JPH06327942A - Purifying method of waste gas - Google Patents

Purifying method of waste gas

Info

Publication number
JPH06327942A
JPH06327942A JP5146917A JP14691793A JPH06327942A JP H06327942 A JPH06327942 A JP H06327942A JP 5146917 A JP5146917 A JP 5146917A JP 14691793 A JP14691793 A JP 14691793A JP H06327942 A JPH06327942 A JP H06327942A
Authority
JP
Japan
Prior art keywords
exhaust gas
oxide
catalyst
gas
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5146917A
Other languages
Japanese (ja)
Inventor
Naoko Irite
直子 入手
Akira Abe
晃 阿部
Kiyohide Yoshida
清英 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP5146917A priority Critical patent/JPH06327942A/en
Priority to EP93310608A priority patent/EP0605251A1/en
Publication of JPH06327942A publication Critical patent/JPH06327942A/en
Priority to US08/434,915 priority patent/US5589432A/en
Priority to US08/532,260 priority patent/US5658543A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To efficiently remove nitrogen oxide by using the waste gas purifying material composed by combining the catalyst carrying a silver component on a porous inorg. oxide with the catalyst carrying Pt, etc., on the porous inorg. oxide, adding mixed hydrocarbons or a hydrocarbon compd. in the waste gas and allowing the waste gas to contact with the purifying material at a specified temp. CONSTITUTION:The waste gas purifying material having a first catalyst carrying 0.2-15wt.% silver or silver oxide being an activated seed (expressed in terms of element) on the porous inorg. oxide at the inflow side of the waste gas and a second catalyst carrying 0.01-5wt.% at least one kind element selected from the group consisting of Pt, etc., being the activaated seed on the porous inorg. oxide at the outflow side of the waste gas is provided in the midst of the waste gas conduit. Less than 5 times mixed hydrocarbons consisting of either, liquefied petroleum gas or city gas or liquefied natural gas, or the hydrocarbon such as methane per the weight of nitrogen oxide in the waste gas, is added at the upstream side of the catalyst, and the waste gas is allowed to contact with the catalyst at 200-650 deg.C and the nitrogen oxide is removed efficiently.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は窒素酸化物と過剰の酸素
を含む燃焼排ガスから、窒素酸化物を効果的に除去する
ことのできる排ガス浄化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purification method capable of effectively removing nitrogen oxides from combustion exhaust gas containing nitrogen oxides and excess oxygen.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】自動車
用エンジン等の内燃機関や、工場等に設置された燃焼機
器、家庭用ファンヒーターなどから排出される各種の燃
焼排ガス中には、過剰の酸素とともに一酸化窒素、二酸
化窒素等の窒素酸化物が含まれている。ここで、「過剰
の酸素を含む」とは、その排ガス中に含まれる一酸化炭
素、水素、炭化水素等の未燃焼成分を燃焼するのに必要
な理論酸素量より多い酸素を含むことを意味する。ま
た、以下における窒素酸化物とは一酸化窒素及び/又は
二酸化窒素を指す。
2. Description of the Related Art Excessive amounts of combustion exhaust gas emitted from internal combustion engines such as automobile engines, combustion equipment installed in factories, household fan heaters, etc. Nitrogen oxides such as nitric oxide and nitrogen dioxide are contained together with oxygen. Here, "containing excess oxygen" means containing more oxygen than the theoretical oxygen amount necessary to burn unburned components such as carbon monoxide, hydrogen, and hydrocarbons contained in the exhaust gas. To do. Moreover, the nitrogen oxide in the following refers to nitric oxide and / or nitrogen dioxide.

【0003】この窒素酸化物は酸性雨の原因の一つとさ
れ、環境上の大きな問題となっている。そのため、各種
燃焼機器が排出する排ガス中の窒素酸化物を除去するさ
まざまな方法が検討されている。
This nitrogen oxide is considered to be one of the causes of acid rain and is a serious environmental problem. Therefore, various methods for removing nitrogen oxides in exhaust gas discharged from various combustion devices have been studied.

【0004】過剰の酸素を含む燃焼排ガスから窒素酸化
物を除去する方法として、特に大規模な固定燃焼装置
(工場等の大型燃焼機等)に対しては、アンモニアを用
いる選択的接触還元法が実用化されている。
As a method for removing nitrogen oxides from combustion exhaust gas containing excess oxygen, a selective catalytic reduction method using ammonia is used, particularly for large-scale fixed combustion devices (large combustors such as factories). It has been put to practical use.

【0005】しかしながら、この方法においては、窒素
酸化物の還元剤として用いるアンモニアが高価であるこ
と、またアンモニアは毒性を有すること、そのために未
反応のアンモニアが排出しないように排ガス中の窒素酸
化物濃度を計測しながらアンモニア注入量を制御しなけ
ればならないこと、一般に装置が大型となること等の問
題点がある。
However, in this method, ammonia used as a reducing agent for nitrogen oxides is expensive, and ammonia is toxic, so that unreacted ammonia is discharged so that nitrogen oxides in exhaust gas are not discharged. There are problems that the amount of ammonia injection must be controlled while measuring the concentration and that the apparatus is generally large.

【0006】また、別な方法として、水素、一酸化炭
素、炭化水素等のガスを還元剤として用い、窒素酸化物
を還元する非選択的接触還元法があるが、この方法で
は、効果的な窒素酸化物の低減除去を実行するためには
排ガス中の酸素との理論反応量以上の還元剤を添加しな
ければならず、還元剤を多量に消費する欠点がある。こ
のため非選択的接触還元法は、実際上は、理論空燃比付
近で燃焼した残存酸素濃度の低い排ガスに対してのみ有
効となり、汎用性に乏しく実際的でない。
[0006] As another method, there is a non-selective catalytic reduction method for reducing nitrogen oxides by using a gas such as hydrogen, carbon monoxide or hydrocarbon as a reducing agent, but this method is effective. In order to reduce and remove nitrogen oxides, it is necessary to add a reducing agent in an amount equal to or larger than a theoretical reaction amount with oxygen in exhaust gas, and there is a drawback that a large amount of reducing agent is consumed. Therefore, the non-selective catalytic reduction method is practically effective only for the exhaust gas having a low residual oxygen concentration that is burned in the vicinity of the theoretical air-fuel ratio, and is not versatile and impractical.

【0007】そこで、ゼオライト又はそれに遷移金属を
担持した触媒を用いて、排ガス中の酸素との理論反応量
以下の還元剤を添加して窒素酸化物を除去する方法が提
案された(たとえば、特開昭63-100919 号、同63-28372
7 号、特開平1-130735号、及び日本化学会第59春季年会
(1990年)2A526、同第60秋季年会 (1990年)3L420、3L42
2 、3L423 、「触媒」vol.33 No.2 、59ページ、1991年
等) 。
Therefore, there has been proposed a method for removing nitrogen oxides by adding a reducing agent in an amount equal to or less than a theoretical reaction amount with oxygen in exhaust gas by using zeolite or a catalyst supporting a transition metal thereon (for example, a special method). Kaisho 63-100919, 63-28372
No. 7, JP-A-1-130735, and 59th Annual Meeting of the Chemical Society of Japan
(1990) 2A526, 60th Autumn Meeting (1990) 3L420, 3L42
2, 3L423, "Catalyst" vol.33 No.2, page 59, 1991 etc.).

【0008】しかしながら、これらの方法では、窒素酸
化物の除去温度領域が狭く、また、水分を含み、運転条
件によって温度変化の大きい排ガスでは、窒素酸化物の
除去率が著しく低下することがわかった。
However, it has been found that these methods have a narrow temperature range for removing nitrogen oxides, and that the exhaust gas containing water and having a large temperature change depending on operating conditions has a significantly low nitrogen oxide removal rate. .

【0009】したがって、本発明の目的は、固定燃焼装
置および酸素過剰条件で燃焼するガソリンエンジン、デ
ィーゼルエンジン等からの燃焼排ガスのように、窒素酸
化物や、一酸化炭素、水素、炭化水素等の未燃焼分に対
する理論反応量以上の酸素を含有する燃焼排ガスから、
効率良く窒素酸化物を除去することができる排ガス浄化
方法を提供することである。
Therefore, an object of the present invention is to remove nitrogen oxides, carbon monoxide, hydrogen, hydrocarbons, etc., such as combustion exhaust gas from a fixed combustion device and a gasoline engine, a diesel engine, etc. that burn under an excess oxygen condition. From the combustion exhaust gas that contains more than the theoretical reaction amount of oxygen for unburned components,
An object of the present invention is to provide an exhaust gas purification method capable of efficiently removing nitrogen oxides.

【0010】[0010]

【課題を解決するための手段】上記課題に鑑み鋭意研究
の結果、本発明者は、多孔質の無機酸化物に特定形状の
銀成分を特定量担持してなる第一の触媒と、Pt等の成分
を担持してなる第二の触媒とを別々に作成して、組み合
わせて形成される排ガス浄化材を用い、排ガス中に混合
炭化水素又は炭化水素化合物を添加して特定の温度で上
記の浄化材に排ガスを接触させれば、10%の水分を含
む排ガスでも、広い温度領域で窒素酸化物を効果的に除
去することができることを発見し、本発明を完成した。
As a result of earnest research in view of the above problems, the present inventors have found that the first catalyst comprising a specific amount of a silver component of a specific shape supported on a porous inorganic oxide, Pt, etc. The second catalyst formed by carrying the component of is separately prepared, and the exhaust gas purifying material formed by the combination is used, and the mixed hydrocarbon or the hydrocarbon compound is added to the exhaust gas, and The inventors have found that if the exhaust gas is brought into contact with the purification material, the nitrogen oxides can be effectively removed in a wide temperature range even with the exhaust gas containing 10% of water, and the present invention has been completed.

【0011】すなわち、本発明の第一の排ガス浄化方法
は、排ガス流入側に、多孔質の無機酸化物に活性種であ
る銀又は銀酸化物0.2〜15重量%(元素換算値)を
担持してなる第一の触媒を有し、排ガス流出側に、多孔
質の無機酸化物に活性種であるPt、Pd、Ru、Rh、Irから
なる群より選ばれた少なくとも1種の元素0.01〜5
重量%を担持してなる第二の触媒を有する排ガス浄化材
を排ガス導管の途中に設置し、前記浄化材の上流側に、
前記排ガス中の窒素酸化物重量の5倍以下の液化石油ガ
ス、都市ガス、液化天然ガスのいずれかからなる混合炭
化水素又はメタン、エタン等の炭化水素を添加し、20
0〜650℃において排ガスを前記浄化材に接触させ、
もって前記窒素酸化物と前記炭化水素とを反応させて前
記窒素酸化物を除去することを特徴とする。
That is, in the first exhaust gas purification method of the present invention, 0.2 to 15% by weight (elemental conversion value) of silver or silver oxide, which is an active species, is added to the porous inorganic oxide on the exhaust gas inflow side. At least one element selected from the group consisting of Pt, Pd, Ru, Rh, and Ir, which has a supported first catalyst and is an active species in a porous inorganic oxide, on the exhaust gas outflow side. .01-5
An exhaust gas purifying material having a second catalyst supporting wt% is installed in the middle of the exhaust gas conduit, and on the upstream side of the purifying material,
A mixed hydrocarbon of liquefied petroleum gas, city gas, or liquefied natural gas, which is 5 times or less the weight of nitrogen oxides in the exhaust gas, or a hydrocarbon such as methane or ethane is added, 20
Contacting the exhaust gas with the purification material at 0 to 650 ° C.,
Therefore, the nitrogen oxide and the hydrocarbon are reacted to remove the nitrogen oxide.

【0012】また、本発明の第二の排ガス浄化方法は、
多孔質の無機酸化物に活性種である銀又は銀酸化物0.
2〜15重量%(元素換算値)を担持してなる第一の触
媒と、前記第二の触媒が多孔質の無機酸化物に活性種で
あるPt、Pd、Ru、Rh、Irからなる群より選ばれた少なく
とも1種の元素2重量%を越えて、5重量%以下を担持
してなる第二の触媒を混合してなる排ガス浄化材を排ガ
ス導管の途中に設置し、前記浄化材の上流側に、前記排
ガス中の窒素酸化物重量の5倍以下の液化石油ガス、都
市ガス、液化天然ガスのいずれかからなる混合炭化水素
又はメタン、エタン等の炭化水素を添加し、200〜6
50℃において排ガスを前記浄化材に接触させ、もって
前記窒素酸化物と前記炭化水素とを反応させて前記窒素
酸化物を除去することを特徴とする。
The second exhaust gas purification method of the present invention is
Silver or silver oxide which is an active species for the porous inorganic oxide.
A group consisting of a first catalyst supporting 2 to 15% by weight (elemental conversion value), and Pt, Pd, Ru, Rh and Ir in which the second catalyst is a porous inorganic oxide and active species. An exhaust gas purifying material obtained by mixing a second catalyst supporting more than 2 wt% of at least one element selected from the above and 5 wt% or less is installed in the middle of the exhaust gas conduit, On the upstream side, a mixed hydrocarbon of liquefied petroleum gas, city gas, or liquefied natural gas, which is 5 times or less the weight of nitrogen oxides in the exhaust gas, or a hydrocarbon such as methane or ethane is added, and the amount is adjusted to 200 to 6
The exhaust gas is brought into contact with the purification material at 50 ° C., and the nitrogen oxide and the hydrocarbon are reacted with each other to remove the nitrogen oxide.

【0013】以下、本発明を詳細に説明する。本発明の
第一の方法で用いる浄化材では、排ガス流入側に、多孔
質の無機酸化物に活性種である銀又は銀酸化物0.2〜
15重量%(元素換算値)を担持してなる第一の触媒を
形成し、流出側に多孔質の無機酸化物に活性種であるP
t、Pd、Ru、Rh、Irからなる群より選ばれた少なくとも
1種の元素0.01〜5重量%を担持してなる第二の触
媒を形成してなる排ガス浄化材を排ガス導管中に設置
し、浄化材の設置位置より上流側で排ガス中に混合炭化
水素又は炭化水素化合物を添加して排ガスをこの浄化材
に接触させ、混合炭化水素又は炭化水素化合物を還元剤
として排ガス中の窒素酸化物を還元除去する。
The present invention will be described in detail below. In the purifying material used in the first method of the present invention, on the exhaust gas inflow side, silver that is an active species of porous inorganic oxide or silver oxide 0.2 to
It forms 15% by weight (element conversion value) of the first catalyst, and the porous inorganic oxide P on the outflow side is the active species.
An exhaust gas purifying material formed by forming a second catalyst containing 0.01 to 5% by weight of at least one element selected from the group consisting of t, Pd, Ru, Rh, and Ir in an exhaust gas conduit. Installed and added mixed hydrocarbon or hydrocarbon compound to the exhaust gas on the upstream side of the installation position of the purification material, and contact the exhaust gas with this purification material, and use the mixed hydrocarbon or hydrocarbon compound as a reducing agent to reduce nitrogen in the exhaust gas. The oxide is reduced and removed.

【0014】本発明の第二の方法で用いる浄化材では、
多孔質の無機酸化物に活性種である銀又は銀酸化物0.
2〜15重量%(元素換算値)を担持してなる第一の触
媒と、多孔質の無機酸化物に活性種であるPt、Pd、Ru、
Rh、Irからなる群より選ばれた少なくとも1種の元素
0.01〜5重量%を担持してなる第二の触媒とを混合
してなる排ガス浄化材を排ガス導管中に設置し、浄化材
の設置位置より上流側で排ガス中に混合炭化水素又は炭
化水素化合物を添加して排ガスをこの浄化材に接触さ
せ、混合炭化水素又は炭化水素化合物を還元剤として排
ガス中の窒素酸化物を還元除去する。
In the purifying material used in the second method of the present invention,
Silver or silver oxide which is an active species for the porous inorganic oxide.
2 to 15% by weight (elemental conversion value) supporting the first catalyst and Pt, Pd, Ru, which are active species in the porous inorganic oxide,
An exhaust gas purifying material obtained by mixing with a second catalyst supporting 0.01 to 5% by weight of at least one element selected from the group consisting of Rh and Ir is installed in an exhaust gas conduit to obtain a purifying material. A mixed hydrocarbon or hydrocarbon compound is added to the exhaust gas upstream of the installation position of the exhaust gas to bring the exhaust gas into contact with this purification material, and the mixed hydrocarbon or hydrocarbon compound is used as a reducing agent to reduce and remove nitrogen oxides in the exhaust gas. To do.

【0015】上記両排ガス浄化材は下記二つの形態をと
ることが可能である。第一の好ましい形態は、粉末状の
多孔質無機酸化物に触媒活性種を担持してなる触媒を浄
化材基体にコートしてなる浄化材である。浄化材の基体
を形成するセラミックス材料としては、γ−アルミナ及
びその酸化物(γ−アルミナ−チタニア、γ−アルミナ
−シリカ、γ−アルミナ−ジルコニア等)、ジルコニ
ア、チタニア−ジルコニアなどの多孔質で表面積の大き
い耐熱性のものが挙げられる。高耐熱性が要求される場
合、コージェライト、ムライト、アルミナ及びその複合
物等を用いるのが好ましい。また、排ガス浄化材の基体
に公知の金属材料を用いることもできる。
The above exhaust gas purifying materials can take the following two forms. A first preferred form is a purification material obtained by coating a purification material substrate with a catalyst in which a powdery porous inorganic oxide carries a catalytically active species. As the ceramic material forming the substrate of the purification material, γ-alumina and its oxides (γ-alumina-titania, γ-alumina-silica, γ-alumina-zirconia, etc.), zirconia, titania-zirconia, and other porous materials are used. A heat-resistant material having a large surface area can be used. When high heat resistance is required, it is preferable to use cordierite, mullite, alumina and their composites. Also, a known metal material can be used for the substrate of the exhaust gas purifying material.

【0016】排ガス浄化材の基体の形状及び大きさは、
目的に応じて種々変更できる。実用的には、入口部分と
出口部分とからなる二つ又は二つ以上の部分からなるこ
とが好ましい。またその構造としては、ハニカム構造
型、フォーム型、板状、又は繊維状耐火物等の三次元網
目構造型、あるいは顆粒状、ペレット状等が挙げられ
る。
The shape and size of the substrate of the exhaust gas purifying material are
Various changes can be made according to the purpose. Practically, it is preferable to have two or more parts including an inlet part and an outlet part. Examples of the structure include a honeycomb structure type, a foam type, a plate type, a three-dimensional network structure type such as a fibrous refractory, a granular type, a pellet type and the like.

【0017】第二の好ましい形態は、ペレット状、顆粒
状、又は粉末状の多孔質無機酸化物に後述の触媒活性種
を担持してなる触媒を充填してなる浄化材である。
The second preferred form is a purification material obtained by filling a pellet-shaped, granular-shaped, or powdered porous inorganic oxide with a catalyst having a catalytically active species described below.

【0018】本発明で用いる浄化材には以下の二つの触
媒が形成されている。 (1)第一の触媒 第一の触媒は、多孔質無機酸化物に銀成分を担持してな
り、排ガスの流入側に形成される。多孔質の無機酸化物
としては、多孔質のアルミナ、シリカ、チタニア、ジル
コニア、及びそれらの複合酸化物等を使用することがで
きるが、好ましくはγ−アルミナ又はアルミナ系複合酸
化物を用いる。γ−アルミナ又はアルミナ系複合酸化物
を用いることにより、添加した混合炭化水素又は炭化水
素化合物及び/又は排ガス中の残留炭化水素と排ガス中
の窒素酸化物との反応が効率良く起こる。
The purifying material used in the present invention is formed with the following two catalysts. (1) First catalyst The first catalyst comprises a porous inorganic oxide carrying a silver component, and is formed on the exhaust gas inflow side. As the porous inorganic oxide, porous alumina, silica, titania, zirconia, and their composite oxides can be used, but γ-alumina or alumina-based composite oxide is preferably used. By using γ-alumina or an alumina-based composite oxide, the reaction between the added mixed hydrocarbon or hydrocarbon compound and / or the residual hydrocarbon in the exhaust gas and the nitrogen oxide in the exhaust gas occurs efficiently.

【0019】多孔質の無機酸化物の比表面積は10m2
/g以上であるのが好ましい。比表面積が10m2 /g
未満であると、排ガスと無機酸化物(及びこれに担持し
た銀成分)との接触面積が小さくなり、良好な窒素酸化
物の除去が行えない。
The specific surface area of the porous inorganic oxide is 10 m 2
/ G or more is preferable. Specific surface area of 10 m 2 / g
If it is less than the above range, the contact area between the exhaust gas and the inorganic oxide (and the silver component carried on the exhaust gas) becomes small, and the nitrogen oxide cannot be removed well.

【0020】上記したγ−アルミナ等の無機酸化物に活
性種として担持する銀成分の担持量は、無機酸化物10
0重量%に対して0.2〜15重量%(元素換算値)と
する。0.2重量%未満では窒素酸化物の除去率が低下
する。また、15重量%を超す量の銀を担持すると混合
炭化水素又は炭化水素化合物自身の燃焼が起きやすく、
窒素酸化物の除去率はかえって低下する。好ましい銀成
分の担持量は0.5〜12重量%である。なお、銀成分
は排ガスの温度領域では金属又は酸化物の状態にあり、
相互に容易に転化し得る。
The amount of the silver component supported on the above-mentioned inorganic oxide such as γ-alumina as an active species is 10
0.2 to 15% by weight (elemental conversion value) relative to 0% by weight. If it is less than 0.2% by weight, the removal rate of nitrogen oxides is lowered. Further, if the amount of silver supported exceeds 15% by weight, combustion of the mixed hydrocarbon or the hydrocarbon compound itself easily occurs,
The removal rate of nitrogen oxides rather decreases. The amount of the silver component supported is preferably 0.5 to 12% by weight. The silver component is in the state of metal or oxide in the temperature range of exhaust gas,
They can easily be converted to each other.

【0021】γ−アルミナ等の無機酸化物に銀成分を担
持する方法としては、公知の含浸法や、混練法等を用い
ることができる。担持後の浄化材の調整は、50〜15
0℃程度で乾燥後、100〜600℃で段階的に昇温し
て焼成するのが好ましい。焼成は、空気中又は窒素流通
下、あるいは水素ガス流通下、もしくは真空排気しなが
ら行うのが好ましい。窒素ガスまたは水素ガス流通下で
焼成した浄化材は、最後に500℃で酸化処理を行うこ
とが好ましい。
As a method for supporting the silver component on the inorganic oxide such as γ-alumina, a known impregnation method, a kneading method or the like can be used. Adjustment of the purifying material after loading is 50 to 15
After drying at about 0 ° C., it is preferable to raise the temperature stepwise at 100 to 600 ° C. and bake. The firing is preferably performed in air or under nitrogen flow, or under hydrogen gas flow, or while evacuating. It is preferable that the purification material fired under the flow of nitrogen gas or hydrogen gas is finally subjected to an oxidation treatment at 500 ° C.

【0022】なお、上記浄化材の第一の好ましい形態で
は、浄化材基体上に設ける第一の触媒の厚さは、一般に
基体材とこの触媒との熱膨張特性の違いから制限される
場合が多い。浄化材基体上に設ける触媒の厚さを200
μm以下とするのがよい。このような厚さとすれば、使
用中に熱衝撃等で浄化材が破損することを防ぐことがで
きる。浄化材基体の表面に触媒を形成する方法は公知の
ウォシュコート法、ゾルーゲル法、粉末法等によって行
われる。
In the first preferred embodiment of the purification material, the thickness of the first catalyst provided on the purification material substrate may be limited due to the difference in thermal expansion characteristics between the substrate material and this catalyst. Many. The thickness of the catalyst provided on the purification material base is 200
It is preferable that the thickness is less than or equal to μm. With such a thickness, it is possible to prevent the purification material from being damaged by thermal shock during use. The method of forming the catalyst on the surface of the purifying material substrate is a known washcoat method, sol-gel method, powder method or the like.

【0023】また、浄化材基体の表面上に設ける第一触
媒の量は、浄化材基体の5〜70重量%とするのが好ま
しい。触媒の量が5重量%未満では良好なNOx の除去が
行えない。一方、触媒の量が70重量%を超えると除去
特性はそれほど上がらず、圧力損失が大きくなる。より
好ましくは、浄化材基体の表面上に設ける第一の触媒を
浄化材基体の10〜70重量%とする。
Further, the amount of the first catalyst provided on the surface of the purification material substrate is preferably 5 to 70% by weight of the purification material substrate. If the amount of the catalyst is less than 5% by weight, good NOx cannot be removed. On the other hand, when the amount of the catalyst exceeds 70% by weight, the removal characteristics do not improve so much and the pressure loss increases. More preferably, the first catalyst provided on the surface of the purification material substrate is 10 to 70% by weight of the purification material substrate.

【0024】(2)第二の触媒 第二の触媒は、多孔質無機酸化物に触媒活性種を担持し
てなり、排ガスの流出側に形成される。多孔質無機酸化
物としては、γ−アルミナ及びその酸化物(γ−アルミ
ナ−チタニア、γ−アルミナ−シリカ、γ−アルミナ−
ジルコニア等)、ジルコニア、チタニア−ジルコニアな
どの多孔質で表面積の大きい耐熱性のセラミックスが挙
げられる。好ましくはγ−アルミナ、チタニア、ジルコ
ニア及びそれらを含む複合酸化物を用いる。第一の触媒
と同様に、多孔質の無機酸化物の比表面積は10m2
g以上であることが好ましい。
(2) Second catalyst The second catalyst comprises a porous inorganic oxide carrying a catalytically active species and is formed on the exhaust gas outflow side. As the porous inorganic oxide, γ-alumina and its oxide (γ-alumina-titania, γ-alumina-silica, γ-alumina-
Examples thereof include heat-resistant ceramics having a large surface area such as zirconia), zirconia, and titania-zirconia. Preferably, γ-alumina, titania, zirconia and a composite oxide containing them are used. Like the first catalyst, the porous inorganic oxide has a specific surface area of 10 m 2 /
It is preferably at least g.

【0025】上記の第二触媒の活性種としては、Pt、P
d、Ru、Rh、Irからなる群より選ばれた少なくとも1種
の元素を用いる。特に、PtとRh;PdとRh;P
t、PdとRhの組み合わせは効果的である。銀触媒と
は別に白金触媒を設けることにより、未燃や残留炭化水
素、一酸化炭素等の有害物質を効果的に酸化除去するこ
とができる。第二の触媒で無機酸化物に担持する活性種
の合計は、上述の多孔質の無機酸化物を基準(100重量
%) として0.01〜5重量%とする。触媒活性種の量
が前記基体に対して、5重量%を超す触媒担持量とする
と混合炭化水素又は炭化水素化合物の酸化燃焼のみが進
み、窒素酸化物の低減特性は低下することになる。ま
た、0.01重量%以下では効果が十分に現れない。好
ましい担持量は0.05〜5重量%である。
As the active species of the above-mentioned second catalyst, Pt, P
At least one element selected from the group consisting of d, Ru, Rh, and Ir is used. In particular, Pt and Rh; Pd and Rh; P
The combination of t, Pd and Rh is effective. By providing a platinum catalyst in addition to the silver catalyst, it is possible to effectively oxidize and remove harmful substances such as unburned hydrocarbons, residual hydrocarbons and carbon monoxide. The total amount of active species supported on the inorganic oxide by the second catalyst is 0.01 to 5% by weight based on the above-mentioned porous inorganic oxide (100% by weight). If the amount of the catalytically active species exceeds 5% by weight with respect to the above-mentioned substrate, the amount of the catalyst supported will exceed the oxidative combustion of the mixed hydrocarbon or the hydrocarbon compound, and the nitrogen oxide reducing property will deteriorate. Further, if it is less than 0.01% by weight, the effect is not sufficiently exhibited. The preferable loading amount is 0.05 to 5% by weight.

【0026】また、第二の触媒の活性種として、さら
に、La、Ce等の希土類元素や、Ca、Mg、Ba等から
選ばれた少なくとも一つ以上の元素を10重量%以下担
持することが好ましい。希土類元素を担持することによ
り、白金系の触媒の耐熱性を向上させることができる。
As the active species of the second catalyst, 10% by weight or less of a rare earth element such as La or Ce or at least one element selected from Ca, Mg, Ba and the like may be further supported. preferable. By supporting the rare earth element, the heat resistance of the platinum-based catalyst can be improved.

【0027】第二の触媒における活性種の担持は、公知
の含浸法、沈澱法、ゾルーゲル法等を用いることができ
る。含浸法を用いる際、触媒活性種元素の炭酸塩、塩酸
塩、硝酸塩、酢酸塩、水酸化物等の水溶液に多孔質無機
酸化物を浸漬し、70℃で乾燥後、100〜700℃で
段階的に昇温して焼成することによって行われる。な
お、担持成分は金属元素として表示しているが、通常の
浄化材の使用温度条件では担持成分は金属と酸化物の状
態で存在する。
For supporting the active species on the second catalyst, a known impregnation method, precipitation method, sol-gel method or the like can be used. When using the impregnation method, the porous inorganic oxide is immersed in an aqueous solution of a carbonate, a hydrochloride, a nitrate, an acetate, or a hydroxide of a catalytically active element, dried at 70 ° C., and then staged at 100 to 700 ° C. The temperature is increased and the firing is performed. Although the supported component is shown as a metal element, the supported component exists in the state of a metal and an oxide under normal use temperature conditions of the purification material.

【0028】なお、上記浄化材の第一の好ましい形態で
は、浄化材基体上に設ける第二の触媒の厚さを100μ
m以下とするのがよい。また、浄化材基体の表面上に設
ける第二の触媒の量は、浄化材基体の5〜70重量%と
するのが好ましい。第二の触媒を浄化材基体にコートす
る方法は既述した第一の触媒の方法と同じである。
In the first preferred embodiment of the purification material, the thickness of the second catalyst provided on the purification material substrate is 100 μm.
It is preferably m or less. Further, the amount of the second catalyst provided on the surface of the purification material substrate is preferably 5 to 70% by weight of the purification material substrate. The method of coating the purifying material substrate with the second catalyst is the same as the method of the first catalyst described above.

【0029】本発明においては、第一の触媒と、第二の
触媒との重量比は、5:1〜1:5とするのが好まし
い。比率が1:5未満である(第一の触媒が少ない)
と、250〜600℃の広い温度範囲で全体的に窒素酸
化物の浄化率が低下する。一方、比率が5:1を超える
(第一の触媒が多い)と、400℃以下における窒素酸
化物の浄化能が大きくならない。すなわち、比較的低温
での還元剤と窒素酸化物との反応が十分に進行しない。
より好ましい第一触媒と第二触媒の重量比は4:1〜
1:4である。
In the present invention, the weight ratio of the first catalyst to the second catalyst is preferably 5: 1 to 1: 5. The ratio is less than 1: 5 (less first catalyst)
Then, the purification rate of nitrogen oxides is generally lowered in a wide temperature range of 250 to 600 ° C. On the other hand, when the ratio exceeds 5: 1 (the amount of the first catalyst is large), the purifying ability of nitrogen oxides at 400 ° C or lower does not increase. That is, the reaction between the reducing agent and the nitrogen oxide does not proceed sufficiently at a relatively low temperature.
More preferable weight ratio of the first catalyst to the second catalyst is from 4: 1 to
It is 1: 4.

【0030】上述した構成の浄化材を用いれば、200
〜650℃の広い温度領域において、水分を10%程度
を含む排ガスでも、良好な窒素酸化物の除去を行うこと
ができる。
If the purifying material having the above-mentioned structure is used,
In a wide temperature range of up to 650 ° C., good nitrogen oxides can be removed even with exhaust gas containing about 10% of water.

【0031】次に、本発明の方法について説明する。本
発明の第一の排ガス浄化方法では、第一の触媒が排ガス
の入口に面し、第二の触媒が排ガスの出口に面するよう
に、排ガス導管の途中に設置する。本発明の第二の排ガ
ス浄化方法では、第1の触媒と第2の触媒とを混合して
なる浄化材を排ガス導管の途中に設置する。
Next, the method of the present invention will be described. In the first exhaust gas purification method of the present invention, the first catalyst is installed in the middle of the exhaust gas pipe so that the first catalyst faces the exhaust gas inlet and the second catalyst faces the exhaust gas outlet. In the second exhaust gas purification method of the present invention, a purification material obtained by mixing the first catalyst and the second catalyst is installed in the middle of the exhaust gas conduit.

【0032】本発明は液化石油ガス、都市ガス、液化天
然ガスのいずれかからなる混合炭化水素を燃料とするエ
ンジンからの燃焼排ガスを処理するための方法である。
このような排ガス中には、残留炭化水素がある程度含ま
れる。残留炭化水素が排ガス中の窒素酸化物を還元する
のに十分ではない場合には、外部から有機化合物を添加
する必要がある。このとき、上述した浄化材を排ガス導
管の途中に設置し、浄化材の設置部位の上流側で排ガス
中にエンジンの燃料である混合炭化水素又は炭化水素化
合物を添加する。
The present invention is a method for treating combustion exhaust gas from an engine which uses a mixed hydrocarbon composed of liquefied petroleum gas, city gas or liquefied natural gas as a fuel.
Such exhaust gas contains some residual hydrocarbons. If the residual hydrocarbons are not sufficient to reduce the nitrogen oxides in the exhaust gas, it is necessary to add organic compounds from the outside. At this time, the above-described purification material is installed in the middle of the exhaust gas conduit, and the mixed hydrocarbon or hydrocarbon compound that is the fuel of the engine is added to the exhaust gas on the upstream side of the installation site of the purification material.

【0033】炭化水素化合物としては、アルカン、アル
ケン、アルキン等を用いる。好ましくは、メタン、エタ
ン、プロパン、ブタン等を用いる。混合炭化水素として
は、液化石油ガス、都市ガス、液化天然ガスのいずれか
を用いる。また、それ以外の混合炭化水素を用いてもよ
い。これらの混合炭化水素を用いることにより、600
℃以上の高温領域における窒素酸化物除去性能が高くな
る。混合炭化水素を用いる場合、炭素数の小さい飽和炭
化水素が主成分になっていると、低温での窒素酸化物除
去特性が低下するため、炭素数の大きい炭化水素を添加
して用いるのが好ましい。
As the hydrocarbon compound, alkane, alkene, alkyne and the like are used. Preferably, methane, ethane, propane, butane, etc. are used. As the mixed hydrocarbon, liquefied petroleum gas, city gas, or liquefied natural gas is used. Also, other mixed hydrocarbons may be used. By using these mixed hydrocarbons, 600
Nitrogen oxide removal performance in a high temperature range of ℃ or higher is improved. When a mixed hydrocarbon is used, if a saturated hydrocarbon having a small number of carbon atoms is the main component, the nitrogen oxide removal characteristics at low temperatures deteriorate, so it is preferable to add a hydrocarbon having a large number of carbon atoms before use. .

【0034】外部から導入する混合炭化水素又は炭化水
素化合物の量は、重量比(添加する還元剤の重量/排ガ
ス中の窒素酸化物の重量)が5以下となるようにするの
が好ましい。この重量比が5を超えると、燃費悪化につ
ながる。
The amount of the mixed hydrocarbon or hydrocarbon compound introduced from the outside is preferably such that the weight ratio (weight of reducing agent added / weight of nitrogen oxide in exhaust gas) is 5 or less. If this weight ratio exceeds 5, it leads to deterioration of fuel efficiency.

【0035】また、本発明では、混合炭化水素又は炭化
水素化合物と窒素酸化物とが反応する部位である浄化材
設置部位における排ガスの温度を200〜650℃に保
つ。排ガスの温度が200℃未満であると還元剤と窒素
酸化物との反応が進行せず、良好な窒素酸化物の除去を
行うことができない。一方、650℃を超す温度とする
と混合炭化水素又は炭化水素化合物自身の燃焼が始ま
り、窒素酸化物の還元除去が行えない。好ましい排ガス
温度は300〜600℃である。
Further, in the present invention, the temperature of the exhaust gas at the purification material installation site where the mixed hydrocarbon or hydrocarbon compound reacts with the nitrogen oxides is maintained at 200 to 650 ° C. If the temperature of the exhaust gas is less than 200 ° C., the reaction between the reducing agent and the nitrogen oxide does not proceed, and the nitrogen oxide cannot be removed satisfactorily. On the other hand, if the temperature exceeds 650 ° C., the combustion of the mixed hydrocarbon or the hydrocarbon compound itself starts, and the nitrogen oxide cannot be reduced and removed. A preferable exhaust gas temperature is 300 to 600 ° C.

【0036】[0036]

【実施例】本発明を以下の具体的実施例によりさらに詳
細に説明する。実施例1 市販のペレット状γ−アルミナ(直径1.5mm、長さ約
6mm、比表面積200m2 /g)10gに、硝酸銀水溶
液を用いて銀を5重量%担持し、70℃で乾燥後、15
0℃、200℃、300℃、400℃、500℃、及び
600℃まで段階的に焼成し、触媒1を調製した。ま
た、同様のペレット状アルミナ5gに塩化白金酸水溶液
を用いて、Ptを3重量%担持し、乾燥後700℃まで焼
成し、触媒2を調製した。
The present invention will be described in more detail by the following specific examples. Example 1 10 g of commercially available pelletized γ-alumina (diameter 1.5 mm, length about 6 mm, specific surface area 200 m 2 / g) was loaded with 5% by weight of silver using an aqueous solution of silver nitrate, and dried at 70 ° C., 15
Catalyst 1 was prepared by calcining stepwise to 0 ° C, 200 ° C, 300 ° C, 400 ° C, 500 ° C, and 600 ° C. Further, 5 g of the same pellet-shaped alumina was loaded with 3% by weight of Pt by using an aqueous solution of chloroplatinic acid, dried and calcined to 700 ° C. to prepare catalyst 2.

【0037】銀系触媒4gとPt系触媒2gを混合した浄
化材を反応管内にセットした。次に、表1に示す組成の
ガス(一酸化窒素、酸素、液化石油ガス、窒素、及び水
分)を毎分2.2リットル(標準状態)の流量で流して
(全体の見かけ空間速度約10,000h-1、銀系触媒
とPt系触媒の接触時間はそれぞれ0.1、0.05秒・
g/ml)、反応管内の排ガス温度を200〜700℃の
範囲に保ち、液化石油ガスと窒素酸化物とを反応させ
た。
A purifying material in which 4 g of the silver-based catalyst and 2 g of the Pt-based catalyst were mixed was set in the reaction tube. Next, a gas having the composition shown in Table 1 (nitrogen monoxide, oxygen, liquefied petroleum gas, nitrogen, and water) was flowed at a flow rate of 2.2 liters per minute (standard state) (total apparent space velocity of about 10 1,000 h −1 , the contact time between the silver-based catalyst and the Pt-based catalyst is 0.1 and 0.05 seconds, respectively.
g / ml), the temperature of the exhaust gas in the reaction tube was kept in the range of 200 to 700 ° C., and the liquefied petroleum gas and nitrogen oxide were reacted.

【0038】反応管通過後のガスの窒素酸化物の濃度を
化学発光式窒素酸化物分析計により測定し、窒素酸化物
の除去率を求めた。結果を図1に示す。
The nitrogen oxide concentration of the gas after passing through the reaction tube was measured by a chemiluminescence type nitrogen oxide analyzer to determine the nitrogen oxide removal rate. The results are shown in Fig. 1.

【0039】 表1 成分 濃度 一酸化窒素 800 ppm 酸素 10 容量% 液化石油ガス 1700 ppm 窒素 残部 水分 上記した成分からなるガス量に対して10容量%Table 1 Concentration of components Nitrogen monoxide 800 ppm Oxygen 10% by volume Liquefied petroleum gas 1700 ppm Nitrogen balance Moisture 10% by volume based on the amount of gas composed of the above components

【0040】実施例2 硝酸銀水溶液を用いて粉末状γ−アルミナ(比表面積2
00m2 /g)に銀が5重量%担持されている触媒作成
し、この触媒約1.0gを市販のコージェライト製ハニ
カム状成形体(直径30mm、長さ12.6mm、400セ
ル/平方インチ)に、コートし、乾燥後600℃まで段
階的に焼成し、浄化材を調製した。また、同様のハニカ
ム状成形体(長さ6mm)に塩化白金酸溶液を用いて、粉
末状γ−アルミナにPtが3重量%担持されている触媒
0.4gをコートし、乾燥後700℃まで焼成し、浄化
材を調製した。排ガスの流入側に銀系浄化材、流出側に
白金系浄化材になるように、反応管内にセットした。表
1に示す成分のガスを用い、実施例1と同様の条件でこ
の浄化材を評価した(全体の見かけ空間速度10,00
0h-1)。実験結果を図1に示す。
Example 2 Powdery γ-alumina (specific surface area 2
A catalyst having 5% by weight of silver supported on 00 m 2 / g) was prepared, and about 1.0 g of this catalyst was commercially available and made of a cordierite honeycomb-shaped compact (diameter 30 mm, length 12.6 mm, 400 cells / square inch). ) Was coated, dried and then fired stepwise to 600 ° C. to prepare a purification material. In addition, a chloroplatinic acid solution was used for the same honeycomb-shaped compact (length 6 mm) to coat 0.4 g of a catalyst containing 3 wt% of Pt on powdery γ-alumina, and the temperature was reduced to 700 ° C after drying. Firing was performed to prepare a purification material. It was set in the reaction tube so that the inflow side of the exhaust gas was a silver-based purification material and the outflow side was a platinum-based purification material. This purification material was evaluated under the same conditions as in Example 1 using the gases having the components shown in Table 1 (total apparent space velocity of 10,000).
0h -1 ). The experimental results are shown in FIG.

【0041】実施例3 実施例2と同じ浄化材を用い、表1に示す組成のガスの
内、液化石油ガスの代わりにプロパンを用いる以外は、
実施例1と同じ条件で評価した。実験結果を図1に示
す。
Example 3 The same purification material as in Example 2 was used, except that propane was used instead of liquefied petroleum gas among the gases having the compositions shown in Table 1.
Evaluation was performed under the same conditions as in Example 1. The experimental results are shown in FIG.

【0042】比較例1 実施例1で用いたと同じγ−アルミナペレットを浄化材
とし、この浄化材gを反応管にセットして、表1に示す
組成のガスで評価した。実験結果を図1に示す。
Comparative Example 1 The same γ-alumina pellet used in Example 1 was used as a purification material, and this purification material g was set in a reaction tube and evaluated with the gas having the composition shown in Table 1. The experimental results are shown in FIG.

【0043】以上からわかるように、実施例1〜3にお
いては、広い排ガス温度範囲で窒素酸化物の良好な除去
がみられた。一方、比較例1においては、窒素酸化物除
去の温度範囲が狭かった。
As can be seen from the above, in Examples 1 to 3, good removal of nitrogen oxides was observed in a wide exhaust gas temperature range. On the other hand, in Comparative Example 1, the temperature range for removing nitrogen oxides was narrow.

【0044】[0044]

【発明の効果】以上詳述したように、本発明の排ガス浄
化方法を用いれば、広い温度領域において過剰の酸素を
含む排ガス中の窒素酸化物を効率良く除去することがで
きる。本発明の排ガス浄化方法は、各種燃焼機、自動車
等の排ガス浄化に広く利用することができる。
As described above in detail, the use of the exhaust gas purification method of the present invention makes it possible to efficiently remove nitrogen oxides in exhaust gas containing excess oxygen in a wide temperature range. INDUSTRIAL APPLICABILITY The exhaust gas purification method of the present invention can be widely used for exhaust gas purification of various combustors, automobiles and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1〜3及び比較例1における排ガス温度
と排ガス中の窒素酸化物の除去率の関係を示すグラフで
ある。
FIG. 1 is a graph showing the relationship between the exhaust gas temperature and the removal rate of nitrogen oxides in the exhaust gas in Examples 1 to 3 and Comparative Example 1.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 液化石油ガス、都市ガス、液化天然ガス
のいずれかからなる混合炭化水素を燃料とするエンジン
からの燃焼排ガスで、窒素酸化物と共存する未燃焼成分
に対する理論反応量より多い酸素とを含む燃焼排ガスか
ら窒素酸化物を除去する排ガス浄化方法において、排ガ
ス流入側に、多孔質の無機酸化物に活性種である銀又は
銀酸化物0.2〜15重量%(元素換算値)を担持して
なる第一の触媒を有し、排ガス流出側に、多孔質の無機
酸化物に活性種であるPt、Pd、Ru、Rh、Irからなる群よ
り選ばれた少なくとも1種の元素0.01〜5重量%を
担持してなる第二の触媒を有する排ガス浄化材を排ガス
導管の途中に設置し、前記浄化材の上流側に、前記排ガ
ス中の窒素酸化物重量の5倍以下の液化石油ガス、都市
ガス、液化天然ガスのいずれかからなる混合炭化水素又
はメタン、エタン等の炭化水素を添加し、200〜65
0℃において排ガスを前記浄化材に接触させ、もって前
記窒素酸化物と前記炭化水素とを反応させて前記窒素酸
化物を除去することを特徴とする排ガス浄化方法。
1. A combustion exhaust gas from an engine that uses a mixed hydrocarbon of any one of liquefied petroleum gas, city gas, and liquefied natural gas as a fuel, and has a larger amount of oxygen than the theoretical reaction amount for an unburned component coexisting with nitrogen oxides In the exhaust gas purification method for removing nitrogen oxides from combustion exhaust gas containing and, 0.2 to 15% by weight of elemental silver or silver oxide, which is an active species in a porous inorganic oxide, is provided on the exhaust gas inflow side. At least one element selected from the group consisting of Pt, Pd, Ru, Rh, and Ir, which are active species in the porous inorganic oxide, on the exhaust gas outflow side. An exhaust gas purifying material having a second catalyst supporting 0.01 to 5% by weight is installed in the middle of the exhaust gas conduit, and 5 times or less of the weight of nitrogen oxides in the exhaust gas is provided on the upstream side of the purifying material. Of liquefied petroleum gas, city gas, liquefied natural gas Mixed hydrocarbon or methane consisting or displacement, hydrocarbons ethane was added, 200-65
An exhaust gas purification method comprising contacting exhaust gas with the purification material at 0 ° C., thereby causing the nitrogen oxide and the hydrocarbon to react to remove the nitrogen oxide.
【請求項2】 液化石油ガス、都市ガス、液化天然ガス
のいずれかからなる混合炭化水素を燃料とするエンジン
からの燃焼排ガスで、窒素酸化物と共存する未燃焼成分
に対する理論反応量より多い酸素とを含む燃焼排ガスか
ら窒素酸化物を除去する排ガス浄化方法において、多孔
質の無機酸化物に活性種である銀又は銀酸化物0.2〜
15重量%(元素換算値)を担持してなる第一の触媒
と、前記第二の触媒が多孔質の無機酸化物に活性種であ
るPt、Pd、Ru、Rh、Irからなる群より選ばれた少なくと
も1種の元素0.01〜5重量%を担持してなる第二の
触媒を混合してなる排ガス浄化材を排ガス導管の途中に
設置し、前記浄化材の上流側に、前記排ガス中の窒素酸
化物重量の5倍以下の液化石油ガス、都市ガス、液化天
然ガスのいずれかからなる混合炭化水素又はメタン、エ
タン等の炭化水素を添加し、200〜650℃において
排ガスを前記浄化材に接触させ、もって前記窒素酸化物
と前記炭化水素とを反応させて前記窒素酸化物を除去す
ることを特徴とする排ガス浄化方法。
2. A combustion exhaust gas from an engine that uses a mixed hydrocarbon of any one of liquefied petroleum gas, city gas and liquefied natural gas as a fuel, and oxygen that is larger than a theoretical reaction amount with respect to an unburned component coexisting with nitrogen oxides. In the exhaust gas purification method for removing nitrogen oxides from combustion exhaust gas containing and, silver or silver oxide 0.2 to
15% by weight (elemental conversion value) is supported on the first catalyst, and the second catalyst is selected from the group consisting of Pt, Pd, Ru, Rh and Ir which are active species in the porous inorganic oxide. The exhaust gas purifying material obtained by mixing the second catalyst supporting 0.01 to 5% by weight of at least one element is installed in the middle of the exhaust gas conduit, and the exhaust gas is provided on the upstream side of the purifying material. The mixed gas consisting of liquefied petroleum gas, city gas, or liquefied natural gas, which is 5 times or less the weight of nitrogen oxides in the mixture, or hydrocarbon such as methane or ethane is added, and the exhaust gas is purified at 200 to 650 ° C. A method for purifying an exhaust gas, which comprises contacting a material with the nitrogen oxide and reacting the nitrogen oxide with the hydrocarbon to remove the nitrogen oxide.
【請求項3】 請求項1又は2に記載の排ガス浄化方法
において、前記浄化材は前記第一及び第二の触媒をセラ
ミックス製又は金属製の3次元構造体の表面にコートし
てなることを特徴とする排ガス浄化方法。
3. The exhaust gas purifying method according to claim 1, wherein the purifying material is formed by coating the surface of a ceramic or metal three-dimensional structure with the first and second catalysts. A characteristic exhaust gas purification method.
【請求項4】 請求項1又は2に記載の排ガス浄化方法
において、前記第一及び第二の触媒の多孔質無機酸化物
はそれぞれペレット状又は顆粒状であることを特徴とす
る排ガス浄化方法。
4. The exhaust gas purification method according to claim 1, wherein the porous inorganic oxides of the first and second catalysts are in the form of pellets or granules, respectively.
【請求項5】 請求項1〜4のいずれかに記載の排ガス
浄化方法において、前記多孔質無機酸化物が、第一の触
媒ではアルミナ又はアルミナ系複合酸化物で、第二の触
媒ではアルミナ、チタニア、ジルコニアのいずれか又は
その内の二つ以上からなる複合酸化物であることを特徴
とする排ガス浄化方法。
5. The exhaust gas purification method according to claim 1, wherein the porous inorganic oxide is alumina or an alumina-based composite oxide in the first catalyst, and alumina in the second catalyst. An exhaust gas purification method, which is a composite oxide comprising any one of titania and zirconia or two or more thereof.
JP5146917A 1992-12-28 1993-05-26 Purifying method of waste gas Pending JPH06327942A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5146917A JPH06327942A (en) 1993-05-26 1993-05-26 Purifying method of waste gas
EP93310608A EP0605251A1 (en) 1992-12-28 1993-12-29 Exhaust gas cleaner
US08/434,915 US5589432A (en) 1992-12-28 1995-05-04 Exhaust gas cleaner and method for cleaning same
US08/532,260 US5658543A (en) 1992-12-28 1995-09-22 Exhaust gas cleaner and method for cleaning same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5146917A JPH06327942A (en) 1993-05-26 1993-05-26 Purifying method of waste gas

Publications (1)

Publication Number Publication Date
JPH06327942A true JPH06327942A (en) 1994-11-29

Family

ID=15418490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5146917A Pending JPH06327942A (en) 1992-12-28 1993-05-26 Purifying method of waste gas

Country Status (1)

Country Link
JP (1) JPH06327942A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190039947A (en) * 2016-07-15 2019-04-16 위-링 청 Disposal of feces and catalyzed excrement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190039947A (en) * 2016-07-15 2019-04-16 위-링 청 Disposal of feces and catalyzed excrement

Similar Documents

Publication Publication Date Title
JP3440290B2 (en) Exhaust gas purification method
JP3626999B2 (en) Exhaust gas purification material and exhaust gas purification method
JPH0824583A (en) Exhaust gas purifying material and method for purifying exhaust gas
JP2587000B2 (en) Exhaust gas purifying material and exhaust gas purifying method
JPH06142523A (en) Waste gas purifying material and waste gas purifying method
JPH06327942A (en) Purifying method of waste gas
JP3516471B2 (en) Exhaust gas purification material and exhaust gas purification method
JP2700386B2 (en) Exhaust gas purifying material and exhaust gas purifying method
JPH07275709A (en) Material and method for purifying exhaust gas
JPH06198195A (en) Purifying material for exhaust gas and purifying method thereof
JP3509152B2 (en) Exhaust gas purification material and exhaust gas purification method
JP3499272B2 (en) Exhaust gas purification material and exhaust gas purification method
JPH06238166A (en) Cleaning material for exhaust gas and cleaning method for exhaust gas
JPH0788377A (en) Waste gas purifying material and method for purifying waste gas
JPH0824654A (en) Matreial and method for pufitying exhaust gas
JP2649217B2 (en) Exhaust gas purifying material and exhaust gas purifying method
JPH09262439A (en) Nitrogen oxide removing material and removing method of nitrogen oxide
JP2992629B2 (en) Exhaust gas purification material and exhaust gas purification method using ethanol
JPH06319998A (en) Material and method for decontaminating exhaust gas
JP3530214B2 (en) Exhaust gas purification material and exhaust gas purification method
JPH0824653A (en) Material and method for purifying exhaust gas
JPH09248459A (en) Material and method for exhaust gas-purifying
JP3508066B2 (en) Nitrogen oxide removing material and nitrogen oxide removing method
JPH0780306A (en) Waste gas purifying material and waste gas purifying method
JPH0824646A (en) Material and method for purifying exhaust gas