JPH06314686A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH06314686A
JPH06314686A JP10168293A JP10168293A JPH06314686A JP H06314686 A JPH06314686 A JP H06314686A JP 10168293 A JP10168293 A JP 10168293A JP 10168293 A JP10168293 A JP 10168293A JP H06314686 A JPH06314686 A JP H06314686A
Authority
JP
Japan
Prior art keywords
film
inorganic
silazane
coating method
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10168293A
Other languages
Japanese (ja)
Inventor
Takashi Nagashima
隆 長嶋
Hideki Harada
秀樹 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Fujitsu Electronics Ltd
Fujitsu Ltd
Original Assignee
Kyushu Fujitsu Electronics Ltd
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Fujitsu Electronics Ltd, Fujitsu Ltd filed Critical Kyushu Fujitsu Electronics Ltd
Priority to JP10168293A priority Critical patent/JPH06314686A/en
Publication of JPH06314686A publication Critical patent/JPH06314686A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a cover film whose coverage with reference to substratum can be made good without obstructing high integration and whose film quality can be made dense by forming the cover film composed of a silicon nitride film or of a silicon oxynitride film which has been formed by a coating method and which has been generated from inorganic silazane. CONSTITUTION:A semiconductor device is manufactured in such a way that a cover film 13 which has been composed of an inorganic silicon nitride film or an inorganic siliocn oxynitride film fomed by a coating method is provided. Alternatively, it is manufactured so as to include a process in which, after inorgarnic silazane has been coated, it is fired and a silicon nitride film or a silicon oxynitride film 13 is formed. For example, lnorgg silazane in which 50% or higher of the end group of an oligomer or a polymer at a molecualr weight of 500 or higher is sealed with H is coated by a spin coating method so as to cover an Al-contained interconnection layer 12. Then, it is fired in a plasma atmosphere inside a vacuum chamber, and an inorganic silicon nitride film or an inorganic silicon oxynitride film 13 in a film thickness of 3000Angstrom is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置及びその製
造方法に係り、詳しくは、LSIの表面保護のためのカ
バー膜となるパッシベーション膜を形成する技術に適用
することができ、特に、高集積化を阻害することなく下
地へのカバレッジを良好にすることができるとともに、
膜質を緻密にすることができるカバー膜を得ることがで
きる半導体装置及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a method for manufacturing the same, and more particularly, it can be applied to a technique for forming a passivation film serving as a cover film for protecting the surface of an LSI, and particularly It is possible to improve the coverage to the base without hindering the integration, and
The present invention relates to a semiconductor device capable of obtaining a cover film having a dense film quality and a manufacturing method thereof.

【0002】近年、LSIのパッシベーション技術で
は、その目的から耐クラック性が強く、水分やNa+
オンを透過し難く、しかも絶縁性に優れ、金属や絶縁膜
との密着性が良好であること等が求められており、プラ
ズマCVD法によるSiX YZ 膜が広く一般的に用
いられている。しかしながら、このプラズマCVD法に
よるSiX Y Z 膜には、大量の水素を膜中に含んで
いるため、ホット・エレクトロン耐性が低下する等の弊
害が報告されている。また、デバイスの高集積化により
下地段差が厳しくなると、プラズマCVD法によるSi
X Y Z 膜では、その下地へのカバレッジが良好であ
るとは言えず、この傾向は、高集積化の要求に伴い、今
後増々厳しくなる傾向にある。
In recent years, in the passivation technology of LSI, for its purpose, it is highly resistant to cracks, hard to permeate moisture and Na + ions, has excellent insulating properties, and has good adhesion to metals and insulating films. Therefore, the Si X O Y N Z film formed by the plasma CVD method is widely and generally used. However, since the Si X N Y O Z film formed by the plasma CVD method contains a large amount of hydrogen in the film, it is reported that the hot electron resistance is deteriorated. Further, when the level difference of the base becomes severe due to the high integration of the device, Si by the plasma CVD method is used.
The X N Y O Z film cannot be said to have good coverage to the underlying layer, and this tendency tends to become more severe in the future with the demand for higher integration.

【0003】そこで、水素含有が少なく、且つカバレッ
ジの良好なSiX Y Z 膜を得ることができる半導体
装置及びその製造方法が要求されている。
Therefore, there is a demand for a semiconductor device capable of obtaining a Si x N Y O Z film having a small hydrogen content and good coverage, and a method for manufacturing the semiconductor device.

【0004】[0004]

【従来の技術】従来、LSIの表面保護技術には、プラ
ズマCVD法によるSiX Y Z 膜を単層で用いる
か、若しくはプラズマSiX Y Z 膜は、単層ではス
トレスが大きいため、下地配線金属の陥没の防止対策と
して常圧PSG膜やプラズマ酸化膜と組合せたり、カバ
レッジ対策としてSOGと組合せたりして用いている。
このプラズマCVD法によるSiX Y Z 膜では、塗
布形成による場合よりも膜質を緻密にできるという利点
を有する。
2. Description of the Related Art Conventionally, as a surface protection technology for LSI, a Si X N Y O Z film formed by a plasma CVD method has been used in a single layer, or a plasma Si X N Y O Z film has a large stress in a single layer. Therefore, it is used in combination with a normal pressure PSG film or a plasma oxide film as a measure for preventing depression of the underlying wiring metal, or in combination with SOG as a measure for coverage.
The Si X N Y O Z film formed by the plasma CVD method has an advantage that the film quality can be made finer than in the case of coating formation.

【0005】さて、カバレッジ対策として従来のSOG
を用いずに、スピンコーティング法によるSiX Y
成方法が、例えば特開平3−146484号公報で報告
されている。このスピンコーティング法によるSiX
Y 膜では、プラズマCVD法による場合よりも下地への
カバレッジを良好にできるという利点を有する。
Now, the conventional SOG is used as a coverage measure.
A method of forming Si X N Y by using a spin coating method without using is reported in, for example, Japanese Patent Laid-Open No. 3-146484. Si X N by this spin coating method
The Y film has an advantage that the coverage to the underlayer can be improved as compared with the case of using the plasma CVD method.

【0006】[0006]

【発明が解決しようとする課題】上記した従来のプラズ
マCVD法によるSiX Y Z 膜では、塗布形成によ
る場合よりも膜質を緻密にできるという利点を有する
が、デバイスの高集積化により下地段差が厳しくなる
と、配線間隔の狭い所へのカバレッジが悪くなるという
問題があった。このようにカバレッジが悪くなると、膜
厚の薄いところから水分が浸入してコロージョンが生じ
て配線が劣化したり、トランジスタのホットキャリアが
多くなって素子特性が劣化したりすることがあった。
The Si X N Y O Z film formed by the above-mentioned conventional plasma CVD method has an advantage that the film quality can be made finer than in the case where the film is formed by coating. If the step becomes severe, there is a problem that the coverage to the place where the wiring interval is narrow is deteriorated. When the coverage is poor in this way, water may infiltrate from a thin film thickness to cause corrosion and deteriorate the wiring, or the hot carrier of the transistor may increase to deteriorate the device characteristics.

【0007】次に、上記した従来のスピンコーティング
法によるSiX Y 膜では、プラズマCVD法によるS
X Y Z 膜よりも下地へのカバレッジを良好にでき
るという利点を有するが、膜の構成材料に分子末端をメ
チル基頭の有機基で封止している有機シラザンを用いて
いるため、熱処理すると、膜中のCH3 基等の有機基が
脱離して抜け易いので、プラズマCVD法によるSiX
Y Z 膜と比べてボイドが生じて膜質が悪くなる。ま
た、有機基が残っていても、その部分がSi−ON膜の
構造欠陥を引き起こし、膜質を悪化させるという問題が
あった。このように膜質が悪いと、水分が浸入し易くコ
ロージョンが生じて配線が劣化したり、トランジスタの
ホットキャリアが多くなって素子特性が劣化したりする
ことがあった。
Next, in the Si X N Y film formed by the conventional spin coating method, the S formed by the plasma CVD method is used.
It has the advantage of better coverage to the underlying layer than the i X N Y O Z film, but it uses an organic silazane in which the molecular ends are sealed with a methyl-based organic group as the constituent material of the film. When heat treated, because it is easy omission organic group CH 3 group or the like in the film is eliminated, Si X by plasma CVD method
As compared with the N Y O Z film, voids occur and the film quality deteriorates. Further, even if the organic group remains, there is a problem that that portion causes structural defects in the Si-ON film and deteriorates the film quality. When the film quality is poor as described above, there are cases in which moisture easily penetrates to cause corrosion and the wiring deteriorates, or the hot carriers of the transistor increase and the device characteristics deteriorate.

【0008】そこで、本発明は、高集積化を阻害するこ
となく下地へのカバレッジを良好にすることができると
ともに、膜質を緻密にすることができるカバー膜を得る
ことができる半導体装置及びその製造方法を提供するこ
とを目的としている。
Therefore, the present invention provides a semiconductor device capable of improving the coverage to the underlying layer without obstructing the high integration and obtaining a cover film having a dense film quality, and the manufacturing thereof. It is intended to provide a way.

【0009】[0009]

【課題を解決するための手段】本発明による半導体装置
は上記目的達成のため、塗布法によって形成された無機
シラザンを含有するシリコン窒化膜又はシリコン酸化窒
化膜からなるカバー膜を有することを特徴とするもので
ある。本発明による半導体装置の製造方法は上記目的達
成のため、無機シラザンを塗布した後、焼成してシリコ
ン膜又はシリコン酸化窒化膜を形成する工程とを含むこ
とを特徴とするものである。
In order to achieve the above object, a semiconductor device according to the present invention has a cover film made of a silicon nitride film or a silicon oxynitride film containing an inorganic silazane formed by a coating method. To do. In order to achieve the above object, a method for manufacturing a semiconductor device according to the present invention is characterized by including a step of applying an inorganic silazane and then baking it to form a silicon film or a silicon oxynitride film.

【0010】本発明に係る無機シラザンは、無機シラザ
ン結合を有する無機シラザンであり、分子量が500以
上のオリゴマー又はポリマーの未端基の50%以上がH
で封止されている無機シラザンに好ましく適用させるこ
とができ、この無機シラザンによれば容易にスピンコー
ティング塗布形成することができる。本発明に係る塗布
法は、スピンコーティング法が好ましく、この場合、下
地に対してカバレッジを良く塗布形成することができ
る。また、焼成は、プラズマ雰囲気で行うのが好まし
く、この場合、反応ガス等を活性化させて無機シラザン
を構成するSi−H結合を効率良く切ってSiX Y
化を促進させることができる。
The inorganic silazane according to the present invention is an inorganic silazane having an inorganic silazane bond, and 50% or more of the unterminated groups of an oligomer or polymer having a molecular weight of 500 or more is H.
It can be preferably applied to an inorganic silazane sealed with, and this inorganic silazane can be easily formed by spin coating. The coating method according to the present invention is preferably a spin coating method, and in this case, it is possible to form the coating with good coverage on the base. Further, the firing is preferably performed in a plasma atmosphere, and in this case, the reaction gas or the like can be activated to efficiently cut the Si—H bond forming the inorganic silazane to promote the formation of the Si X N Y film. .

【0011】本発明に係る焼成する際の基板温度は、3
00℃以上が好ましく、この場合、無機シラザンを構成
するSi−H結合を効率良く切ってSiN膜化を促進さ
せることができる。なお、この時、プラズマ中でN2
活性化させると好ましいが、この時のその他の好ましい
焼成条件としては、反応ガス中のN2 濃度は20%以上
であり、かつ真空度は0.5Torr以上の高圧であ
る。
The substrate temperature during firing according to the present invention is 3
The temperature is preferably 00 ° C. or higher, and in this case, the Si—H bond forming the inorganic silazane can be efficiently broken to promote the formation of a SiN film. At this time, it is preferable to activate N 2 in plasma, but other preferable firing conditions at this time are that the N 2 concentration in the reaction gas is 20% or more and the degree of vacuum is 0.5 Torr. It is the above high pressure.

【0012】[0012]

【作用】従来のカバレッジの点で優れているスピンコー
ティング法によるSiX Y 膜では、膜の構成材料に分
子末端にCH3 基等の有機基で封止している有機シラザ
ンを用いているため、熱処理すると、この膜中のCH3
基等の有機基が脱離し易いので、ボイドが生じて膜質が
悪くなる。そこで、本発明者等は、思考錯誤を繰り返し
つつ各種実験を重ねた結果、SiX Y 膜を構成する材
料に有機シラザンではなく無機シラザンを用い、この無
機シラザンを塗布して焼成したところ、下地へのカバレ
ッジ及び膜質が良好なSiX Y カバー膜を得ることが
できた。以下、具体的に説明する。
In the Si X N Y film by the spin coating method which is excellent in the conventional coverage, the organic silazane sealed with an organic group such as CH 3 group at the molecular end is used as the constituent material of the film. Therefore, when heat-treated, CH 3 in this film
Since organic groups such as groups are easily released, voids occur and the film quality deteriorates. Therefore, the inventors of the present invention have conducted various experiments while repeating thought and error, and as a result, using inorganic silazane instead of organic silazane as a material forming the Si X N Y film, and coating and firing the inorganic silazane, It was possible to obtain a Si X N Y cover film having good coverage and film quality to the underlayer. The details will be described below.

【0013】本発明では、CH3 等の有機基を含有する
有機シラザンを用いるのではなく、H基を含有する無機
シラザン(好ましくは分子量が500以上のオリゴマー
又はポリマーの末端基の50%以上のプロトンで封止さ
れている無機シラザン)を用いたため、SOGのように
塗布法(好ましくはスピンコーティング法)により基板
全面に渡って塗布形成することができ、下地に対して良
好なカバレッジを得ることができる。
In the present invention, an organic silazane containing an organic group such as CH 3 is not used, but an inorganic silazane containing an H group (preferably 50% or more of an end group of an oligomer or polymer having a molecular weight of 500 or more) is used. Since an inorganic silazane sealed with protons is used, it can be formed over the entire surface of the substrate by a coating method (preferably a spin coating method) like SOG, and a good coverage with respect to the underlying layer can be obtained. You can

【0014】次に、塗布後の無機シラザンを焼成する
と、SiX Y 膜化させることができるが、このSiX
Y 膜化させるための好ましい焼成方法としては、プラ
ズマ雰囲気で行うとよく、この場合、N2 を効率良く活
性化させてSiX Y 膜化を効率良く行うことができ
る。ここで、図1に本発明の原理説明のための無機シラ
ザンをN2 プラズマ中で焼成した時の反応式を示す。こ
の図1から判るように、無機シラザンをN2 プラズマ雰
囲気で焼成すると、無機シラザンを構成するSi−H結
合のH基が脱離してSiX Y 膜化するが、この時、従
来のようにCH3 基等の有機基が脱離するのではなくH
基が脱離するので、従来よりもボイドの発生を抑えるこ
とができ、緻密な膜質にすることができる。なお、焼成
する時、Oを少量添加すると、膜中に酸素を含有させて
SiX Y Z 膜を形成することができる。この場合、
SiX Y の場合よりも更に膜質を緻密にすることがで
きる。
[0014] Next, when firing the inorganic silazane after application, but can be Si X N Y form a film, the Si X
As a preferable firing method for forming the N Y film, it is preferable to perform it in a plasma atmosphere. In this case, N 2 can be efficiently activated to efficiently form the Si X N Y film. Here, FIG. 1 shows a reaction formula when the inorganic silazane for the purpose of explaining the principle of the present invention is fired in N 2 plasma. As can be seen from FIG. 1, when the inorganic silazane is fired in an N 2 plasma atmosphere, the H group of the Si—H bond forming the inorganic silazane is released to form a Si X N Y film. H is not eliminated by the elimination of organic groups such as CH 3 groups.
Since the group is eliminated, the generation of voids can be suppressed more than before, and a dense film quality can be obtained. Note that when a small amount of O is added during firing, oxygen can be contained in the film to form a Si X N Y O Z film. in this case,
The film quality can be made more dense than in the case of Si X N Y.

【0015】次に、図2に本発明の原理説明のためのN
2 プラズマ中にて焼成する際、基板焼成温度を0〜40
0℃まで振った時のSi−H結合度の強さをフーリエ変
換赤外分光法(FT−1R)で調べたものを示す。図2
に示す如く、室温の時の強度を1とした場合、300℃
以上で略0になり、Si−H結合が完全に切れることが
判る。これより、基板焼成温度は、300℃以上にする
のが望ましい。同様に、反応ガス中のN2 濃度は20%
以上、チャンバー真空度は0.5Torr以上にするの
が好ましく、この時、Si−H結合を効率良く切ること
ができる。
Next, FIG. 2 shows N for explaining the principle of the present invention.
2 When firing in plasma, set the substrate firing temperature to 0-40
The strength of Si—H bond when shaken up to 0 ° C. is shown by Fourier transform infrared spectroscopy (FT-1R). Figure 2
As shown in, when the strength at room temperature is 1, 300 ℃
With the above, it becomes almost 0, and it can be seen that the Si—H bond is completely broken. Therefore, it is desirable that the substrate baking temperature be 300 ° C. or higher. Similarly, the N 2 concentration in the reaction gas is 20%.
As described above, the chamber vacuum degree is preferably 0.5 Torr or more, and at this time, the Si—H bond can be efficiently broken.

【0016】[0016]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図3は比較例と本発明の配線構造を示す断面図で
ある。以下、この図3を用いて本発明の実施例を比較例
と対比しながら説明する。まず、比較例を説明する。比
較例では、図3(a)に示す如く、基板1上に開口部2
aを有する配線層2を形成した後、プラズマCVD法に
より配線層2を覆うように1.0μm程度のSiX Y
Z カバー膜を形成したところ、配線層2間隔の狭い場
所に空洞が生じる等、下地へのカバレッジが悪くなって
いた。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 3 is a sectional view showing a wiring structure of a comparative example and the present invention. Hereinafter, examples of the present invention will be described with reference to FIG. 3 in comparison with comparative examples. First, a comparative example will be described. In the comparative example, as shown in FIG. 3A, the opening 2 is formed on the substrate 1.
After forming the wiring layer 2 having a, Si X N Y of about 1.0 μm so as to cover the wiring layer 2 by the plasma CVD method.
When the OZ cover film was formed, the coverage to the underlying layer was poor, such as the formation of cavities in places where the spacing between the wiring layers 2 was narrow.

【0017】これに対し、本実施例では、図3(b)に
示す如く、基板1上に開口部2aを有する配線層2を形
成した後、分子量が500以上のオリゴマー又はポリマ
ー末端基の50%以上がHで封止されている無機シラザ
ンを配線層2を覆うようにスピンコーティング法により
1.0μm程度塗布し、真空チャンバー内で焼成を行っ
てSiX Y Z カバー膜3aを形成したところ、図3
(a)の比較例よりも良好なカバレッジを得ることがで
きた。しかも、緻密な膜質のSiX Y Z カバー膜3
aを得ることができた。なお、この時の焼成条件は、N
2 流量は30sccm、真空度は0.5Torr、RF
パワーは100W、基板1加熱温度は300℃である。
On the other hand, in this embodiment, as shown in FIG. 3B, after forming the wiring layer 2 having the opening 2a on the substrate 1, 50 or less of the oligomer or polymer end groups having a molecular weight of 500 or more are formed. % Or more of inorganic silazane sealed with H is applied to the wiring layer 2 by a spin coating method by about 1.0 μm and baked in a vacuum chamber to form a Si X N Y O Z cover film 3a. After that, Figure 3
It was possible to obtain better coverage than the comparative example of (a). Moreover, the dense film quality Si X N Y O Z cover film 3
It was possible to obtain a. The firing conditions at this time are N
2 Flow rate is 30 sccm, vacuum degree is 0.5 Torr, RF
The power is 100 W and the substrate 1 heating temperature is 300 ° C.

【0018】次に、図4は、本発明における半導体装置
の構造を示す断面図である。図中、11は膜厚1μmの
PS膜、12は膜厚0.5μmで、2μmの間隔でライ
ンアンドスペースにレイアウトされているアルミニウム
含有配線層、13は本発明における膜厚3000 の無
機シリコン窒化膜又は無機シリコン酸化窒化膜である。
Next, FIG. 4 is a sectional view showing the structure of the semiconductor device according to the present invention. In the figure, 11 is a PS film with a film thickness of 1 μm, 12 is a 0.5 μm film thickness, and an aluminum-containing wiring layer is laid out in line and space at intervals of 2 μm, 13 is an inorganic silicon nitride film with a film thickness of 3000 according to the present invention. It is a film or an inorganic silicon oxynitride film.

【0019】図5は、図4のカバー膜の種類を変化させ
て行った、P.C.T.(プッシャークッカーテスト)
の結果を示すグラフである。縦軸は耐透水性〔%〕、横
軸は経過時間〔H〕である。P.C.T.の実験におい
ては、120℃、2気圧という一般的な高温、高圧とい
う条件で行ったものである。グラフ中において、○は従
来のカバー膜として使用されているプラズマ窒化膜、△
は塗布法によって形成された無機シラザンを酸素雰囲気
中において450℃で焼成した膜、□は塗布法によって
形成された無機シラザンを窒素雰囲気中において450
℃で焼成した膜、◇は塗布法によって形成された無機シ
ラザンを窒素プラズマ雰囲気で焼成した膜、×はプラズ
マ酸化膜である。
FIG. 5 shows the results obtained by changing the type of the cover film shown in FIG. C. T. (Pusher cooker test)
It is a graph which shows the result of. The vertical axis represents water resistance [%], and the horizontal axis represents elapsed time [H]. P. C. T. The experiment was conducted under the conditions of 120 ° C. and a general high temperature of 2 atm and high pressure. In the graph, ○ is a plasma nitride film used as a conventional cover film, △
Is a film obtained by firing the inorganic silazane formed by the coating method at 450 ° C. in an oxygen atmosphere, and □ is 450 nm of the inorganic silazane formed by the coating method in a nitrogen atmosphere.
A film fired at ℃, ◇ is a film obtained by firing an inorganic silazane formed by a coating method in a nitrogen plasma atmosphere, and × is a plasma oxide film.

【0020】なお、無機シラザンはSi、N、Hからな
るもので、例えばper−ヒドロポリシラザン等であ
る。図4、5から、本発明のカバー膜は、スピーンコー
ティング法によって形成するため、カバレッジが良く、
且つ、耐透水性も優れていることが判った。
The inorganic silazane is composed of Si, N and H, and is, for example, per-hydropolysilazane. From FIGS. 4 and 5, since the cover film of the present invention is formed by the spine coating method, the coverage is good,
It was also found that the water resistance was also excellent.

【0021】[0021]

【発明の効果】本発明によれば、高集積化を阻害するこ
となく、下地へのカバレッジを良好にすることができる
とともに、膜質を緻密にすることができるカバー膜を得
ることができるという効果がある。
EFFECTS OF THE INVENTION According to the present invention, it is possible to obtain a cover film which can improve the coverage to the underlayer and can make the film quality dense without hindering high integration. There is.

【図面の簡単な説明】[Brief description of drawings]

【図1】無機シラザンをN2 プラズマ中で焼成した時の
反応式を示す図である。
FIG. 1 is a diagram showing a reaction formula when inorganic silazane is fired in N 2 plasma.

【図2】基板加熱温度を振った時のSi−H結合度の強
さを示す図である。
FIG. 2 is a diagram showing the strength of the Si—H bond when the substrate heating temperature is changed.

【図3】比較例と本発明の配線構造を示す断面図であ
る。
FIG. 3 is a cross-sectional view showing a wiring structure of a comparative example and the present invention.

【図4】本発明における半導体装置の構造を示す断面図
である。
FIG. 4 is a sectional view showing a structure of a semiconductor device according to the present invention.

【図5】図4のカバー膜の種類を変化させて行ったP.
C.T.の結果を示す図である。
FIG. 5 is a graph showing P.I.
C. T. It is a figure which shows the result of.

【符号の説明】[Explanation of symbols]

1 基板 2 配線層 2a 開口部 3、3a SiX Y Z カバー膜 11 PSG膜 12 アルミニウム含有配線層 13 窒化膜1 Substrate 2 Wiring Layer 2a Opening 3 and 3a Si X O Y N Z Cover Film 11 PSG Film 12 Aluminum-Containing Wiring Layer 13 Nitride Film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 塗布法によって形成された無機シリコン
窒化膜又は無機シリコン酸化窒化膜からなるカバー膜を
有することを特徴とする半導体装置。
1. A semiconductor device having a cover film made of an inorganic silicon nitride film or an inorganic silicon oxynitride film formed by a coating method.
【請求項2】 無機シラザンを塗布した後、焼成してシ
リコン窒化膜又はシリコン酸化窒化膜を形成する工程を
含むことを特徴とする半導体装置の製造方法。
2. A method of manufacturing a semiconductor device, which comprises the step of applying an inorganic silazane and then baking it to form a silicon nitride film or a silicon oxynitride film.
【請求項3】 前記焼成は、プラズマ雰囲気で行うこと
を特徴とする請求項2記載の半導体装置の製造方法。
3. The method of manufacturing a semiconductor device according to claim 2, wherein the firing is performed in a plasma atmosphere.
【請求項4】 前記焼成する際の基板温度は、300℃
以上であることを特徴とする請求項2乃至3記載の半導
体装置の製造方法。
4. The substrate temperature during the baking is 300 ° C.
It is above, The manufacturing method of the semiconductor device of Claim 2 thru | or 3 characterized by the above-mentioned.
JP10168293A 1993-04-28 1993-04-28 Semiconductor device and its manufacture Withdrawn JPH06314686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10168293A JPH06314686A (en) 1993-04-28 1993-04-28 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10168293A JPH06314686A (en) 1993-04-28 1993-04-28 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPH06314686A true JPH06314686A (en) 1994-11-08

Family

ID=14307122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10168293A Withdrawn JPH06314686A (en) 1993-04-28 1993-04-28 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPH06314686A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120107607A1 (en) * 2009-07-17 2012-05-03 Mitsui Chemicals, Inc. Multilayered material and method of producing the same
US8716696B2 (en) * 2005-11-29 2014-05-06 Lg Display Co., Ltd. Organic semiconductor thin film transistor and method of fabricating the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8716696B2 (en) * 2005-11-29 2014-05-06 Lg Display Co., Ltd. Organic semiconductor thin film transistor and method of fabricating the same
US9178169B2 (en) 2005-11-29 2015-11-03 Lg Display Co., Ltd. Organic semiconductor thin film transistor and method of fabricating the same
US9496511B2 (en) 2005-11-29 2016-11-15 Lg Display Co., Ltd. Organic semiconductor thin film transistor and method of fabricating the same
US20120107607A1 (en) * 2009-07-17 2012-05-03 Mitsui Chemicals, Inc. Multilayered material and method of producing the same
CN102470637A (en) * 2009-07-17 2012-05-23 三井化学株式会社 Laminate and process for production thereof

Similar Documents

Publication Publication Date Title
JP4090740B2 (en) Integrated circuit manufacturing method and integrated circuit
US5426076A (en) Dielectric deposition and cleaning process for improved gap filling and device planarization
US7193325B2 (en) Reliability improvement of SiOC etch with trimethylsilane gas passivation in Cu damascene interconnects
JP3211950B2 (en) Semiconductor device and method of manufacturing the same
JP2002164342A (en) Semiconductor device and manufacturing method therefor
US6521300B1 (en) Method of a surface treatment in improving adhesion of an organic polymeric low-k dielectric layer
TW442546B (en) Method for producing low dielectric coatings from hydrogen silsequioxane resin
JPH06314686A (en) Semiconductor device and its manufacture
US6657299B2 (en) Semiconductor with a stress reduction layer and manufacturing method therefor
JPH0679444B2 (en) Electric film
JPH05121572A (en) Manufacture of semiconductor device
JP3209072B2 (en) Method of forming insulating film
JPH10150036A (en) Formation of low permittivity insulating film and semiconductor device using the film
JPH11111712A (en) Low-dielectric constant insulating film, manufacture thereof and semiconductor device using the film
JP4513249B2 (en) Manufacturing method of copper damascene structure
JP2002134610A (en) Method for manufacturing semiconductor device
JPH08306681A (en) Formation of flattened coat insulating film
KR100423741B1 (en) Method for forming insulating film
JP2636715B2 (en) Method for manufacturing semiconductor device
JP2834667B2 (en) Method for manufacturing semiconductor device
US20230142684A1 (en) Single Precursor Low-K Film Deposition and UV Cure for Advanced Technology Node
KR19990057863A (en) Method of manufacturing semiconductor device for preventing cracking by stress between silicon oxide film and silicon nitride film
JP3519477B2 (en) Method for manufacturing semiconductor device
JP2883333B2 (en) Method for manufacturing semiconductor device
JP3368445B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000704