JPH06322530A - Target for sputtering - Google Patents

Target for sputtering

Info

Publication number
JPH06322530A
JPH06322530A JP10797593A JP10797593A JPH06322530A JP H06322530 A JPH06322530 A JP H06322530A JP 10797593 A JP10797593 A JP 10797593A JP 10797593 A JP10797593 A JP 10797593A JP H06322530 A JPH06322530 A JP H06322530A
Authority
JP
Japan
Prior art keywords
target
purity
diffusion reaction
reaction layer
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10797593A
Other languages
Japanese (ja)
Inventor
Masahiro Kodera
正裕 小寺
Toshio Takei
利生 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuum Metallurgical Co Ltd
Original Assignee
Vacuum Metallurgical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuum Metallurgical Co Ltd filed Critical Vacuum Metallurgical Co Ltd
Priority to JP10797593A priority Critical patent/JPH06322530A/en
Publication of JPH06322530A publication Critical patent/JPH06322530A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stablly form the thin film of excellent quality of Ti-Al alloy high in purity and low in oxygen content by constituting a Ti-Al sputtering target by the combination of a high purity Ti, Al and its diffusion reaction layer. CONSTITUTION:The target which is made of the high purity Ti and the high purity Al having >=99.99% purity and having the composition expressed by Ti1-xAlx (0<x<1) is used as a starting material at the time of forming a Ti-Al semiconductor device by sputtering method. As the structure of the target, the target having the diffusion reaction layer of Ti and Al between the high purity Ti and Al, or consisting of the diffusion reaction layer of Ti and Al and the high purity Ti layer, or consisting of only the diffusion layer of the high purity Ti and Al, or the diffusion reaction layer of Ti and Al and the high purity Al is used. By using this target, the Ti-Al thin film which is low in oxygen content and has high purity composition is formed by the sputtering method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は純度99.99%以上の
高純度チタニウムと高純度アルミニウムの粗成比Ti
1-X AlX (0<x<1)からなるスパッタリング用タ
ーゲットに関する。
The present invention relates to a crude composition ratio Ti of high-purity titanium having a purity of 99.99% or more and high-purity aluminum.
The present invention relates to a sputtering target made of 1-X Al X (0 <x <1).

【0002】[0002]

【従来の技術】半導体デバイスの成膜方法の一つにスパ
ッタリング法があり、それに用いられるスパッタリング
ターゲットの材料は多種存在するがチタニウムとアルミ
ニウム(Ti1-X AlX ,0<x<1)の合金組成の材
料もその一つとして有望視され特にその高純度品(金属
純分で99.99%以上)の出現が望まれていた。
2. Description of the Related Art There is a sputtering method as one of film forming methods for semiconductor devices, and there are various kinds of materials for a sputtering target used for the method, but titanium and aluminum (Ti 1-x Al x , 0 <x <1) are used. A material having an alloy composition is promising as one of them, and in particular, the appearance of a high-purity product (metal content of 99.99% or more) has been desired.

【0003】一般的な製法を大別すると溶解法と粉末冶
金法の2種類に分けることが出来るがTi−Alの2元
組成のスパッタリングターゲットを製作する場合、前者
の溶解法では三つの大きな問題がある。
The general manufacturing methods can be roughly divided into two types, that is, a melting method and a powder metallurgy method. However, when manufacturing a sputtering target having a binary composition of Ti-Al, the former melting method has three major problems. There is.

【0004】第一の問題点はTi−Alの組成コントロ
ールが困難な点である。これはチタニウム(Ti)とア
ルミニウム(Al)の融点が大きく異なりTi融点近傍
でのAlの蒸気圧が非常に高く、真空溶解の場合、Al
の蒸発が多く組成がずれてしまう事による。唯、溶解法
の中でもアルゴンガス雰囲気によるアーク溶解法は、雰
囲気圧力が比較的高いために、Alの蒸発を抑える溶解
法として適しているが、次に示す二つ目の問題により造
塊は困難である。
The first problem is that it is difficult to control the composition of Ti-Al. This is because the melting points of titanium (Ti) and aluminum (Al) are very different, and the vapor pressure of Al is very high near the melting point of Ti.
This is due to the large amount of evaporation and the composition shift. However, among the melting methods, the arc melting method using an argon gas atmosphere is suitable as a melting method for suppressing the evaporation of Al because the atmospheric pressure is relatively high, but it is difficult to agglomerate due to the second problem described below. Is.

【0005】第二の問題点は、溶解により造塊したイン
ゴットの健全性に問題がある。これは溶解に伴なってイ
ンゴットの片端(時間的に先に溶解され固化されたボト
ム部より冷却されるが、その冷却速度によりインゴット
内部に歪を持ち、その結果割れ、クラックが発生し、健
全なインゴットが得られにくい点である。
The second problem is the soundness of the ingot produced by melting. This is due to the melting of one end of the ingot (it is cooled from the bottom part that was melted and solidified earlier in time, but due to the cooling rate there is strain inside the ingot, resulting in cracks, cracks, and soundness. It is difficult to obtain a large ingot.

【0006】インゴットの冷却速度は溶解法の種類、及
びそれらの溶解方法によって一義的に決まってしまい、
冷却速度のコントロールは極めて困難である。
The cooling rate of the ingot is uniquely determined by the type of melting method and those melting methods,
Controlling the cooling rate is extremely difficult.

【0007】第三の問題点は、造塊インゴットから所定
形状迄の塑性加工が困難な点である。8重量%以下のA
lを含むTiは塑性加工は可能であるがそれ以上の含有
量では非常に難しい。Ti−36重量%Alでは、非常
に注意深く慎重に行なえば加工可能であるが、真空熱処
理と加工とに多大なる時間と労力を必要とする。また1
000℃程度に加熱して加工する恒温鍛造法によれば塑
性加工は可能であるが、特別の装置が必要なことと非常
に遅い速度で加工することから生産性が悪く、容易には
行なえない。
The third problem is that it is difficult to perform plastic working from the ingot to the predetermined shape. 8% by weight or less A
Ti containing 1 can be plastically worked, but if its content is more than that, it is very difficult. Ti-36 wt% Al can be processed if it is done very carefully and carefully, but it requires a great deal of time and labor for vacuum heat treatment and processing. Again 1
The isothermal forging method, in which the material is heated to about 000 ° C, can be plastically processed, but it requires special equipment and is processed at a very slow speed, resulting in poor productivity and is not easy to perform. .

【0008】溶解法には以上の様な問題がありTi−A
lの2元組成のスパッタリングターゲットの製造は容易
ではない。
The dissolution method has the above problems, and Ti-A
It is not easy to manufacture a sputtering target having a binary composition of 1 l.

【0009】使用目的が、耐熱、耐酸化用等の純度をあ
まり問題にせず、金属分純度99.9%以下でも良く、
酸素含有量も多くても良い様なTi−Alの2元組成の
スパッタリングターゲットの場合は粉末冶金法によって
製作可能であり、現実には主にその方法によって供され
ている。
The purpose of use may be such that the purity for heat resistance and oxidation resistance does not matter so much and the metal content purity is 99.9% or less.
In the case of a Ti-Al binary composition sputtering target in which the oxygen content may be large, it can be manufactured by the powder metallurgy method, and in reality, it is mainly provided.

【0010】しかし使用目的が半導体デバイス用等の純
度99.99%以上の高純度で、かつ、酸素含有量も制
御する必要がある場合には粉末冶金法による製作には次
の様な問題が生じてくる。
However, when the purpose of use is high purity of 99.99% or more for semiconductor devices and the oxygen content needs to be controlled, the following problems occur in the production by the powder metallurgy method. Will occur.

【0011】1)主に粉砕工程での使用機器構成材料か
らの金属不純物の汚染。
1) Contamination of metal impurities mainly from constituent materials of equipment used in the crushing process.

【0012】2)粉末に微粉化することによる表面積の
増大から生じる酸素含有量の多大なる増加。
2) A large increase in oxygen content resulting from the increase in surface area due to pulverization into powder.

【0013】3)雰囲気や接触材料からの汚染を受ける
ことなく焼結固化させることの困難さ等である。
3) It is difficult to sinter and solidify without being contaminated by the atmosphere or contact materials.

【0014】以上の様に、高純度でかつ酸素含有量の少
ないものを作るには、溶解法や粉末冶金法、いずれの製
作法によっても容易ではない。この様なターゲットの製
作の場合、図4に例示するような分割型、複合型の様
な、必要とする素材で構成されたモザイク状ターゲット
として供されることが知れている。この方法によれば構
成素材の高純度性が保たれ、真空中又は制御された雰囲
気中での作業により酸素含有量の少ないTi−Alター
ゲットが得られる。
As described above, it is not easy to produce a high-purity material having a low oxygen content by either the melting method or the powder metallurgy method. In the case of manufacturing such a target, it is known that the target is provided as a mosaic target composed of necessary materials such as a split type and a composite type as illustrated in FIG. According to this method, the high purity of the constituent materials is maintained, and a Ti-Al target with a low oxygen content can be obtained by working in a vacuum or in a controlled atmosphere.

【0015】[0015]

【発明が解決しようとする課題】従来の分割型、複合型
の様な、必要とする構成素材のモザイク状ターゲットを
用いた場合、スパッタリング効率が近似しているチタニ
ウムとアルミニウムの場合でも、成膜上での組成にずれ
が生じる。このずれはスパッタリングターゲット表面の
モザイク形状の細分化、小区分化等のデザインにより、
ある程度抑える事が可能であるが十分ではない。
When a mosaic target of a required constituent material such as a conventional split type or composite type is used, even if titanium and aluminum, which have similar sputtering efficiencies, are deposited. There is a deviation in the above composition. This deviation is due to the design of the mosaic shape of the sputtering target surface such as subdivision and subdivision
It is possible to suppress it to some extent, but it is not enough.

【0016】また、ターゲット形状が円板状、平板角形
状の様な比較的単純な形状のみならずリング状や、すり
鉢状の様な複雑な形状をしたものにも対応するために
は、使い初めのターゲット表面形状から、使用していく
過程で表面形状が変わる(一様に減少するのではなくス
パッターされる特定部分が多く減少する。)事を考慮し
なければならず初期表面のみで決定すると成膜上の組成
のずれが大きくなる。したがってこれの補正は、ターゲ
ットの厚さ方向も考慮しなければならず大変複雑な形状
を採る必要が生じ、更にコストの大巾な増大を招くとい
う問題があった。
In addition, the target shape is not limited to a relatively simple shape such as a disk shape or a flat plate angle shape, but a ring shape or a complicated shape such as a mortar shape is used. It has to be taken into consideration that the surface shape changes from the initial target surface shape in the course of use (not a uniform decrease but a large number of sputtered specific parts decrease). Then, the compositional deviation in film formation becomes large. Therefore, in the correction of this, the thickness direction of the target must be taken into consideration, and it is necessary to take a very complicated shape, and there is a problem that the cost is greatly increased.

【0017】本発明は以上の様な問題点を容易に解決可
能ならしめ、高純度なTi−Al2元組成のスパッタリ
ング用ターゲットを提供し得ることを目的としている。
An object of the present invention is to solve the above problems easily and to provide a sputtering target of high purity Ti-Al binary composition.

【0018】[0018]

【課題を解決するための手段】本発明者は、前述の如き
従来方式の諸問題点を解決するため種々検討、実験の結
果、本発明を開発したものであり、本発明の技術的構成
は、高純度チタニウムと高純度アルミニウムで構成さ
れ、かつチタニウムとアルミニウムの拡散反応層をチタ
ニウムとアルミニウムとの界面に有していることを特徴
とするスパッタリング用ターゲットであり、また本発明
のスパッタリング用ターゲットは、チタニウムとアルミ
ニウムの拡散反応層と高純度チタニウム又は高純度アル
ミニウムとで構成されるか、また、チタニウムとアルミ
ニウムの拡散反応層のみから構成されたスパッタリング
用ターゲットにあり、成膜の組成が均一となり、組成に
ずれが少なく、拡散反応層のみの単一層のターゲットで
は従来のすり鉢状等の異形ターゲットでより有効性を増
し、良質な安定した半導体デバイス用薄膜が容易に得ら
れる。
The present inventor has developed the present invention as a result of various studies and experiments in order to solve various problems of the conventional system as described above. The technical constitution of the present invention is as follows. , A sputtering target comprising high-purity titanium and high-purity aluminum, and having a diffusion reaction layer of titanium and aluminum at the interface between titanium and aluminum, and also the sputtering target of the present invention Is a sputtering target composed of a diffusion reaction layer of titanium and aluminum and high-purity titanium or high-purity aluminum, or a sputtering target composed only of the diffusion reaction layer of titanium and aluminum, and has a uniform film-forming composition. Since there is little difference in composition, a single layer target with only the diffusion reaction layer has a conventional mortar shape, etc. It increased more efficacy profile targets, thin films for high-quality stable semiconductor device can be easily obtained.

【0019】[0019]

【作用】現在のスパッタ装置の主流であるマグネトロン
スパッタ装置では、そのターゲットは局所的にプラズマ
が収束した領域において浸食が顕著に起こることが知ら
れており、従ってモザイク状ターゲットではたとえその
表面のTiとAlとの組成比が成膜の組成比と一致して
あっても、局所的な浸食が起こるため浸食部位のTi又
はAlの一方が多く浸食され、成膜の組成はターゲット
表面のTiとAlの比とずれることが知られている。
In the magnetron sputtering apparatus, which is the mainstream of the current sputtering apparatus, it is known that the target is significantly corroded in the region where the plasma is locally converged. Even if the composition ratio of Al and Al matches the composition ratio of the film formation, local erosion occurs, so that either Ti or Al at the erosion site is largely eroded, and the composition of the film is the same as Ti on the target surface. It is known to deviate from the ratio of Al.

【0020】しかるに、本発明の拡散反応層を有するモ
ザイク状ターゲットでは、Ti−Al拡散反応層生成作
業を高真空中又は高純度不活性ガス(アルゴン)の雰囲
気で行なうために、酸素の汚染がほとんどなく、高品質
なTi−Alターゲットであるばかりでなく、反応層を
持つ事から、単にチタニウムとアルミニウムを複合化し
たモザイク状のものと比較するとチタニウム及びアルミ
ニウム単体としての表面積が少なく、拡散反応層が表面
にあることから、スパッターによる成膜の組成のずれが
少なくなることが知見された。
However, in the mosaic target having the diffusion reaction layer of the present invention, since the Ti-Al diffusion reaction layer formation work is performed in a high vacuum or in an atmosphere of high purity inert gas (argon), oxygen contamination occurs. Not only is it a high quality Ti-Al target, but it also has a reaction layer, so the surface area of titanium and aluminum alone is small compared to a mosaic type that combines titanium and aluminum, and the diffusion reaction Since the layer is on the surface, it has been found that the deviation of the composition of the film formed by sputtering is reduced.

【0021】特に、前記拡散反応層のみの単一層のもの
については、ターゲット形状が平板状、リング状又はす
り鉢状の何れでも対応でき、成膜の組成のずれをなくす
ることが可能となり、その結果良質かつ安定した半導体
デバイス用の薄膜を得ることができる。
In particular, in the case of a single layer having only the diffusion reaction layer, the target shape can be any of flat plate shape, ring shape and mortar shape, and it becomes possible to eliminate the deviation of the composition of the film formation. As a result, a good quality and stable thin film for semiconductor devices can be obtained.

【0022】本発明の実施態様を添付図面に基いて具体
的に詳述する。
Embodiments of the present invention will be described in detail with reference to the accompanying drawings.

【0023】本発明のスパッタリング用ターゲットは図
1に示す様に、高純度チタニウムと高純度アルミニウム
を用いた所定形状の表面において、所定のTi−Al2
元組成比に対応する表面積比でTiとAlが配置され、
かつ、その界面において、TiとAlの拡散反応層が生
成されているものである。又TiとAlの拡散反応層と
Tiとで構成されているもの(図2図示)、TiとAl
の拡散反応層とAlとで構成されているもの、又Tiと
Alの拡散反応層のみで出来ているもの(図3)であ
る。
As shown in FIG. 1, the sputtering target of the present invention has a predetermined shape of Ti-Al2 on a surface of a predetermined shape using high-purity titanium and high-purity aluminum.
Ti and Al are arranged in a surface area ratio corresponding to the original composition ratio,
Moreover, a diffusion reaction layer of Ti and Al is formed at the interface. Also, a diffusion reaction layer of Ti and Al and Ti (FIG. 2), Ti and Al
Of the diffusion reaction layer of Al and that of Al and the diffusion reaction layer of Ti and Al (FIG. 3).

【0024】以下の実施例でのTiとAlの組成比はT
iの原子量は48、Alの原子量は27であるからTi
−Alが原子量比で1:1の場合、組成上Ti64重量
%、Al36重量%となる。
In the following examples, the composition ratio of Ti and Al is T
Since the atomic weight of i is 48 and the atomic weight of Al is 27, Ti
In the case where the atomic ratio of -Al is 1: 1, Ti is 64% by weight and Al is 36% by weight in terms of composition.

【0025】[0025]

【実施例】【Example】

〔実施例1〕厚さ1mmで長さが巾の4倍の短冊状の高
純度チタニウムを数十枚用意し、チタニウム製の四角の
容器の中に、Ti−80重量%Alになる様に、所定の
間隔で立てて並べた(図5図示)。その後真空炉内にお
いて高純度アルミニウムを前記チタニウム板間に鋳込
み、800℃で4時間の熱処理を行ない、拡散反応層を
生成させ、最後に仕上げ切削加工を行なってターゲット
とした。これの断面観察を行なった。Alのマトリック
スの中に拡散反応層が約2mmの厚さで成生され、それ
がTiAl3 相であることが分析の結果確認された。初
期の設計で、Ti−80重量%Alになる様に体積比で
TiとAlを決め、所定の熱処理を加えて、純AlとT
iAl3 層の2層によるTi−80重量%Alのターゲ
ットを得ることができた。
[Example 1] Tens of strips of high-purity titanium having a thickness of 1 mm and a length four times the width were prepared, and Ti-80 wt% Al was placed in a square container made of titanium. , Were arranged upright at predetermined intervals (shown in FIG. 5). Thereafter, high-purity aluminum was cast between the titanium plates in a vacuum furnace, heat treatment was performed at 800 ° C. for 4 hours to form a diffusion reaction layer, and finally finish cutting was performed to obtain a target. The cross section of this was observed. It was confirmed by analysis that a diffusion reaction layer was formed in a matrix of Al with a thickness of about 2 mm and it was a TiAl 3 phase. In the initial design, Ti and Al were determined by the volume ratio so that Ti-80% by weight Al was added, and a predetermined heat treatment was applied to obtain pure Al and T.
A target of Ti-80 wt% Al with two layers of iAl 3 layer could be obtained.

【0026】〔実施例2〕実施例1と同様に厚さ1mm
の短冊状の高純度チタニウム板を用い、Ti−63重量
%Alになる様に所定の間隔で立てて並べ、高純度アル
ミニウムを鋳込み、熱処理を加え仕上げ加工を行なって
ターゲットとした。詳細なる観察、分析の結果、拡散反
応によるTiAl3 相の単一層であるTi−63重量%
Alのターゲットが得られた(図3図示)。
[Embodiment 2] Similar to Embodiment 1, the thickness is 1 mm.
Using strip-shaped high-purity titanium plates of (1), they were stood side by side at a predetermined interval so as to be Ti-63% by weight Al, high-purity aluminum was cast, and heat treatment was applied to finish the target to obtain a target. As a result of detailed observation and analysis, Ti-63 wt% which is a single layer of TiAl 3 phase by diffusion reaction
An Al target was obtained (FIG. 3).

【0027】〔実施例3〕実施例1と同様な方法でTi
−45重量%Alになる様に、チタニウム1mm厚の板
材を用いてアルミニウムを鋳込んだ真空炉内において8
00℃で4時間熱処理を行なった後、更に温度を上昇さ
せ1400℃で2時間の2段階熱処理を行なった後仕上
げ加工を行ない、ターゲットとした。断面観察と組成分
析の結果1:1の化学量論比からずれた、Alリッチな
Ti−Alの単一層のTi−45重量%Alターゲット
が拡散法により得られた。(図3) 〔実施例4〕実施例1と同様な方法でTi−36重量%
Alになる様に、チタニウム1mm厚の板材をアルミニ
ウムで鋳込み、実施例3と同一の2段階熱処理を行ない
ターゲットとした。観察の結果、化学量論比1:1であ
るTi−36重量%Alの単一層のターゲットが得られ
た(図3図示)。
[Embodiment 3] In the same manner as in Embodiment 1, Ti is used.
8 in a vacuum furnace in which aluminum was cast using a plate material with a thickness of 1 mm of titanium so as to be -45 wt% Al.
After heat treatment was carried out at 00 ° C. for 4 hours, the temperature was further raised and two-step heat treatment was carried out at 1400 ° C. for 2 hours, followed by finishing work to obtain a target. As a result of cross-section observation and composition analysis, a Ti-45 wt% Al target of a single layer of Al-rich Ti-Al deviated from the stoichiometric ratio of 1: 1 was obtained by the diffusion method. (FIG. 3) [Example 4] Ti-36 wt% in the same manner as in Example 1
A plate material having a thickness of 1 mm of titanium was cast from aluminum so as to be Al, and the same two-step heat treatment as in Example 3 was performed to obtain a target. As a result of the observation, a single layer target of Ti-36 wt% Al having a stoichiometric ratio of 1: 1 was obtained (shown in FIG. 3).

【0028】〔実施例5〕高純度チタニウムを用い、ま
ずTi−15重量%Alのアルミニウムの量に対応する
部分の溝切加工を行ない、その後、真空炉内において、
この溝の部分に、溶融高純度アルミニウムを鋳込み(図
4)、800℃で4時間の熱処理を行なって、TiAl
3 相の拡散層を約2mm生成させた後、仕上げ切削加工
を行ない、TiAl3 の拡散層とTiの2層のTi−1
5重量%Alに相当するターゲットを得た(図2図
示)。
[Embodiment 5] Using high-purity titanium, first, grooving of a portion corresponding to the amount of aluminum of Ti-15% by weight Al was performed, and thereafter, in a vacuum furnace.
Molten high-purity aluminum is cast into this groove portion (FIG. 4) and heat-treated at 800 ° C. for 4 hours to form TiAl.
After forming a 3- phase diffusion layer of about 2 mm, finish cutting is performed to form a TiAl 3 diffusion layer and a Ti 2-layer Ti-1.
A target corresponding to 5 wt% Al was obtained (shown in FIG. 2).

【0029】〔実施例6〕高純度チタニウムを用い、T
i−36重量%Alのアルミニウムの量に対応する部分
の溝切加工を行ない、実施例5と同一の処理を行ない、
TiAl3 相の拡散層を約2mm生成させ、仕上げ加工
を行なって、TiAl3 の拡散層とAlとTiの3層の
Ti−36重量%Alに相当するターゲットを得た(図
1図示)。なお、上記実施例ではTiを基本として溶融
Alを用いたがTiとAlの積層板を用いても良い、
又、TiとAlの薄板を用い、同時に丸め込んだ物(バ
ウムクーヘン状、パンケーキ状)としても良い。
Example 6 Using high-purity titanium, T
A groove corresponding to the amount of aluminum of i-36 wt% Al was grooved, and the same treatment as in Example 5 was performed.
A diffusion layer of TiAl 3 phase was formed to a thickness of about 2 mm, and finishing was performed to obtain a diffusion layer of TiAl 3 and a target corresponding to Ti-36 wt% Al of three layers of Al and Ti (see FIG. 1). It should be noted that in the above-mentioned embodiment, molten Al was used based on Ti, but a laminated plate of Ti and Al may be used.
Alternatively, a thin plate of Ti and Al may be used and rolled at the same time (Baumkuchen shape, pancake shape).

【0030】この拡散反応に伴なって発生する可能性の
ある空隙を抑えるために、加熱処理中、加圧処理しても
かまわないし、一連の作業の最後に加圧処理あるいは、
加熱、加圧処理をしてもかまわない。
In order to suppress voids that may be generated due to this diffusion reaction, pressure treatment may be performed during the heat treatment, or pressure treatment or a pressure treatment may be performed at the end of the series of operations.
It may be subjected to heat or pressure treatment.

【0031】実施例では、主としてTi−36重量%A
lの組成について行なったがTiとAlの組成はTi
1-X −AlX (0<x<1)の範囲で自由に採用出来
る。なおTi−36重量%AlはTi1 −Al1 に対応
する。
In the examples, Ti-36 wt% A was mainly used.
The composition of Ti and Al is Ti.
It can be freely adopted in the range of 1-X- Al X (0 <x <1). Note Ti-36 wt% Al corresponds to Ti 1 -Al 1.

【0032】[0032]

【発明の効果】高純度チタニウムと高純度アルミニウム
のモザイク状ターゲットにおいて、熱処理条件や、幾何
学的形状により、拡散反応層がターゲット表面の全体に
占める割合いを変えることが出来ることから、この反応
層を有するスパッタリング用ターゲットを用いた場合、
成膜の組成のずれが少なくなる事が予想される。特に拡
散反応層のみの単一層のものについては、すり鉢状ター
ゲット等異形ターゲットでより有効性を増し、成膜の組
成が均一、かつ良質な安定した半導体デバイス用の薄膜
が比較的容易に得られることが可能になる効果を有す
る。
EFFECT OF THE INVENTION In a mosaic target of high-purity titanium and high-purity aluminum, the ratio of the diffusion reaction layer to the entire target surface can be changed depending on the heat treatment conditions and the geometrical shape. When using a sputtering target having a layer,
It is expected that the composition deviation of the film formation will be reduced. In particular, for a single layer having only a diffusion reaction layer, it is possible to obtain a thin film for a semiconductor device, which is more effective with a deformed target such as a mortar-shaped target, has a uniform film-forming composition, and is stable. It has the effect of being able to.

【0033】また、本発明の如き拡散反応層を有しない
ターゲットではスパッタリング後、図6に示す如くAl
とTiとの境界に段差が生ずるが、本発明ターゲットで
段差を生ぜず、図7に示す如くゆるやかなエロージョン
となり、スパッターがターゲット表面において均一に安
定して行なわれていることを示しており、成膜組成の均
一性のみならず、成膜プロセス上からも良質な安定した
半導体デバイス用薄膜が歩留り良く得られる作用、効果
を有している。
Further, in the case of the target having no diffusion reaction layer as in the present invention, after sputtering, as shown in FIG.
Although there is a step at the boundary between Ti and Ti, the step does not occur in the target of the present invention, resulting in mild erosion as shown in FIG. 7, indicating that sputtering is uniformly and stably performed on the target surface. Not only the uniformity of the film-forming composition but also the effect and the effect that a stable thin film for a semiconductor device, which is of good quality, can be obtained with a high yield from the viewpoint of the film-forming process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一例を示すTi、Ti−Al拡散反応
層及びAlからなる円形ターゲットの部分断面斜視図。
FIG. 1 is a partial cross-sectional perspective view of a circular target made of Ti, a Ti—Al diffusion reaction layer, and Al showing an example of the present invention.

【図2】本発明の他の例でTi及びTi−Al拡散反応
層からなる円形ターゲットの部分断面斜視図。
FIG. 2 is a partial cross-sectional perspective view of a circular target including Ti and a Ti—Al diffusion reaction layer according to another example of the present invention.

【図3】本発明の他の例でTi−Al拡散反応層のみか
らなる円形ターゲットの部分断面斜視図。
FIG. 3 is a partial cross-sectional perspective view of a circular target including only a Ti—Al diffusion reaction layer according to another example of the present invention.

【図4】本発明の他の例でTi及びAlからなる円形タ
ーゲットの部分断面斜視図。
FIG. 4 is a partial cross-sectional perspective view of a circular target made of Ti and Al according to another example of the present invention.

【図5】本発明の他の例で、方形ターゲットの組立例を
示す斜視図。
FIG. 5 is a perspective view showing an example of assembling a rectangular target according to another example of the present invention.

【図6】従来方式のターゲットのエロージョン状態を示
す縦断面図。
FIG. 6 is a vertical sectional view showing an erosion state of a conventional target.

【図7】本発明ターゲットのエロージョン状態を示す縦
断面図。
FIG. 7 is a vertical sectional view showing an erosion state of the target of the present invention.

【符号の説明】[Explanation of symbols]

Ti チタニウム Al アルミニウム Ti−Al チタニウム・アルミニウム拡散反応層 10 チタニウム製容器 Ti Titanium Al Aluminum Ti-Al Titanium / Aluminum Diffusion Reaction Layer 10 Titanium Container

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 高純度チタニウムと高純度アルミニウム
で構成され、かつチタニウムとアルミニウムの拡散反応
層をチタニウムとアルミニウムとの界面に有しているこ
とを特徴とするスパッタリング用ターゲット。
1. A sputtering target, comprising high-purity titanium and high-purity aluminum, and having a diffusion reaction layer of titanium and aluminum at the interface between titanium and aluminum.
【請求項2】 高純度チタニウムと高純度アルミニウム
との拡散反応層と高純度チタニウムとで構成されている
ことを特徴とするスパッタリング用ターゲット。
2. A sputtering target comprising a diffusion reaction layer of high-purity titanium and high-purity aluminum and high-purity titanium.
【請求項3】 高純度チタニウムと高純度アルミニウム
との拡散反応層のみで構成されていることを特徴とする
スパッタリング用ターゲット。
3. A sputtering target, comprising only a diffusion reaction layer of high-purity titanium and high-purity aluminum.
【請求項4】 高純度チタニウムと高純度アルミニウム
との拡散反応層と高純度アルミニウムとで構成されてい
ることを特徴とするスパッタリング用ターゲット。
4. A sputtering target, comprising a diffusion reaction layer of high-purity titanium and high-purity aluminum and high-purity aluminum.
JP10797593A 1993-05-10 1993-05-10 Target for sputtering Pending JPH06322530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10797593A JPH06322530A (en) 1993-05-10 1993-05-10 Target for sputtering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10797593A JPH06322530A (en) 1993-05-10 1993-05-10 Target for sputtering

Publications (1)

Publication Number Publication Date
JPH06322530A true JPH06322530A (en) 1994-11-22

Family

ID=14472810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10797593A Pending JPH06322530A (en) 1993-05-10 1993-05-10 Target for sputtering

Country Status (1)

Country Link
JP (1) JPH06322530A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5863398A (en) * 1996-10-11 1999-01-26 Johnson Matthey Electonics, Inc. Hot pressed and sintered sputtering target assemblies and method for making same
US6750542B2 (en) 2000-04-20 2004-06-15 Kabushiki Kaisha Toshiba Sputter target, barrier film and electronic component
US8597474B2 (en) * 2003-03-28 2013-12-03 Ppg Industries Ohio, Inc. Substrates coated with mixtures of titanium and aluminum materials, methods for making the substrates, and cathode targets of titanium and aluminum metal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5863398A (en) * 1996-10-11 1999-01-26 Johnson Matthey Electonics, Inc. Hot pressed and sintered sputtering target assemblies and method for making same
US6750542B2 (en) 2000-04-20 2004-06-15 Kabushiki Kaisha Toshiba Sputter target, barrier film and electronic component
JP5065565B2 (en) * 2000-04-20 2012-11-07 株式会社東芝 Sputter target
US8597474B2 (en) * 2003-03-28 2013-12-03 Ppg Industries Ohio, Inc. Substrates coated with mixtures of titanium and aluminum materials, methods for making the substrates, and cathode targets of titanium and aluminum metal

Similar Documents

Publication Publication Date Title
EP1683883B1 (en) Molybdenum alloy
EP1352106B1 (en) Tantalum and niobium billets and methods of producing the same
JP4885305B2 (en) Sintered body target and method for producing sintered body
KR20020092406A (en) Method of forming Aluminum Targets
US20080190764A1 (en) Method of manufacturing aluminum and aluminum alloy sputtering targets
WO2004027109A1 (en) Tantalum sputtering target and method for preparation thereof
JP4415303B2 (en) Sputtering target for thin film formation
US20130233706A1 (en) Al-based alloy sputtering target and production method of same
KR101452607B1 (en) Sputtering target
TWI627292B (en) Cu-ga-in-na target
CN109609925A (en) A kind of chemical vapor deposition high-purity tantalum sputtering target material production method
CN104704139B (en) Cu Ga alloy sputtering targets and its manufacture method
JPH06264232A (en) Ta sputtering target and its production
Kocich et al. Investigation of influence of preparation and heat treatment on deformation behaviour of the alloy NiTi after ECAE
JPH06322530A (en) Target for sputtering
JP5750393B2 (en) Cu-Ga alloy sputtering target and method for producing the same
JPH06264233A (en) Sputtering target for producing tft
JPS63238268A (en) Production of target for sputtering
US20040119131A1 (en) Physical vapor deposition on targets comprising Ti and Zr; and methods of use
JP7096291B2 (en) Sputtering target
JP4286367B2 (en) Sputtering target, wiring film and electronic component
US20040011442A1 (en) Method for reducing the oxygen and oxide content in cobalt to produce cobalt sputtering targets
JP2022044768A (en) Sputtering target
RU2365673C2 (en) High-purity sputtering molybdenum target and method of its production
JPH06220558A (en) Graded function material of ti/ti5si3 system and its production