する周
波数変換手段が設けられるとともに、 前記油圧発生ユニットには、前記高周波電磁誘導により
前記二次側伝送部に生じた高周波電圧の周波数を測定す
る周波数測定回路と、該周波数測定回路で測定された高
周波電圧の周波数に対応して、前記油圧回路の制御を行
なうための情報信号を発生させるデコーダとが設けられ
ている請求項1ないし6のいずれか1項に記載の自在油
圧装置。
7. The power supply unit is provided with frequency conversion means for converting the frequency of the high-frequency voltage applied to the primary side transmission unit into a plurality of types, and the hydraulic pressure generation unit is provided with the high-frequency electromagnetic induction. A frequency measuring circuit for measuring the frequency of the high frequency voltage generated in the secondary side transmission section, and an information signal for controlling the hydraulic circuit corresponding to the frequency of the high frequency voltage measured by the frequency measuring circuit are generated. A universal hydraulic system according to any one of claims 1 to 6, further comprising:
JP13208893A 1993-06-02 1993-06-02 Free hydraulic system Expired - Fee Related JP3207294B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP13208893A JP3207294B2 (en) 1993-06-02 1993-06-02 Free hydraulic system
KR1019950705342A KR100290160B1 (en) 1993-06-02 1993-09-06 Hydraulic generating device and working machine equipped with this device
US08/556,922 US5887430A (en) 1993-06-02 1993-09-06 Hydraulic source and hydraulic machine
PCT/JP1993/001255 WO1994028315A1 (en) 1993-06-02 1993-09-06 Hydraulic source and hydraulic machine
DE4397414T DE4397414T1 (en) 1993-06-02 1993-09-06 Hydraulic source and hydraulic machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13208893A JP3207294B2 (en) 1993-06-02 1993-06-02 Free hydraulic system

Publications (2)

Publication Number Publication Date
JPH06341410A true JPH06341410A (en) 1994-12-13
JP3207294B2 JP3207294B2 (en) 2001-09-10

Family

ID=15073220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13208893A Expired - Fee Related JP3207294B2 (en) 1993-06-02 1993-06-02 Free hydraulic system

Country Status (1)

Country Link
JP (1) JP3207294B2 (en)

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532469A (en) * 2005-02-23 2008-08-14 エービービー・リミテッド Actuator system for use in controlling a sheet or web forming process
JP2012502602A (en) * 2007-03-27 2012-01-26 マサチューセッツ インスティテュート オブ テクノロジー Wireless energy transfer device
JP2012213324A (en) * 2003-02-04 2012-11-01 Access Business Group Internatl Llc Adaptive inductive power supply with communication means
US8836172B2 (en) 2008-10-01 2014-09-16 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US8847548B2 (en) 2008-09-27 2014-09-30 Witricity Corporation Wireless energy transfer for implantable devices
US8875086B2 (en) 2011-11-04 2014-10-28 Witricity Corporation Wireless energy transfer modeling tool
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US9065286B2 (en) 2005-07-12 2015-06-23 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US9095729B2 (en) 2007-06-01 2015-08-04 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9306635B2 (en) 2012-01-26 2016-04-05 Witricity Corporation Wireless energy transfer with reduced fields
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9369182B2 (en) 2008-09-27 2016-06-14 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US9384885B2 (en) 2011-08-04 2016-07-05 Witricity Corporation Tunable wireless power architectures
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US9404954B2 (en) 2012-10-19 2016-08-02 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US9444520B2 (en) 2008-09-27 2016-09-13 Witricity Corporation Wireless energy transfer converters
US9444265B2 (en) 2005-07-12 2016-09-13 Massachusetts Institute Of Technology Wireless energy transfer
US9442172B2 (en) 2011-09-09 2016-09-13 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9449757B2 (en) 2012-11-16 2016-09-20 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
US9601261B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Wireless energy transfer using repeater resonators
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US9754718B2 (en) 2008-09-27 2017-09-05 Witricity Corporation Resonator arrays for wireless energy transfer
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US9842688B2 (en) 2014-07-08 2017-12-12 Witricity Corporation Resonator balancing in wireless power transfer systems
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US9929721B2 (en) 2015-10-14 2018-03-27 Witricity Corporation Phase and amplitude detection in wireless energy transfer systems
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces
US9952266B2 (en) 2014-02-14 2018-04-24 Witricity Corporation Object detection for wireless energy transfer systems
US10018744B2 (en) 2014-05-07 2018-07-10 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10063104B2 (en) 2016-02-08 2018-08-28 Witricity Corporation PWM capacitor control
US10063110B2 (en) 2015-10-19 2018-08-28 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10075019B2 (en) 2015-11-20 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems
US10141788B2 (en) 2015-10-22 2018-11-27 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10218224B2 (en) 2008-09-27 2019-02-26 Witricity Corporation Tunable wireless energy transfer systems
US10248899B2 (en) 2015-10-06 2019-04-02 Witricity Corporation RFID tag and transponder detection in wireless energy transfer systems
US10263473B2 (en) 2016-02-02 2019-04-16 Witricity Corporation Controlling wireless power transfer systems
US10424976B2 (en) 2011-09-12 2019-09-24 Witricity Corporation Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US10574091B2 (en) 2014-07-08 2020-02-25 Witricity Corporation Enclosures for high power wireless power transfer systems
US11031818B2 (en) 2017-06-29 2021-06-08 Witricity Corporation Protection and control of wireless power systems

Cited By (143)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012213324A (en) * 2003-02-04 2012-11-01 Access Business Group Internatl Llc Adaptive inductive power supply with communication means
JP2008532469A (en) * 2005-02-23 2008-08-14 エービービー・リミテッド Actuator system for use in controlling a sheet or web forming process
US10097044B2 (en) 2005-07-12 2018-10-09 Massachusetts Institute Of Technology Wireless energy transfer
US9509147B2 (en) 2005-07-12 2016-11-29 Massachusetts Institute Of Technology Wireless energy transfer
US11685271B2 (en) 2005-07-12 2023-06-27 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US10666091B2 (en) 2005-07-12 2020-05-26 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9065286B2 (en) 2005-07-12 2015-06-23 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US11685270B2 (en) 2005-07-12 2023-06-27 Mit Wireless energy transfer
US10141790B2 (en) 2005-07-12 2018-11-27 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9444265B2 (en) 2005-07-12 2016-09-13 Massachusetts Institute Of Technology Wireless energy transfer
US9450422B2 (en) 2005-07-12 2016-09-20 Massachusetts Institute Of Technology Wireless energy transfer
US9450421B2 (en) 2005-07-12 2016-09-20 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9831722B2 (en) 2005-07-12 2017-11-28 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
JP2012502602A (en) * 2007-03-27 2012-01-26 マサチューセッツ インスティテュート オブ テクノロジー Wireless energy transfer device
US10348136B2 (en) 2007-06-01 2019-07-09 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9843230B2 (en) 2007-06-01 2017-12-12 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9943697B2 (en) 2007-06-01 2018-04-17 Witricity Corporation Power generation for implantable devices
US9095729B2 (en) 2007-06-01 2015-08-04 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US10420951B2 (en) 2007-06-01 2019-09-24 Witricity Corporation Power generation for implantable devices
US9318898B2 (en) 2007-06-01 2016-04-19 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9101777B2 (en) 2007-06-01 2015-08-11 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US10300800B2 (en) 2008-09-27 2019-05-28 Witricity Corporation Shielding in vehicle wireless power systems
US10536034B2 (en) 2008-09-27 2020-01-14 Witricity Corporation Wireless energy transfer resonator thermal management
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US11958370B2 (en) 2008-09-27 2024-04-16 Witricity Corporation Wireless power system modules
US8847548B2 (en) 2008-09-27 2014-09-30 Witricity Corporation Wireless energy transfer for implantable devices
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US11479132B2 (en) 2008-09-27 2022-10-25 Witricity Corporation Wireless power transmission system enabling bidirectional energy flow
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US11114897B2 (en) 2008-09-27 2021-09-07 Witricity Corporation Wireless power transmission system enabling bidirectional energy flow
US9369182B2 (en) 2008-09-27 2016-06-14 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US11114896B2 (en) 2008-09-27 2021-09-07 Witricity Corporation Wireless power system modules
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US10673282B2 (en) 2008-09-27 2020-06-02 Witricity Corporation Tunable wireless energy transfer systems
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US9444520B2 (en) 2008-09-27 2016-09-13 Witricity Corporation Wireless energy transfer converters
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US10559980B2 (en) 2008-09-27 2020-02-11 Witricity Corporation Signaling in wireless power systems
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US10446317B2 (en) 2008-09-27 2019-10-15 Witricity Corporation Object and motion detection in wireless power transfer systems
US9496719B2 (en) 2008-09-27 2016-11-15 Witricity Corporation Wireless energy transfer for implantable devices
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US9515495B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless energy transfer in lossy environments
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US9577436B2 (en) 2008-09-27 2017-02-21 Witricity Corporation Wireless energy transfer for implantable devices
US9584189B2 (en) 2008-09-27 2017-02-28 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US9596005B2 (en) 2008-09-27 2017-03-14 Witricity Corporation Wireless energy transfer using variable size resonators and systems monitoring
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US10410789B2 (en) 2008-09-27 2019-09-10 Witricity Corporation Integrated resonator-shield structures
US9601261B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Wireless energy transfer using repeater resonators
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US9662161B2 (en) 2008-09-27 2017-05-30 Witricity Corporation Wireless energy transfer for medical applications
US9698607B2 (en) 2008-09-27 2017-07-04 Witricity Corporation Secure wireless energy transfer
US9711991B2 (en) 2008-09-27 2017-07-18 Witricity Corporation Wireless energy transfer converters
US9742204B2 (en) 2008-09-27 2017-08-22 Witricity Corporation Wireless energy transfer in lossy environments
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US9748039B2 (en) 2008-09-27 2017-08-29 Witricity Corporation Wireless energy transfer resonator thermal management
US9754718B2 (en) 2008-09-27 2017-09-05 Witricity Corporation Resonator arrays for wireless energy transfer
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US9780605B2 (en) 2008-09-27 2017-10-03 Witricity Corporation Wireless power system with associated impedance matching network
US10340745B2 (en) 2008-09-27 2019-07-02 Witricity Corporation Wireless power sources and devices
US9806541B2 (en) 2008-09-27 2017-10-31 Witricity Corporation Flexible resonator attachment
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US10264352B2 (en) 2008-09-27 2019-04-16 Witricity Corporation Wirelessly powered audio devices
US9843228B2 (en) 2008-09-27 2017-12-12 Witricity Corporation Impedance matching in wireless power systems
US10230243B2 (en) 2008-09-27 2019-03-12 Witricity Corporation Flexible resonator attachment
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US10218224B2 (en) 2008-09-27 2019-02-26 Witricity Corporation Tunable wireless energy transfer systems
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US10097011B2 (en) 2008-09-27 2018-10-09 Witricity Corporation Wireless energy transfer for photovoltaic panels
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US10084348B2 (en) 2008-09-27 2018-09-25 Witricity Corporation Wireless energy transfer for implantable devices
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US9831682B2 (en) 2008-10-01 2017-11-28 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US8836172B2 (en) 2008-10-01 2014-09-16 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
US9787141B2 (en) 2011-08-04 2017-10-10 Witricity Corporation Tunable wireless power architectures
US11621585B2 (en) 2011-08-04 2023-04-04 Witricity Corporation Tunable wireless power architectures
US9384885B2 (en) 2011-08-04 2016-07-05 Witricity Corporation Tunable wireless power architectures
US10734842B2 (en) 2011-08-04 2020-08-04 Witricity Corporation Tunable wireless power architectures
US10027184B2 (en) 2011-09-09 2018-07-17 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10778047B2 (en) 2011-09-09 2020-09-15 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9442172B2 (en) 2011-09-09 2016-09-13 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10424976B2 (en) 2011-09-12 2019-09-24 Witricity Corporation Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US11097618B2 (en) 2011-09-12 2021-08-24 Witricity Corporation Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
US8875086B2 (en) 2011-11-04 2014-10-28 Witricity Corporation Wireless energy transfer modeling tool
US9306635B2 (en) 2012-01-26 2016-04-05 Witricity Corporation Wireless energy transfer with reduced fields
US10158251B2 (en) 2012-06-27 2018-12-18 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
US9404954B2 (en) 2012-10-19 2016-08-02 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10211681B2 (en) 2012-10-19 2019-02-19 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10686337B2 (en) 2012-10-19 2020-06-16 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9465064B2 (en) 2012-10-19 2016-10-11 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10186372B2 (en) 2012-11-16 2019-01-22 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9449757B2 (en) 2012-11-16 2016-09-20 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9842684B2 (en) 2012-11-16 2017-12-12 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US11112814B2 (en) 2013-08-14 2021-09-07 Witricity Corporation Impedance adjustment in wireless power transmission systems and methods
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
US11720133B2 (en) 2013-08-14 2023-08-08 Witricity Corporation Impedance adjustment in wireless power transmission systems and methods
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US9952266B2 (en) 2014-02-14 2018-04-24 Witricity Corporation Object detection for wireless energy transfer systems
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US10186373B2 (en) 2014-04-17 2019-01-22 Witricity Corporation Wireless power transfer systems with shield openings
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
US10371848B2 (en) 2014-05-07 2019-08-06 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10018744B2 (en) 2014-05-07 2018-07-10 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces
US11637458B2 (en) 2014-06-20 2023-04-25 Witricity Corporation Wireless power transfer systems for surfaces
US10923921B2 (en) 2014-06-20 2021-02-16 Witricity Corporation Wireless power transfer systems for surfaces
US10574091B2 (en) 2014-07-08 2020-02-25 Witricity Corporation Enclosures for high power wireless power transfer systems
US9842688B2 (en) 2014-07-08 2017-12-12 Witricity Corporation Resonator balancing in wireless power transfer systems
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
US10248899B2 (en) 2015-10-06 2019-04-02 Witricity Corporation RFID tag and transponder detection in wireless energy transfer systems
US9929721B2 (en) 2015-10-14 2018-03-27 Witricity Corporation Phase and amplitude detection in wireless energy transfer systems
US10063110B2 (en) 2015-10-19 2018-08-28 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10651689B2 (en) 2015-10-22 2020-05-12 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10141788B2 (en) 2015-10-22 2018-11-27 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10651688B2 (en) 2015-10-22 2020-05-12 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10075019B2 (en) 2015-11-20 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems
US10637292B2 (en) 2016-02-02 2020-04-28 Witricity Corporation Controlling wireless power transfer systems
US10263473B2 (en) 2016-02-02 2019-04-16 Witricity Corporation Controlling wireless power transfer systems
US10063104B2 (en) 2016-02-08 2018-08-28 Witricity Corporation PWM capacitor control
US10913368B2 (en) 2016-02-08 2021-02-09 Witricity Corporation PWM capacitor control
US11807115B2 (en) 2016-02-08 2023-11-07 Witricity Corporation PWM capacitor control
US11588351B2 (en) 2017-06-29 2023-02-21 Witricity Corporation Protection and control of wireless power systems
US11637452B2 (en) 2017-06-29 2023-04-25 Witricity Corporation Protection and control of wireless power systems
US11043848B2 (en) 2017-06-29 2021-06-22 Witricity Corporation Protection and control of wireless power systems
US11031818B2 (en) 2017-06-29 2021-06-08 Witricity Corporation Protection and control of wireless power systems

Also Published As

Publication number Publication date
JP3207294B2 (en) 2001-09-10

Similar Documents

Publication Publication Date Title
JP3207294B2 (en) Free hydraulic system
KR100290160B1 (en) Hydraulic generating device and working machine equipped with this device
KR100328010B1 (en) Fa connector and work pallet using it
US20070000888A1 (en) Laser processing machine
JP2648542B2 (en) Hydraulic pressure generating device and work machine equipped with the device
KR20110010561A (en) Friction welding method
CN104191117B (en) A kind of fixture system of automatic welding pressure vessel chuck
CN104227062A (en) Method for machining plurality of reverse stepped holes in plane
KR20160068176A (en) Chucking apparatus of a turning center
JPH0740266A (en) Directly acting loader
CN104625911A (en) Workpiece deburring device
CN208132509U (en) A kind of compressor rolling piston semi-finished product processing tool
US20050084345A1 (en) Dual motor tapping machine
JPH0865926A (en) Autonomous air-pressure generator
CN210731620U (en) Full-automatic drilling and milling composite machine tool
JPH08338408A (en) Universal hydraulic device
US20080272092A1 (en) Spot Weld Gun
KR100571681B1 (en) Insertion and attachment device of workpiece
EP3569339B1 (en) A machine tool and method for thread cutting
CN217751476U (en) Gantry type end quick-change truss robot
JPH0730489A (en) Multi-rotation table
CN211761596U (en) Robot tail end actuating mechanism
KR100299702B1 (en) Multi-rotation type actuator control apparatus
CN218226340U (en) Assembly fixture of inverter assembly
CN215281998U (en) Robot hand

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees