JPH06340443A - Glass composition and glass-coated aluminum nitride sintered compact - Google Patents

Glass composition and glass-coated aluminum nitride sintered compact

Info

Publication number
JPH06340443A
JPH06340443A JP15127193A JP15127193A JPH06340443A JP H06340443 A JPH06340443 A JP H06340443A JP 15127193 A JP15127193 A JP 15127193A JP 15127193 A JP15127193 A JP 15127193A JP H06340443 A JPH06340443 A JP H06340443A
Authority
JP
Japan
Prior art keywords
glass
aluminum nitride
nitride sintered
sintered body
aln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15127193A
Other languages
Japanese (ja)
Inventor
Kazunari Watanabe
一成 渡辺
Jiro Chiba
次郎 千葉
Keiichi Kawakami
圭一 川上
Kazuyoshi Orihara
一喜 折原
Koichi Shibuya
幸一 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP15127193A priority Critical patent/JPH06340443A/en
Publication of JPH06340443A publication Critical patent/JPH06340443A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/07Glass compositions containing silica with less than 40% silica by weight containing lead
    • C03C3/072Glass compositions containing silica with less than 40% silica by weight containing lead containing boron
    • C03C3/074Glass compositions containing silica with less than 40% silica by weight containing lead containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders

Abstract

PURPOSE:To produce a glass capable of directly and densely adhering to an aluminum nitride sintered compact under high strength. CONSTITUTION:This glass composition for coating aluminum nitride consists of, by weight, 35-45% SiO2, 15-20% Al2O3, 3-15%, in total, of 0-15% PbO and 0-15% ZnO, 12-18%, in total, of MgO, CaO, SrO and BaO, 12-20%, in total, of ZrO2 and TiO2, 0-10% B2O3 and 0-2% Sb2O3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は窒化アルミニウムと亀裂
・発泡なく強固に接合することのできるガラス層を形成
された高熱伝導性回路基板に関し、特に、そのガラス組
成物、及び、ガラス被覆窒化アルミニウム焼結体ならび
にその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly heat-conductive circuit board having a glass layer which can be firmly bonded to aluminum nitride without cracking or foaming, and more particularly to a glass composition thereof and glass-coated aluminum nitride. The present invention relates to a sintered body and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、半導体用回路基板としては安価な
アルミナ(Al23 )の基板上に回路を形成し、ここ
に半導体装置をはじめとする各種素子を搭載した形式の
ものが一般的であった。
2. Description of the Related Art Conventionally, as a circuit board for a semiconductor, a circuit is generally formed by forming a circuit on an inexpensive alumina (Al 2 O 3 ) substrate and mounting various elements such as a semiconductor device on the circuit. Met.

【0003】ところが、近年、半導体装置の大出力化に
伴って、素子の発熱量が増大しており、上記のAl2
3 基板では放熱性の点で必ずしも満足し得ないという問
題が生じている。かかる問題を解消するためにはAl2
3 に代えて放熱性の優れた窒化アルミニウム(Al
N)で回路基板を構成すればよい。しかし、AlNはA
23 に比べてはるかに高価であり、また、メタライ
ズ等の周辺技術が遅れているため実用的であるとは言い
難い。
[0003] However, in recent years, along with the large output of the semiconductor device, the heating value of the element is increasing, the above Al 2 O
The problem with 3 substrates is that they are not always satisfactory in terms of heat dissipation. To solve this problem, Al 2
Instead of O 3 , aluminum nitride (Al
The circuit board may be composed of N). However, AlN is A
It is much more expensive than l 2 O 3 , and it is hard to say that it is practical because peripheral technologies such as metallization are delayed.

【0004】そこで窒化アルミニウム焼結体表面をあら
かじめ熱酸化法やプラズマ酸化法等を用いて酸化させ、
その上にガラス被覆やメタライズする方法が一般的であ
る(特開平3−177375号、特開平3−14986
0号、特開平2−306653号、特開昭61−119
094号、特開昭62−46986号)。
Therefore, the surface of the aluminum nitride sintered body is previously oxidized by using a thermal oxidation method or a plasma oxidation method,
The method of coating with glass or metallizing on it is generally used (JP-A-3-177375, JP-A-3-14986).
No. 0, JP-A-2-306653, JP-A-61-119.
094, JP-A-62-46986).

【0005】この場合に、酸化膜をつける理由はガラス
のような酸化物と窒化アルミニウムとはぬれ性が悪いこ
とや、反応ガスによる発泡のために密着力や気密性が得
られないことである。この際、最低数μmの酸化膜が必
要となってくる。このとき、得られる酸化膜の主成分は
通常、α−Al23 であり、その熱膨張率は75×1
-7/℃(AlNは45×10-7/℃)で窒化アルミニ
ウムとは大きく異なるため、各種信頼性テスト(特にヒ
ートサイクルテスト)後の密着力低下の原因になってい
る。
In this case, the reason for forming the oxide film is that the oxide such as glass and aluminum nitride have poor wettability, and that the adhesion and airtightness cannot be obtained due to foaming by the reaction gas. . At this time, an oxide film of at least several μm is required. At this time, the main component of the obtained oxide film is usually α-Al 2 O 3 , and its coefficient of thermal expansion is 75 × 1.
Since it is 0 -7 / ° C (45 x 10 -7 / ° C for AlN), which is significantly different from aluminum nitride, it causes a decrease in adhesion after various reliability tests (especially heat cycle tests).

【0006】[0006]

【発明が解決しようとする課題】本発明は、従来技術の
有する前述の欠点を解消することを目的とするものであ
り、従来知られていなかった窒化アルミニウム焼結体と
直接緻密にかつ高強度で密着できる窒化アルミニウム被
覆用ガラス層を形成した高熱伝導性回路基板を新規に提
供するものである。
DISCLOSURE OF THE INVENTION The present invention is intended to eliminate the above-mentioned drawbacks of the prior art, and is dense and high in strength directly with an aluminum nitride sintered body which has not been known so far. The present invention newly provides a circuit board having a high thermal conductivity on which a glass layer for coating aluminum nitride, which can be adhered by the method described above, is formed.

【0007】[0007]

【課題を解決するための手段】本発明は前述の課題を解
決すべくなされたものであり、窒化アルミニウム焼結体
上に設けられるガラス組成物であって、SiO2 :35
〜45wt%、Al23 :15〜20wt%、Pb
O:0〜15wt%、ZnO:0〜15wt%、但し、
PbO+ZnO=3〜15wt%、MgO+CaO+S
rO+BaO:12〜18wt%、ZrO2 +TiO
2 :12〜20wt%、B23 :0〜10wt%、S
23 :0〜2wt%から本質的になるガラス組成物
及びそれを用いたガラス被覆窒化アルミニウム焼結体を
提供するものである。このようにすることにより、窒化
アルミニウム焼結体上に酸化膜層を介することなく、直
接、ガラス層を形成した高熱伝導性回路基板が得られ
る。
The present invention has been made to solve the above-mentioned problems, and is a glass composition provided on an aluminum nitride sintered body, wherein SiO 2 : 35
~45wt%, Al 2 O 3: 15~20wt%, Pb
O: 0 to 15 wt%, ZnO: 0 to 15 wt%,
PbO + ZnO = 3-15 wt%, MgO + CaO + S
rO + BaO: 12-18 wt%, ZrO 2 + TiO
2: 12~20wt%, B 2 O 3: 0~10wt%, S
It is intended to provide a glass composition consisting essentially of b 2 O 3 : 0 to 2 wt%, and a glass-coated aluminum nitride sintered body using the same. By doing so, it is possible to obtain a high thermal conductivity circuit board in which a glass layer is directly formed on the aluminum nitride sintered body without an oxide film layer interposed.

【0008】本発明者等は、以上述べたような従来技術
の問題点に鑑みて窒化アルミニウム(以下AlNと略
す)焼結体と直接にガラスを密着させるよう研究努力を
重ねた結果、上記組成のガラス組成物によれば、直接、
ガラス層を形成した高熱伝導性回路基板が得られること
を見いだしたものである。これによれば、ガラスの熱膨
張係数が従来のAlN表面酸化層よりAlNに近いた
め、接合部の密着力や信頼性を高くすることができる。
さらにAlN表面を酸化させる必要がないため、工程数
を減らすことができる。
In view of the problems of the prior art as described above, the present inventors have made research efforts to directly adhere glass to an aluminum nitride (hereinafter abbreviated as AlN) sintered body, and as a result, the above composition was obtained. According to the glass composition of,
It has been found that a highly heat-conductive circuit board having a glass layer is obtained. According to this, since the coefficient of thermal expansion of glass is closer to that of AlN than that of the conventional AlN surface oxide layer, it is possible to increase the adhesive force and reliability of the joint.
Furthermore, since it is not necessary to oxidize the AlN surface, the number of steps can be reduced.

【0009】かかるガラス層としては線熱膨張率をα
(室温〜350℃)とすると15×10-7/℃≦α≦5
5×10-7/℃であることが望ましい。これはAlNと
ガラスの熱膨張差によりガラスにかかる圧縮応力や引張
応力から考えると一般的に圧縮応力には約1000kg
以下、引張応力には約200kg以下ならガラスにクラ
ック・剥離等の欠陥を生じないためであり、より好まし
くは、30×10-7/℃≦α≦45×10-7/℃と若干
圧縮応力をガラスにかけて強度をもたせると各種信頼性
テスト後も高い密着力を示す。
The glass layer has a coefficient of linear thermal expansion of α
(Room temperature to 350 ° C) 15 × 10 -7 / ° C ≦ α ≦ 5
It is preferably 5 × 10 −7 / ° C. Considering the compressive stress and tensile stress applied to the glass due to the difference in thermal expansion between AlN and glass, the compressive stress is generally about 1000 kg.
The reason for this is that if the tensile stress is about 200 kg or less, defects such as cracks and peeling do not occur in the glass, and more preferably, 30 × 10 −7 / ° C. ≦ α ≦ 45 × 10 −7 / ° C. and a slight compressive stress. When glass is coated with glass to give it strength, it shows high adhesion even after various reliability tests.

【0010】また、本発明のガラス組成は以下のようで
ある。すなわち重量%表示で、 SiO2 :35〜45wt%、 Al23 :15〜20wt%、 PbO:0〜15wt%、ZnO:0〜15wt%、但
し、PbO+ZnO=3〜15wt%、 MgO+CaO+SrO+BaO:12〜18wt%、 ZrO2 +TiO2 :12〜20wt%、 B23 :0〜10wt%、 Sb23 :0〜2wt% から本質的になるものである。
The glass composition of the present invention is as follows. That in weight percentages, SiO 2: 35~45wt%, Al 2 O 3: 15~20wt%, PbO: 0~15wt%, ZnO: 0~15wt%, however, PbO + ZnO = 3~15wt%, MgO + CaO + SrO + BaO: 12 ~18wt%, ZrO 2 + TiO 2 : 12~20wt%, B 2 O 3: 0~10wt%, Sb 2 O 3: in which consists essentially of 0-2 wt%.

【0011】また、さらに好ましくは、重量%表示で、 SiO2 :37〜43wt%、 Al23 :16〜19wt%、 PbO:0〜12wt%、ZnO:0〜12wt%、但
し、PbO+ZnO=5〜10wt%、 MgO+CaO+SrO+BaO:13〜17wt%、 ZrO2 +TiO2 :13〜18wt%、 B23 :0〜10wt%、 Sb23 :0〜1wt% から本質的になるものである。
[0011] More preferably, in weight percentages, SiO 2: 37~43wt%, Al 2 O 3: 16~19wt%, PbO: 0~12wt%, ZnO: 0~12wt%, however, PbO + ZnO = 5 to 10 wt%, MgO + CaO + SrO + BaO: 13 to 17 wt%, ZrO 2 + TiO 2 : 13 to 18 wt%, B 2 O 3 : 0 to 10 wt%, and Sb 2 O 3 : 0 to 1 wt%.

【0012】かかる組成において、SiO2 はガラスの
ネットワークフォーマーで析出結晶の主成分であり必須
である。35wt%未満では結晶化不足となり、45w
t%超では軟化点が高くなりすぎるので好ましくない。
好ましくは37〜43wt%である。
In such a composition, SiO 2 is a glass network former and is essential as a main component of precipitated crystals. If it is less than 35 wt%, the crystallization becomes insufficient, and 45w
If it exceeds t%, the softening point becomes too high, which is not preferable.
It is preferably 37 to 43 wt%.

【0013】Al23 もまた析出結晶の主成分であり
必須である。15wt%未満ではやはり結晶化不足とな
り、20wt%超では軟化点が高すぎてセラミック板と
の濡れ性が悪くなり接合強度が低下したり、ガラス溶融
中に失透するおそれがあり好ましくない。好ましくは1
6〜19wt%である。
Al 2 O 3 is also a main component of precipitated crystals and is essential. If it is less than 15 wt%, the crystallization will be insufficient, and if it exceeds 20 wt%, the softening point will be too high, the wettability with the ceramic plate will be deteriorated, the bonding strength will be lowered, and devitrification may occur during glass melting, which is not preferable. Preferably 1
It is 6 to 19 wt%.

【0014】次にZnO+PbOはガラスへのフラック
ス成分として必須で、3wt%未満ではガラス軟化点が
高くなり過ぎ、溶解困難で失透する恐れもある。一方、
15wt%超ではガラスの融点が低くなりすぎ、窒化ア
ルミニウム焼結体と発泡反応を生ずる。好ましくは5〜
10wt%である。
Next, ZnO + PbO is indispensable as a flux component to the glass, and if it is less than 3 wt%, the glass softening point becomes too high, and it may be difficult to melt and devitrify. on the other hand,
If it exceeds 15 wt%, the melting point of the glass tends to be too low, and a foaming reaction occurs with the aluminum nitride sintered body. Preferably 5
It is 10 wt%.

【0015】B23 はZnO+PbOと同様にフラッ
クス成分として用いるが、選択成分であり加えなくても
よい。添加する場合耐薬品性の面から上限があり、10
wt%超添加すると耐薬品性が著しく低下する。またガ
ラスの軟化点が低下するため好ましくない。好ましくは
0〜10wt%である。
B 2 O 3 is used as a flux component similarly to ZnO + PbO, but it is a selective component and may not be added. When added, there is an upper limit from the viewpoint of chemical resistance and 10
If it is added in excess of wt%, the chemical resistance will be significantly reduced. Further, the softening point of the glass is lowered, which is not preferable. It is preferably 0 to 10 wt%.

【0016】MgO+CaO+SrO+BaOは熱膨張
率の調整や析出結晶の主成分で必須であり、12wt%
未満では結晶化不足となり、18wt%超ではガラス溶
融中失透するためガラス化困難となる。好ましくは13
〜17wt%である。
MgO + CaO + SrO + BaO is essential for adjusting the coefficient of thermal expansion and the main component of precipitated crystals, and is 12 wt%.
If it is less than 18% by weight, crystallization becomes insufficient, and if it exceeds 18% by weight, devitrification occurs during melting of the glass, which makes vitrification difficult. Preferably 13
Is about 17 wt%.

【0017】TiO2 +ZrO2 は結晶核生成剤として
必須であり、12wt%未満では結晶化が不充分で20
wt%超では失透する。好ましくは13〜18wt%で
ある。
TiO 2 + ZrO 2 is indispensable as a crystal nucleating agent, and if it is less than 12% by weight, crystallization is insufficient and 20
If it exceeds wt%, it will devitrify. It is preferably 13 to 18 wt%.

【0018】最後にSb23 は清澄剤として添加する
選択成分であり、添加しなくともよい。また2wt%超
添加しても清澄効果は飽和してしまうので2wt%以下
で充分である。好ましくは0〜1wt%である。
Finally, Sb 2 O 3 is a selective component to be added as a fining agent and may not be added. Further, even if added in excess of 2 wt%, the fining effect will be saturated, so 2 wt% or less is sufficient. It is preferably 0 to 1 wt%.

【0019】また本発明による組成物はそれに有機バイ
ンダーを添加し、アセトンやα−テルピネオール等の溶
剤を加えたものを用いることができる。
The composition according to the present invention may be prepared by adding an organic binder thereto and adding a solvent such as acetone or α-terpineol.

【0020】またこの組成系のガラス粉末は800℃以
上で結晶化することにより、一般アルミナ用厚膜材料の
焼成温度領域800〜900℃における耐熱性も有する
ことができる。
By crystallizing the glass powder of this composition at 800 ° C. or higher, it is possible to have heat resistance in the firing temperature range of 800 to 900 ° C. of the thick film material for general alumina.

【0021】実際にこのガラスを被覆したAlN焼結体
表面にアルミナ用厚膜Ag/Pd導体(田中インターナ
ショナル製TR4846)を焼き付けたところ、ハンダ
ぬれ性100%で密着強度2.0kg/2mm□以上で
ふくれやはがれは生じず、信頼性テスト後もアルミナ焼
結体にこの導体をつけたものと比べて変わらない結果を
得た。
When a thick film Ag / Pd conductor for alumina (TR4846 manufactured by Tanaka International) was actually baked on the surface of the AlN sintered body coated with this glass, the solder wettability was 100% and the adhesion strength was 2.0 kg / 2 mm □ or more. No swelling or peeling occurred, and even after the reliability test, the same results as those obtained by attaching this conductor to the alumina sintered body were obtained.

【0022】本発明に用いるAlN焼結体は、AlN原
料に希土類元素、アルカリ土類元素等の添加物を加えて
(金属元素換算で0.01〜15wt%程度)の常圧焼
結、ホットプレスする方法、添加物を加えることなくA
lN原料単独での常圧焼結法やホットプレス法等で製造
する。本発明は添加物の有無にかかわらずAlN焼結体
であればどのような方法で製造されたものにでも適用で
きる。
The AlN sintered body used in the present invention is an atmospheric pressure sintered by adding additives such as a rare earth element and an alkaline earth element to the AlN raw material (about 0.01 to 15 wt% in terms of metal element) and hot sintering. Method of pressing, A without adding additives
It is manufactured by an atmospheric pressure sintering method, a hot pressing method, or the like using the 1N raw material alone. The present invention can be applied to any AlN sintered body manufactured by any method regardless of the presence of additives.

【0023】また、本発明のガラス膜厚はAlN素材の
高熱伝導性を劣化させないよう50W/mK以上有する
ように0.1〜50μm以下におさえることが望まし
い。これは0.1μm未満ではAlN焼結体を均一に被
覆することが難しく、この上のメタライズ部と反応発泡
を生じたり、高密着力が得られない場合があり、50μ
m超の場合は、ガラスそのものの熱伝導率が低いために
50W/mKが得られないためである。
Further, the glass film thickness of the present invention is preferably 0.1 to 50 μm or less so as to have 50 W / mK or more so as not to deteriorate the high thermal conductivity of the AlN material. If the thickness is less than 0.1 μm, it is difficult to uniformly coat the AlN sintered body, and reaction foaming may occur with the metallized portion on this and high adhesion may not be obtained.
This is because if it exceeds m, 50 W / mK cannot be obtained because the thermal conductivity of the glass itself is low.

【0024】また本発明のガラス被覆AlN焼結体は、
単層基板としてもさらにこれに回路を形成した後、例え
ばホウ珪酸ガラスなどのガラス粉末を有機バインダーと
混合してペースト状とし、これを基板表面に印刷させて
2枚以上積層したものをホウ珪酸ガラスの軟化点以上の
温度に加熱して焼成し、相互接合することにより形成さ
れる多層基板として用いてもよい。
The glass-coated AlN sintered body of the present invention is
After forming a circuit on the single-layer substrate, glass powder such as borosilicate glass is mixed with an organic binder to form a paste, which is printed on the surface of the substrate to form a borosilicate layer. It may be used as a multi-layer substrate formed by heating at a temperature equal to or higher than the softening point of glass, firing, and mutually bonding.

【0025】[0025]

【実施例】表1、表2に示すような組成をもつガラス粉
末に有機ビヒクルを加えて自動乳鉢で混練し、さらに3
本ロールを数回通してガラスペーストを作製した。この
ガラスペーストを旭硝子製AlN基板(AGN−2)上
にスクリーン印刷し、2インチ□のガラス被膜面を得
た。次に150℃空気中10分間乾燥を行い、乾燥膜厚
を10μm前後とした。
EXAMPLE An organic vehicle was added to glass powder having the composition shown in Tables 1 and 2 and kneaded in an automatic mortar, and further 3
This roll was passed several times to produce a glass paste. This glass paste was screen-printed on an AlN substrate (AGN-2) manufactured by Asahi Glass to obtain a 2 inch square glass coating surface. Next, it was dried in air at 150 ° C. for 10 minutes to give a dry film thickness of about 10 μm.

【0026】一方、表1、表2のNo.13〜16につ
いては、上記ガラスペーストをα−テルピネオールで希
釈し、ガラス粉末分散溶液を作成して、これを上記Al
N基板上に2cc滴下させ、スピンコート法によって3
000rpmの回転数で30秒保持させ、ガラス溶液を
コートする。後に150℃ 10分間乾燥させ、乾燥膜
厚を2〜3μmとした。
On the other hand, in Table 1 and Table 2, No. For Nos. 13 to 16, the above glass paste was diluted with α-terpineol to prepare a glass powder dispersion solution, which was added to the above Al.
2 cc was dropped on the N substrate, and 3 by spin coating.
The glass solution is coated by keeping the rotation speed of 000 rpm for 30 seconds. After that, it was dried at 150 ° C. for 10 minutes to give a dry film thickness of 2 to 3 μm.

【0027】これらのガラスコートAlN基板を空気中
1000〜1200℃の所定の温度で30分間最高温度
保持を行い、得られたガラス被覆AlN基板をダイヤモ
ンドカッターにて破断し、その破断面やガラス表面を走
査電子顕微鏡で発泡やクラック・剥離等の観察を行い、
ガラス被覆AlN基板の熱伝導率を光交流法にて測定し
た。また、これらのガラス被覆AlN基板上にアルミナ
用厚膜材料としてAg/Pd導体ペースト(田中インタ
ーナショナル製TR4846)をスクリーン印刷法によ
ってガラス上に印刷し、空気中850℃で10分間保持
焼成を行い、AlN上にメタライズした。
These glass-coated AlN substrates were kept in air at a predetermined temperature of 1000 to 1200 ° C. for 30 minutes at the maximum temperature, and the obtained glass-coated AlN substrates were fractured by a diamond cutter to obtain fracture surfaces and glass surfaces. Observation of foaming, cracks, peeling, etc. with a scanning electron microscope,
The thermal conductivity of the glass-coated AlN substrate was measured by the optical alternating current method. In addition, Ag / Pd conductor paste (TR4846 made by Tanaka International) as a thick film material for alumina was printed on the glass on these glass-coated AlN substrates by a screen printing method, and held and baked in air at 850 ° C. for 10 minutes, Metallized on AlN.

【0028】得られたメタライズAlN基板を光学顕微
鏡にて外観上、Ag/Pd導体のふくれ、はがれ、変色
等を観察し、フラックス(田村化研製XA100)を塗
布した後、ホットプレートで120℃、数十秒、予備加
熱し、次にハンダディップ槽でハンダ付けを行い、0.
8mmφのハンダコート済銅線を用いて2mm□パッド
の導体部をピール引張試験法によりガラスとAlN基板
の密着力を測定した(n=10で強度平均値を記入)。
The resulting metallized AlN substrate was observed by an optical microscope for swelling, peeling, discoloration, etc. of the Ag / Pd conductor, and after applying flux (XA100 manufactured by Tamura Kaken Co., Ltd.) on a hot plate, 120 ° C. Preheat for several tens of seconds, then solder in dip bath,
The adhesive force between the glass and the AlN substrate was measured for the conductor portion of the 2 mm □ pad by using a solder-coated copper wire of 8 mmφ by the peel tension test method (n = 10 indicates the strength average value).

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】また、表1、表2のNo.2とNo.16
については以下の条件による各種信頼性テスト後にも行
った(表2参照)。 高温保持テスト:150℃×50〜1000時間 高温高湿テスト:80℃、90%RH×50〜1000
時間 ヒートサイクルテスト:−65℃×30分←→室温×1
5分←→150℃×30分50〜1000サイクル
Further, No. 1 in Table 1 and Table 2 2 and No. 16
The test was also performed after various reliability tests under the following conditions (see Table 2). High temperature holding test: 150 ° C x 50 to 1000 hours High temperature and high humidity test: 80 ° C, 90% RH x 50 to 1000 hours
Time Heat cycle test: -65 ° C x 30 minutes ← → room temperature x 1
5 minutes ← → 150 ° C × 30 minutes 50 to 1000 cycles

【0032】このとき比較例としては、AlN表面を空
気中1200℃で0.5〜10時間高温保持した後、エ
ックス線ディフラクトメーターにて表層にα−アルミナ
があることを確認して走査電子顕微鏡でアルミナ膜厚を
測定し、膜厚2μm,5μm,10μmとした酸化Al
N基板とアルミナ基板上にも上記Ag/Pd導体をメタ
ライズして同様に密着力を評価した。表中の外観は、○
は良好なもの、×は発泡またはクラックのおこったもの
である。
At this time, as a comparative example, after keeping the AlN surface at a high temperature of 1200 ° C. for 0.5 to 10 hours in air, it was confirmed by an X-ray diffractometer that α-alumina was present in the surface layer, and a scanning electron microscope was used. The thickness of the alumina was measured with a film thickness of 2 μm, 5 μm, and 10 μm.
The above Ag / Pd conductor was metallized on the N substrate and the alumina substrate, and the adhesion was evaluated in the same manner. The appearance in the table is ○
Is good, and x is foamed or cracked.

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【発明の効果】本発明は窒化アルミニウム焼結体と直接
緻密にかつ高強度で密着することのできるガラス層を形
成した高熱伝導性回路基板を提供するものである。すな
わち、窒化アルミニウム焼結体に同等の熱膨張率をもつ
ガラスを直接接合することにより工程がやさしくなり、
かつ、高信頼性を実現でき、その上に一般のアルミナ用
厚膜材等のメタライズが可能となる。
EFFECTS OF THE INVENTION The present invention provides a high thermal conductivity circuit board having a glass layer which can be directly and closely adhered to an aluminum nitride sintered body with high strength. That is, the process becomes easy by directly bonding the glass having the same coefficient of thermal expansion to the aluminum nitride sintered body,
In addition, high reliability can be realized, and metalization of a general thick film material for alumina or the like can be performed thereon.

フロントページの続き (72)発明者 折原 一喜 神奈川県横浜市神奈川区羽沢町松原1160番 地 エイ・ジー・テクノロジー株式会社内 (72)発明者 渋谷 幸一 東京都千代田区丸の内二丁目1番2号 旭 硝子株式会社内Front page continued (72) Inventor Kazuki Orihara 1160 Matsubara, Hazawa-machi, Kanagawa-ku, Yokohama, Kanagawa Pref., A-G Technology Co., Ltd. (72) Koichi Shibuya 1-2-2 Marunouchi, Chiyoda-ku, Tokyo Asahi Glass Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】窒化アルミニウム焼結体上に設けられるガ
ラス組成物であって、SiO2 :35〜45wt%、A
23 :15〜20wt%、PbO:0〜15wt
%、ZnO:0〜15wt%、但し、PbO+ZnO=
3〜15wt%、MgO+CaO+SrO+BaO:1
2〜18wt%、ZrO2 +TiO2 :12〜20wt
%、B23 :0〜10wt%、Sb23 :0〜2w
t%から本質的になるガラス組成物。
1. A glass composition provided on an aluminum nitride sintered body, comprising: SiO 2 : 35 to 45 wt%, A
l 2 O 3: 15~20wt%, PbO: 0~15wt
%, ZnO: 0 to 15 wt%, provided that PbO + ZnO =
3-15 wt%, MgO + CaO + SrO + BaO: 1
2-18 wt%, ZrO 2 + TiO 2 : 12-20 wt
%, B 2 O 3: 0~10wt %, Sb 2 O 3: 0~2w
A glass composition consisting essentially of t%.
【請求項2】窒化アルミニウム焼結体上に、請求項1の
ガラス組成物からなる層を設けて、結晶化してなること
を特徴とするガラス被覆窒化アルミニウム焼結体。
2. A glass-coated aluminum nitride sintered body, comprising a layer of the glass composition according to claim 1 provided on the aluminum nitride sintered body and crystallized.
【請求項3】窒化アルミニウム焼結体上に、線熱膨張率
が15〜55×10-7/℃であるガラス層を設けたこと
を特徴とするガラス被覆窒化アルミニウム焼結体。
3. A glass-covered aluminum nitride sintered body, comprising a glass layer having a linear thermal expansion coefficient of 15 to 55 × 10 −7 / ° C. provided on the aluminum nitride sintered body.
【請求項4】窒化アルミニウム焼結体上に請求項1のガ
ラス組成物からなる層を設け、800℃以上の温度で結
晶化することを特徴とするガラス被覆窒化アルミニウム
焼結体の製造方法。
4. A method for producing a glass-coated aluminum nitride sintered body, which comprises providing a layer made of the glass composition according to claim 1 on an aluminum nitride sintered body and crystallizing at a temperature of 800 ° C. or higher.
JP15127193A 1993-05-28 1993-05-28 Glass composition and glass-coated aluminum nitride sintered compact Pending JPH06340443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15127193A JPH06340443A (en) 1993-05-28 1993-05-28 Glass composition and glass-coated aluminum nitride sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15127193A JPH06340443A (en) 1993-05-28 1993-05-28 Glass composition and glass-coated aluminum nitride sintered compact

Publications (1)

Publication Number Publication Date
JPH06340443A true JPH06340443A (en) 1994-12-13

Family

ID=15515026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15127193A Pending JPH06340443A (en) 1993-05-28 1993-05-28 Glass composition and glass-coated aluminum nitride sintered compact

Country Status (1)

Country Link
JP (1) JPH06340443A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001044143A1 (en) * 1999-12-16 2001-06-21 Tokuyama Corporation Joint body of glass-ceramic and aluminum nitride sintered compact and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001044143A1 (en) * 1999-12-16 2001-06-21 Tokuyama Corporation Joint body of glass-ceramic and aluminum nitride sintered compact and method for producing the same
JPWO2001044143A1 (en) * 1999-12-16 2004-01-08 株式会社トクヤマ Bonded body of crystallized glass and sintered aluminum nitride and method for producing the same
US6818574B2 (en) 1999-12-16 2004-11-16 Tokuyama Corporation Jointed body of glass-ceramic and aluminum nitride sintered compact and method for producing the same

Similar Documents

Publication Publication Date Title
US7176152B2 (en) Lead-free and cadmium-free conductive copper thick film pastes
US5725808A (en) Multilayer co-fired ceramic compositions and ceramic-on-metal circuit board
JPS61142759A (en) Substrate for ic package
US4664946A (en) Silicon carbide substrates and a method of producing the same
JPH08242062A (en) Ceramic circuit board backed at low temperature
US4906514A (en) Metallized substrate for electronic device
JPH107435A (en) Glass ceramic wiring substrate and its production
US5066620A (en) Conductive paste compositions and ceramic substrates
JPH01252548A (en) Glass ceramic composition
EP1322566B1 (en) Process for preparing barium lanthanum silicate glass-ceramics
JP2922375B2 (en) Ceramic-on-metal circuit board and method of manufacturing the same
JPH06340443A (en) Glass composition and glass-coated aluminum nitride sintered compact
JPH01179741A (en) Glass-ceramic composition
US4985376A (en) Conductive paste compositions and ceramic substrates
JP2598872B2 (en) Glass ceramic multilayer substrate
EP0858433B1 (en) Multilayer co-fired ceramic compositions and ceramic-on-metal circuit board
JP2695587B2 (en) Glass ceramics composition
JPH02226787A (en) Hybrid circuit
JPS60118648A (en) Glaze composition for ceramic base
JPS59174543A (en) Crystallizable glass solder with low thermal expansion rate
JPH03103337A (en) Glass for bonding ceramic
JPH0558201B2 (en)
JPS6112091A (en) Multilayer circuit board and method of producing same
JPH01212249A (en) Insulating powder for forming conductor coat
JPH0685418A (en) Ceramic wiring substrate