JPH06323843A - Ultrasonic oscillation detecting method and sample observing method for interatomic force microscope - Google Patents

Ultrasonic oscillation detecting method and sample observing method for interatomic force microscope

Info

Publication number
JPH06323843A
JPH06323843A JP5133878A JP13387893A JPH06323843A JP H06323843 A JPH06323843 A JP H06323843A JP 5133878 A JP5133878 A JP 5133878A JP 13387893 A JP13387893 A JP 13387893A JP H06323843 A JPH06323843 A JP H06323843A
Authority
JP
Japan
Prior art keywords
sample
cantilever
force microscope
frequency
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5133878A
Other languages
Japanese (ja)
Other versions
JPH0792464B2 (en
Inventor
Korosofu Oregu
コロソフ オレグ
Ichiji Yamanaka
一司 山中
Kazutoshi Watanabe
和俊 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Seiko Instruments Inc filed Critical Agency of Industrial Science and Technology
Priority to JP5133878A priority Critical patent/JPH0792464B2/en
Publication of JPH06323843A publication Critical patent/JPH06323843A/en
Publication of JPH0792464B2 publication Critical patent/JPH0792464B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide ultrasonic oscillation detecting method and sample observing method for interatomic force microscope in which the viscoelastic properties and the like can be measured at a frequency higher than 1MHz by generating ultrasonic oscillation of 1MHz or above in a sample and detecting the ultrasonic oscillation using a common cantilever. CONSTITUTION:A sample 8 is subjected to ultrasonic oscillation at a frequency sufficiently higher than the resonance frequency of a cantilever 11. Since the force functioning between a probe 4 and the sample 8 exhibits a nonlinear dependency on the distance, a displacement depending on the amplitude of oscillation is induced in the cantilever 11. Ultrasonic wave is detected by measuring the displacement.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、原子間力顕微鏡にお
いて、試料にカンチレバーの共振周波数より十分高い周
波数の振動を加え、探針と試料間に働く力が距離に対し
て非線形な依存性を示すことを利用して超音波振動自身
でなく、その時間的な包絡線を検出する技術、およびそ
の信号を用いた計測および映像化技術に関するものであ
る。このような技術は材料組織観察、清浄度管理、マイ
クロ素子評価、精密機器故障解析、医療検査診断、生化
学検査に利用し得る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention applies, in an atomic force microscope, a vibration of a frequency sufficiently higher than the resonance frequency of a cantilever to a sample, so that the force acting between the probe and the sample has a nonlinear dependence on the distance. The present invention relates to a technique for detecting not only the ultrasonic vibration itself but also its temporal envelope by utilizing what is shown, and a measurement and imaging technique using the signal. Such a technique can be used for material structure observation, cleanliness control, micro device evaluation, precision equipment failure analysis, medical examination diagnosis, biochemical examination.

【0002】[0002]

【従来の技術】原子間力顕微鏡(Atomic Force Microsc
ope;AFM )は試料表面と探針の間に作用する力により探
針を保持するカンチレバーに誘起される変位を用いて、
微小領域の凹凸の映像化を行う新しい顕微鏡である(Bi
nnig, Quate and Gerber, Phys. Rev. Lett. 12, 930,
1986. 参照)。Martinらはカンチレバーに縦振動を加え
て、共振周波数の変化から試料による引力を検出する方
法を開発した(Y.Martin, C. C. Williams, H. K. Wick
ramasinghe: J. Appl. Phys., 61 (1987)4723 参照)。
一方、Maivald ら、およびRadmacher らは振動型AFM を
開発し、試料を縦振動させた時のカンチレバー振動応答
から、粘弾性を計測した(P. Maivald, H.J. Butt, S.
A. C. Gould, C. B. Prater, B. Drake, J. A. Gurley,
V. B. Elings, and P. K. Hansma: Nanotechnology 2
(1991)103. 及びM.Radmacher, R.W. Tillmann, M. Fri
tz, and H. E. Gaub: Science, 257(1992)1900参照)。
高田らは、逆の過程すなわち探針に振動を与えて、試料
の振動を検出するトンネル音響顕微鏡を提案した(K. T
akata, T. Hasegawa, Sumio Hosaka, Shigeyuki Hosok
u, Tsutomu Komoda: Appl. Phys. Lett. 55(1989)17参
照)。これは、Cretinらによって内部欠陥の映像化に利
用された(B.Cretin and F. Stahl Proc IEEE Ultrason
ic Symposium, B5, 1992. 参照)。これらの振動型AFM
における振動発生検出の方法においては、振動発生と検
出の方法は多様だが、発生した振動の周波数と同じ周波
数の信号として検出する点は共通である。
2. Description of the Related Art Atomic Force Microsc
ope; AFM) uses the displacement induced in the cantilever holding the probe by the force acting between the sample surface and the probe,
It is a new microscope that visualizes the unevenness of a minute area (Bi
nnig, Quate and Gerber, Phys. Rev. Lett. 12, 930,
1986.). Martin et al. Developed a method of applying longitudinal vibration to a cantilever to detect the attractive force of a sample from the change in resonance frequency (Y.Martin, CC Williams, HK Wick
ramasinghe: J. Appl. Phys., 61 (1987) 4723).
On the other hand, Maivald et al. And Radmacher et al. Developed a vibrating AFM and measured the viscoelasticity from the cantilever vibration response when the sample was longitudinally vibrated (P. Maivald, HJ Butt, S.
AC Gould, CB Prater, B. Drake, JA Gurley,
VB Elings, and PK Hansma: Nanotechnology 2
(1991) 103. and M. Radmacher, RW Tillmann, M. Fri.
tz, and HE Gaub: Science, 257 (1992) 1900).
Takada et al. Proposed a tunnel acoustic microscope that detects the vibration of the sample by applying the reverse process, that is, vibrating the probe (K. T.
akata, T. Hasegawa, Sumio Hosaka, Shigeyuki Hosok
u, Tsutomu Komoda: Appl. Phys. Lett. 55 (1989) 17). This was used by Cretin et al. To image internal defects (B. Cretin and F. Stahl Proc IEEE Ultrason.
ic Symposium, B5, 1992.). These vibrating AFM
In the method of detecting vibration occurrence in (1), there are various methods of vibration occurrence and detection, but they are common in that they are detected as signals of the same frequency as the frequency of the generated vibration.

【0003】[0003]

【発明が解決しようとする課題】従来の振動型AFM で
は、使用する振動の周波数の上限は、カンチレバーの共
振周波数であった。通常のカンチレバーでは共振周波数
は最大100KHz程度であるので、振動周波数の上限も100K
Hz程度であった。しかし合成および生体高分子の中に
は、1MHz 以上の周波数の振動を与えた場合に興味深い
応答を行うものがある。しかし、このような対象を計測
するのは、従来の振動型AFM では困難であった。
In the conventional vibration type AFM, the upper limit of the frequency of vibration used is the resonance frequency of the cantilever. Since the resonance frequency of a normal cantilever is about 100 KHz at maximum, the upper limit of the vibration frequency is 100 K.
It was about Hz. However, some synthetic and biopolymers have an interesting response when subjected to vibrations above 1MHz. However, it was difficult to measure such an object with the conventional vibration type AFM.

【0004】その理由は、そのような高周波の振動を試
料に与えるためには装置が大がかりとなり、従来の振動
型AFM をそのまま使用することができないことと、また
試料にそのような高周波が作用していることを検出する
ことが従来のAFM では不可能であったからである。
The reason is that in order to apply such high-frequency vibration to the sample, the device becomes large in scale, and the conventional vibration type AFM cannot be used as it is, and also such high frequency acts on the sample. This is because it is impossible for the conventional AFM to detect this.

【0005】この発明は、AFM の上記問題点を解決し、
1MHz以上の周波数の超音波振動をAFM の試料に発生さ
せ、通常のカンチレバーを用いて検出することによっ
て、AFMにおける粘弾性的性質等を1MHz以上の周波数で
測定することを可能にするAFM の技術を提供することを
目的とするものである。
The present invention solves the above problems of AFM,
AFM technology that makes it possible to measure viscoelastic properties in AFM at frequencies above 1 MHz by generating ultrasonic vibrations at frequencies above 1 MHz in AFM samples and detecting them using a normal cantilever. It is intended to provide.

【0006】[0006]

【課題を解決するための手段】この目的に対応して、こ
の発明の原子間力顕微鏡における超音波振動検出方法
は、試料表面と探針の間に作用する力により、微小領域
の凹凸の映像化を行う原子間力顕微鏡(Atomic Force M
icroscope;AFM )において、試料にカンチレバーの共振
周波数より十分高い周波数の超音波振動を発生し、試料
の超音波振動の振幅に依存する変位をカンチレバーに誘
起して、この変位を検出することを特徴としている。ま
た、この発明の原子間力顕微鏡における試料観察方法
は、試料表面と探針の間に作用する力により微小領域の
凹凸の計測を行う原子間力顕微鏡(Atomic Force Micro
scope;AFM )を使用した試料表面の計測方法であって、
試料に試料表面と探針の間に作用する力により、微小領
域の凹凸の映像化を行う原子間力顕微鏡(Atomic Force
Microscope;AFM )において、試料にカンチレバーの共
振周波数より十分高い周波数の超音波振動を発生し、試
料の超音波振動の振幅に依存する変位をカンチレバーに
誘起して、この変位を検出することを特徴としている。
To solve this problem, the method for detecting ultrasonic vibrations in an atomic force microscope of the present invention provides an image of unevenness in a minute area due to the force acting between the sample surface and the probe. Force Microscope (Atomic Force M)
icroscope; AFM) is characterized by generating ultrasonic vibrations in the sample at a frequency sufficiently higher than the resonance frequency of the cantilever, inducing a displacement that depends on the amplitude of the ultrasonic vibration of the sample in the cantilever, and detecting this displacement. I am trying. In addition, the sample observation method in the atomic force microscope of the present invention is an atomic force microscope (Atomic Force Microscope) that measures irregularities in a minute region by the force acting between the sample surface and the probe.
A method of measuring the sample surface using scope; AFM)
Atomic Force Microscope (Atomic Force Microscope) that visualizes the unevenness of a minute area by the force acting on the sample between the sample surface and the probe.
Microscope; AFM) is characterized in that ultrasonic vibration of a frequency sufficiently higher than the resonance frequency of the cantilever is generated in the sample, a displacement that depends on the amplitude of the ultrasonic vibration of the sample is induced in the cantilever, and this displacement is detected. I am trying.

【0007】[0007]

【作用】原子間力顕微鏡において、試料にカンチレバー
の共振周波数より十分高い超音波周波数の振動を加え
る。探針と試料間に働く力が距離に対して非線形な依存
性を示すので、超音波の包絡線が形成される。この超音
波の包絡線を検出して超音波を検出する。
Function: In the atomic force microscope, vibration of ultrasonic frequency sufficiently higher than the resonance frequency of the cantilever is applied to the sample. Since the force acting between the probe and the sample has a non-linear dependence on distance, an ultrasonic envelope is formed. The ultrasonic wave is detected by detecting the envelope of this ultrasonic wave.

【0008】[0008]

【実施例】以下、この発明の詳細を一実施例を示す図面
について説明する。図1において1は原子間力顕微鏡で
ある。原子間力顕微鏡1は試料台2と試料台2を駆動す
る試料台駆動装置3と探針4とカンチレバー計測装置5
と制御装置6と及び表示装置7とを備えている。試料台
2はその表面に試料8を取り付けることができ、かつ試
料台2は試料台駆動装置3によって駆動される。探針4
は試料台2上の試料8に接近して位置し、カンチレバー
11の先端に保持されている。カンチレバー計測装置5
はレーザー発生装置12と光検出機13とからなり、レ
ーザー発生装置12はレーザービームをカンチレバー1
1に放射し、また光検出器13はカンチレバー11から
の反射光を検出してカンチレバー11の位置及び姿勢を
計測する。光検出器13としては上下左右4分割の位置
敏感光検出器(PSD)を使用することができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to the drawings showing an embodiment. In FIG. 1, 1 is an atomic force microscope. The atomic force microscope 1 includes a sample table 2, a sample table driving device 3 for driving the sample table 2, a probe 4, and a cantilever measuring device 5.
The control device 6 and the display device 7 are provided. The sample table 2 can have a sample 8 mounted on its surface, and the sample table 2 is driven by a sample table driving device 3. Probe 4
Is located close to the sample 8 on the sample table 2 and is held at the tip of the cantilever 11. Cantilever measuring device 5
Is composed of a laser generator 12 and a photodetector 13, and the laser generator 12 emits a laser beam to the cantilever 1.
1, and the photodetector 13 detects the reflected light from the cantilever 11 and measures the position and posture of the cantilever 11. As the photodetector 13, a position sensitive photodetector (PSD) which is divided into four parts in the vertical and horizontal directions can be used.

【0009】図2に示すように、AFM の試料台2に超音
波振動子14を取付け、試料8を接着剤またはグリース
15などで張り付ける。このような構成の原子間力顕微
鏡において、試料に作用する超音波の検出を行う場合
は、次の操作を行う。超音波振動子に振幅変調された高
周波信号を加えると、高周波信号がオンの時、試料表面
は高周波信号と同じ周波数ωで振動する。この時、試料
に近接したカンチレバー先端の探針は、図3に示したよ
うに、探針と試料表面の距離zの関数として周波数ωで
変化する力Fを受けるが、カンチレバーの共振周波数が
周波数ωより大幅に低い場合は、カンチレバーは周波数
ωで振動できない。一方、図3に示したように、力Fは
探針と試料表面の距離zに対して非線形的に変化するの
で、1周期平均すると有限の力が残ることになる。この
力によって、カンチレバーは一定量持ち上げられる。つ
いで、高周波信号がOFFになると、この変位も無くな
る。この結果、カンチレバーの変位を検出する差動型フ
ォトダイオード等からなるカンチレバー計測装置5の出
力信号は、高周波信号を変調する変調信号と同じ形を取
ることになる。
As shown in FIG. 2, the ultrasonic vibrator 14 is attached to the sample stand 2 of the AFM, and the sample 8 is attached with an adhesive or grease 15. In the atomic force microscope having such a configuration, the following operation is performed when detecting ultrasonic waves acting on the sample. When an amplitude-modulated high-frequency signal is applied to the ultrasonic oscillator, the sample surface vibrates at the same frequency ω as the high-frequency signal when the high-frequency signal is on. At this time, the probe at the tip of the cantilever close to the sample receives a force F that changes at a frequency ω as a function of the distance z between the probe and the sample surface as shown in FIG. If much lower than ω, the cantilever cannot oscillate at the frequency ω. On the other hand, as shown in FIG. 3, the force F changes nonlinearly with respect to the distance z between the probe and the sample surface, so that a finite force remains when averaged over one period. This force raises the cantilever a certain amount. Then, when the high frequency signal is turned off, this displacement also disappears. As a result, the output signal of the cantilever measuring device 5 including a differential photodiode for detecting the displacement of the cantilever takes the same form as the modulation signal for modulating the high frequency signal.

【0010】AFM を改造して、図2の構成の装置を開発
した。カンチレバーはPark Scientific 社製のバネ定数
0.024N/m、共振周波数33KHzのものを用い
た。カンチレバーの変位は差動型フォトダイオードで検
出した。試料と探針の間の力が一定値F0 になるよう
に、フォトダイオード信号の直流成分が一定値になるよ
うにz軸ピエゾ制御回路によって、z軸ピエゾに負荷す
る電圧を制御した。この状態で圧電トランスデューサに
断続的高周波信号(トーンバースト)を加えるとカンチ
レバーは時間的に変化する変位を示すが、この変位の時
間平均は、z軸ピエゾ制御回路の作用により、試料と探
針の間の力の平均値がF0 になるように保持された。
By modifying the AFM, a device having the configuration shown in FIG. 2 was developed. A cantilever having a spring constant of 0.024 N / m and a resonance frequency of 33 KHz manufactured by Park Scientific was used. The displacement of the cantilever was detected by a differential photodiode. The voltage applied to the z-axis piezo was controlled by the z-axis piezo control circuit such that the force between the sample and the probe had a constant value F 0 and the DC component of the photodiode signal had a constant value. When an intermittent high frequency signal (tone burst) is applied to the piezoelectric transducer in this state, the cantilever shows a displacement that changes with time. The time average of this displacement is due to the action of the z-axis piezo control circuit. It was held so that the mean value of the forces in between was F 0 .

【0011】図4(a)に圧電トランスデューサに加え
た断続的高周波信号(トーンバースト)の包絡線を示
す。この包絡線の内部に図示されていないが高周波信号
がある。ここで包絡線信号の周波数は700Hz 、高周波信
号の周波数は3.17MHz 、振幅は+10dbmであった。図4
(b)は試料としてシリコン単結晶(100)面を用い
た場合のカンチレバーの応答を示す。ここで、上向きが
試料に接近する方向、下向きが遠ざかる方向に対応す
る。高周波振動がオンになるとカンチレバーは図3
(b)に示すように試料から遠ざかる方向に変位した。
FIG. 4A shows the envelope of the intermittent high frequency signal (tone burst) applied to the piezoelectric transducer. Although not shown, there is a high-frequency signal inside this envelope. Here, the frequency of the envelope signal was 700 Hz, the frequency of the high frequency signal was 3.17 MHz, and the amplitude was +10 dbm. Figure 4
(B) shows the response of the cantilever when a silicon single crystal (100) plane is used as a sample. Here, the upward direction corresponds to the direction approaching the sample, and the downward direction corresponds to the direction away. When the high frequency vibration is turned on, the cantilever is shown in Fig. 3.
As shown in (b), it was displaced in the direction away from the sample.

【0012】図5(a)は鋸波を包絡線とする高周波信
号で、振幅が時間に比例して増加する波形が繰り返され
る。包絡線信号の周波数は700Hz 、高周波信号の周波数
は3.17MHz であった。図5(b)はこの信号のような高
周波信号を加えた場合のカンチレバー変位の応答波形で
ある。高周波信号の振幅が小さい間は、カンチレバーは
応答を示さず、一定の振幅の敷居値を越えると急激に下
向きに変位した。これはカンチレバーが試料から遠ざか
る方向になる。試料と探針の間の力の平均値Fが引力
(-1.2N )の場合(点線)より斥力(+1.2N )の場合
(実線)の方が、急激な変位の起きる高周波信号振幅の
敷居値は増加した。この一連の観測結果は、試料と探針
の間の力の相互作用に関する新しい特性化の手段として
利用できる。
FIG. 5A shows a high-frequency signal having a sawtooth wave as an envelope, and a waveform whose amplitude increases in proportion to time is repeated. The frequency of the envelope signal was 700Hz and the frequency of the high frequency signal was 3.17MHz. FIG. 5B is a response waveform of the cantilever displacement when a high frequency signal such as this signal is applied. The cantilever did not show any response while the amplitude of the high frequency signal was small, and it abruptly moved downward when the threshold value of a certain amplitude was exceeded. This is the direction in which the cantilever moves away from the sample. The reluctance force (+ 1.2N) (solid line) is higher than the average force F between the sample and the probe (dotted line) (dotted line). The value increased. This series of observations can be used as a new characterization tool for force interactions between the sample and the probe.

【0013】[0013]

【発明の効果】まず、超音波振動の検出の横方向分解能
の飛躍的向上を実現することができる。原子間力顕微鏡
が出現する以前の超音波振動検出法は、圧電素子を用い
る方法と、光プローブを用いる方法である。しかしこれ
らの方法では空間分解能、すなわち振動を測定する場所
の大きさは、最小でも1μm程度で、これより小さい領
域の振動分布は計測出来なかった。本方法では振動測定
の空間分解能は画像の分解能と同じ、ナノメートルある
いは単原子にまで向上出来る。次に、通常の原子間力顕
微鏡との両立性を計ることができる。原子間力顕微鏡の
通常使用されているカンチレバーの共振周波数は100KHz
以下なので、周波数1MHz以上の超音波振動には応答せ
ず、超音波振動の検出には適用出来ない。超音波振動を
検出する場合は、特別なカンチレバーを設計製作せざる
を得ないが、この製作技術は困難であると同時に、探針
交換および機器調整に特別な知識、技能が必要である。
As described above, the lateral resolution of ultrasonic vibration detection can be dramatically improved. The ultrasonic vibration detection methods before the advent of atomic force microscopes are a method using a piezoelectric element and a method using an optical probe. However, with these methods, the spatial resolution, that is, the size of the place where vibration is measured is about 1 μm at the minimum, and the vibration distribution in a region smaller than this cannot be measured. With this method, the spatial resolution of vibration measurement can be improved to nanometers or single atoms, which is the same as the resolution of images. Next, compatibility with a normal atomic force microscope can be measured. The resonance frequency of a cantilever commonly used in atomic force microscopes is 100 KHz.
Since it is below, it does not respond to ultrasonic vibrations with a frequency of 1MHz or higher, and cannot be applied to the detection of ultrasonic vibrations. When detecting ultrasonic vibrations, a special cantilever must be designed and manufactured, but this manufacturing technique is difficult, and at the same time, special knowledge and skill are required for probe replacement and device adjustment.

【0014】これに対して、本発明の方法は、試料を保
持する試料台に超音波振動素子を組み込むと同時に、信
号処理回路を増設するだけで、カンチレバーはまったく
変更を必要としないので、通常の原子間力顕微鏡の機能
を完全に保持したままで容易に増設出来る。このため、
既存の原子間力顕微鏡の映像や計測データを超音波振動
を加えた場合の映像の比較が可能になる。
On the other hand, according to the method of the present invention, the cantilever does not need to be changed at all while the ultrasonic vibrating element is incorporated in the sample holder for holding the sample, and at the same time, the signal processing circuit is added. You can easily add more while keeping the function of the atomic force microscope. For this reason,
It is possible to compare images of existing atomic force microscopes and images when ultrasonic vibration is applied to measurement data.

【0015】さらに、超音波振動を、原子またはナノメ
ートルの空間分解能で検出するという新しい技術は、超
音波周波数領域の粘弾性の空間分布の調査、ナノメート
ルオーダーの内部構造の可視化の可能性など従来にない
新しい知見をもたらす顕微鏡が生まれ、一般性と波及効
果は極めて大きい。
Furthermore, the new technique of detecting ultrasonic vibrations with a spatial resolution of atoms or nanometers has investigated the spatial distribution of viscoelasticity in the ultrasonic frequency domain, the possibility of visualizing internal structures on the order of nanometers, etc. With the birth of a microscope that will bring new insights that have never existed before, its generality and ripple effect will be extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】原子間力顕微鏡の構成説明図。FIG. 1 is an explanatory diagram of a configuration of an atomic force microscope.

【図2】超音波AFM の実験装置。[Fig. 2] Experimental apparatus for ultrasonic AFM.

【図3】発明の原理説明図。FIG. 3 is an explanatory view of the principle of the invention.

【図4】矩形波の包絡線をもつ高周波振動を加えた場合
のカンチレバーの応答波形。
FIG. 4 is a response waveform of a cantilever when high frequency vibration having a rectangular wave envelope is applied.

【図5】鋸歯状波の包絡線をもつ高周波振動を加えた場
合のカンチレバーの応答波形。
FIG. 5 is a response waveform of a cantilever when high frequency vibration having a sawtooth wave envelope is applied.

【符号の説明】[Explanation of symbols]

1 原子間力顕微鏡 2 試料台 3 試料台駆動装置 4 探針 5 カンチレバー計測装置 6 制御装置 7 表示装置 8 試料 11 カンチレバー 12 レーザー発生装置 13 光検出機 14 超音波振動子 15 グリース又は接着剤 1 atomic force microscope 2 sample stage 3 sample stage drive 4 probe 5 cantilever measuring device 6 control device 7 display device 8 sample 11 cantilever 12 laser generator 13 photodetector 14 ultrasonic transducer 15 grease or adhesive

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山中 一司 茨城県つくば市並木1丁目2番地 工業技 術院機械技術研究所内 (72)発明者 渡辺 和俊 東京都江東区亀戸6丁目31番1号 セイコ ー電子工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kazushi Yamanaka 1-2, Namiki, Tsukuba, Ibaraki Prefectural Institute of Industrial Science and Technology (72) Inventor Kazutoshi Watanabe 6-31-1 Kameido, Koto-ku, Tokyo Seiko Electronics Industry Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 試料表面と探針の間に作用する力によ
り、微小領域の凹凸の映像化を行う原子間力顕微鏡(At
omic Force Microscope;AFM )において、試料にカンチ
レバーの共振周波数より十分高い周波数の超音波振動を
発生し、試料の超音波振動の振幅に依存する変位をカン
チレバーに誘起して、この変位を検出することを特徴と
する原子間力顕微鏡における超音波振動の検出方法。
1. An atomic force microscope (At) for imaging unevenness in a minute region by a force acting between a sample surface and a probe.
omic force microscope (AFM), to generate ultrasonic vibration of a frequency sufficiently higher than the resonance frequency of the cantilever in the sample, induce a displacement in the cantilever that depends on the amplitude of the ultrasonic vibration of the sample, and detect this displacement. For detecting ultrasonic vibrations in an atomic force microscope.
【請求項2】 前記超音波振動を、カンチレバー共振周
波数以下の低周波交流信号により時間的に振幅変調し、
前記試料表面と探針の間に作用する力によりカンチレバ
ーに低周波変調信号と同じ周波数の振動を励起し、これ
を検出することを特徴とする請求項1記載の原子間力顕
微鏡における超音波振動の検出方法。
2. The ultrasonic vibration is temporally amplitude-modulated by a low-frequency AC signal having a cantilever resonance frequency or less,
The ultrasonic vibration in the atomic force microscope according to claim 1, wherein a vibration having the same frequency as the low frequency modulation signal is excited in the cantilever by a force acting between the sample surface and the probe and detected. Detection method.
【請求項3】 試料表面と探針の間に作用する力により
微小領域の凹凸の計測を行う原子間力顕微鏡(Atomic F
orce Microscope;AFM )を使用した試料表面の計測方法
であって、試料に試料表面と探針の間に作用する力によ
り、微小領域の凹凸の映像化を行う原子間力顕微鏡(At
omic Force Microscope;AFM )において、試料にカンチ
レバーの共振周波数より十分高い周波数の超音波振動を
発生し、試料の超音波振動の振幅に依存する変位をカン
チレバーに誘起して、この変位を検出することを特徴と
する原子間力顕微鏡における試料観察方法。
3. An atomic force microscope (Atomic F) for measuring irregularities in a minute area by a force acting between a sample surface and a probe.
or atomic force microscope (AFM), which is an atomic force microscope (AFM) that visualizes irregularities in a minute area by the force acting between the sample surface and the probe on the sample.
omic force microscope (AFM), to generate ultrasonic vibration of a frequency sufficiently higher than the resonance frequency of the cantilever in the sample, induce a displacement in the cantilever that depends on the amplitude of the ultrasonic vibration of the sample, and detect this displacement. A method for observing a sample with an atomic force microscope.
【請求項4】 前記超音波振動を、カンチレバー共振周
波数以下の低周波交流信号により時間的に振幅変調し、
前記試料表面と探針の間に作用する力によりカンチレバ
ーに低周波変調信号と同じ周波数の振動を励起し、これ
を検出することを特徴とする請求項3記載の原子間力顕
微鏡における試料観察方法。
4. The ultrasonic vibration is temporally amplitude-modulated by a low-frequency AC signal having a cantilever resonance frequency or less,
The sample observing method in an atomic force microscope according to claim 3, wherein the cantilever excites vibration of the same frequency as the low frequency modulation signal by a force acting between the surface of the sample and the probe, and the vibration is detected. .
JP5133878A 1993-05-12 1993-05-12 Ultrasonic vibration detection method in atomic force microscope and sample observation method in atomic force microscope Expired - Lifetime JPH0792464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5133878A JPH0792464B2 (en) 1993-05-12 1993-05-12 Ultrasonic vibration detection method in atomic force microscope and sample observation method in atomic force microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5133878A JPH0792464B2 (en) 1993-05-12 1993-05-12 Ultrasonic vibration detection method in atomic force microscope and sample observation method in atomic force microscope

Publications (2)

Publication Number Publication Date
JPH06323843A true JPH06323843A (en) 1994-11-25
JPH0792464B2 JPH0792464B2 (en) 1995-10-09

Family

ID=15115195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5133878A Expired - Lifetime JPH0792464B2 (en) 1993-05-12 1993-05-12 Ultrasonic vibration detection method in atomic force microscope and sample observation method in atomic force microscope

Country Status (1)

Country Link
JP (1) JPH0792464B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999058926A1 (en) * 1998-05-09 1999-11-18 Zypman Fredy R Scanning force microscope with high-frequency cantilever
US6006593A (en) * 1995-12-06 1999-12-28 Agency Of Industrial Science & Technology, Ministry Of International Trade & Industry Method using cantilever to measure physical properties
JP2006292720A (en) * 2005-03-14 2006-10-26 Jeol Ltd Atomic force microscope and method for forming energy dissipation image using the same
US7520165B2 (en) 2005-06-09 2009-04-21 Tdk Corporation Micro structure, cantilever, scanning probe microscope and a method of measuring deformation quantity for the fine structure
KR101410221B1 (en) * 2012-05-23 2014-06-20 서울과학기술대학교 산학협력단 Ultrasonic atomic force microscopy apparatus
JP2014139513A (en) * 2013-01-21 2014-07-31 Kageyoshi Katakura Non-contact acoustic inspection device
KR102093989B1 (en) * 2018-10-05 2020-03-26 동의대학교 산학협력단 Apparatus for measuring physical properties of thin films at high frequencies

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6006593A (en) * 1995-12-06 1999-12-28 Agency Of Industrial Science & Technology, Ministry Of International Trade & Industry Method using cantilever to measure physical properties
WO1999058926A1 (en) * 1998-05-09 1999-11-18 Zypman Fredy R Scanning force microscope with high-frequency cantilever
JP2006292720A (en) * 2005-03-14 2006-10-26 Jeol Ltd Atomic force microscope and method for forming energy dissipation image using the same
JP4616759B2 (en) * 2005-03-14 2011-01-19 日本電子株式会社 Atomic force microscope and method of forming energy dissipation image using atomic force microscope
US7520165B2 (en) 2005-06-09 2009-04-21 Tdk Corporation Micro structure, cantilever, scanning probe microscope and a method of measuring deformation quantity for the fine structure
KR101410221B1 (en) * 2012-05-23 2014-06-20 서울과학기술대학교 산학협력단 Ultrasonic atomic force microscopy apparatus
JP2014139513A (en) * 2013-01-21 2014-07-31 Kageyoshi Katakura Non-contact acoustic inspection device
KR102093989B1 (en) * 2018-10-05 2020-03-26 동의대학교 산학협력단 Apparatus for measuring physical properties of thin films at high frequencies

Also Published As

Publication number Publication date
JPH0792464B2 (en) 1995-10-09

Similar Documents

Publication Publication Date Title
US5503010A (en) Directional atomic force microscope and method of observing a sample with the microscope
JP2730673B2 (en) Method and apparatus for measuring physical properties using cantilever for introducing ultrasonic waves
US8037762B2 (en) Whispering gallery mode ultrasonically coupled scanning probe microscopy
JPH0626855A (en) Interatomic power microscope
US5804708A (en) Atomic force microscope and method of analyzing frictions in atomic force microscope
JPH0821846A (en) Sample measuring probe device
US8869311B2 (en) Displacement detection mechanism and scanning probe microscope using the same
JPH06323843A (en) Ultrasonic oscillation detecting method and sample observing method for interatomic force microscope
JPS62105440A (en) Oscillation type stage device
US5681987A (en) Resonance contact scanning force microscope
JP2004294218A (en) Measuring method of physical property value and scanning probe microscope
RU2456622C1 (en) Dynamic mode atomic force microscopy device
JP2000146804A (en) Method for determining distance between near-field probe and sample surface to be inspected and near-field microscope
JP4391925B2 (en) Atomic force microscope
JP2000346784A (en) Viscoelasticity distribution measurement method
Chuang et al. Nonoptical tip–sample distance control for scanning near‐field optical microscopy
JP3637297B2 (en) Magnetic recording head measuring apparatus and measuring method applied to the same
US7854015B2 (en) Method for measuring the force of interaction in a scanning probe microscope
WO1998008046A1 (en) Atomic force microscopy apparatus and a method thereof
JP2535759B2 (en) Atomic force microscope and sample observation method in atomic force microscope
JP3274087B2 (en) Scanning probe microscope
JP2004156958A (en) Scanning probe microscope
Notley et al. Modification of a commercial atomic force microscope for nanorheological experiments: Adsorbed polymer layers
RU2193769C2 (en) Method measuring characteristics of surface magnetic field with use of scanning sounding microscope
JP3588701B2 (en) Scanning probe microscope and its measuring method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071009

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111009

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111009

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 17

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 17

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 18

EXPY Cancellation because of completion of term