JPH06299245A - Production of grain-oriented silicon steel sheet having uniform high magnetic flux density in longitudinal direction of coil - Google Patents

Production of grain-oriented silicon steel sheet having uniform high magnetic flux density in longitudinal direction of coil

Info

Publication number
JPH06299245A
JPH06299245A JP8483193A JP8483193A JPH06299245A JP H06299245 A JPH06299245 A JP H06299245A JP 8483193 A JP8483193 A JP 8483193A JP 8483193 A JP8483193 A JP 8483193A JP H06299245 A JPH06299245 A JP H06299245A
Authority
JP
Japan
Prior art keywords
hot
rolling
coil
rolled
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8483193A
Other languages
Japanese (ja)
Inventor
Yozo Suga
洋三 菅
Yoshio Nakamura
吉男 中村
Hiroe Nakajima
浩衛 中島
Shigeru Nishibayashi
茂 西林
Kiyoshi Ueno
清 植野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8483193A priority Critical patent/JPH06299245A/en
Publication of JPH06299245A publication Critical patent/JPH06299245A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To produce a grain-oriented silicon steel sheet having a uniform and stable high magnetic flux density in the longitudinal direction of a coil by holding coarse hot rolled stock having a specified compsn. constituted of C, Si, Mn, S, Se, Al, N and Fe to a prescribed temp. and continuously executing finish rolling and cold rolling. CONSTITUTION:A cast slab contg., by weight, <=0.095% C, <=7.0%. Si, 0.03 to 0.16% Mn, 0.005 to 0.032% S and/or Se, 0.008 to O.052% acid soluble Al and 0.003 to 0.010% N, and the balance Fe with inevitable impurities is heated and is subjected to rough rolling, and this roughly hot rolled stock is coiled as hot-rolled. The roughly hot rolled stock is held to a temp. at which AlN is not substantially precipitated or above and is successively swept out at >=1.90 deg.C, and the heel of the preceding stock is joined with the tip of the succeeding stock. Next, the coarse hot rolled stock is continuously subjected to finish hot rolling to regulate its sheet thickness into <=1.7mm. At this time, the finish inlet temp. is preferably regulated to a desired temp. + or -20 deg.C over the whole length of the coil. After that, the hot rolled stock is subjected to rolling for one time or two times including process annealing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は軟磁性材料として電気機
器の鉄芯に用いられる磁束密度の高い一方向性電磁鋼板
をコイル長手方向に均一特性で製造する方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a unidirectional electrical steel sheet having a high magnetic flux density, which is used as a soft magnetic material for an iron core of an electric device, in the longitudinal direction of the coil with uniform characteristics.

【0002】[0002]

【従来の技術】一方向性電磁鋼板はミラー指数で(11
0)〈001〉と表せる方位を持つ結晶粒から構成され
ており、圧延方向に磁化容易軸である〈100〉方向が
平行に配列している。従って、一方向性電磁鋼板は圧延
方向の磁化特性が優れている。このような特定方位は熱
延と焼鈍と冷延により最終板厚になった鋼板を高温焼鈍
することにより、(100)〈001〉方位を有する一
次結晶粒が選択的に成長する、いわゆる二次再結晶で得
られる。一方向性電磁鋼板は軟磁性材料として主に変圧
器あるいは発電機鉄芯に使用されるものであって、磁性
として磁化特性(磁場の強さと磁束密度との関係)と鉄
損特性(磁束密度と鉄損との関係)が良好でなければな
らない。
2. Description of the Related Art A grain-oriented electrical steel sheet has a Miller index (11
0) It is composed of crystal grains having an orientation that can be expressed as <001>, and the <100> direction, which is the easy axis of magnetization, is arranged parallel to the rolling direction. Therefore, the unidirectional electrical steel sheet has excellent magnetization characteristics in the rolling direction. Such a specific orientation is a so-called secondary crystal in which primary crystal grains having a (100) <001> orientation are selectively grown by high-temperature annealing a steel sheet having a final thickness by hot rolling, annealing and cold rolling. Obtained by recrystallization. The unidirectional electrical steel sheet is mainly used as a soft magnetic material for transformers or generator iron cores, and has magnetism characteristics (relationship between magnetic field strength and magnetic flux density) and iron loss characteristics (magnetic flux density). And the iron loss) must be good.

【0003】磁化特性の良否は、かけられた一定の磁場
に対し、鉄芯内に誘起される磁束密度(B8 の値で一般
的に表示される。Tesla)の大小により決まる。鉄
損(W17/50 の値で表示される。watt/kg)は鉄芯に所
定の交流磁場を与えた場合に鉄芯内で熱エネルギーとし
て消費される電力損失であり、その値は少ないことが望
まれる。鉄損の良否に対しては板厚、比抵抗、不純物、
残留歪が影響するが、磁化特性(B8 )の影響も大き
い。以上のことから磁化特性を向上させることは、電気
器の小型化、及び鉄損減少による省エネルギーを可能に
する。
The quality of the magnetization characteristics is determined by the magnitude of the magnetic flux density (generally indicated by the value of B 8. Tesla) induced in the iron core with respect to a constant magnetic field applied. Iron loss (displayed as the value of W 17/50. Watt / kg) is the power loss consumed as heat energy in the iron core when a predetermined AC magnetic field is applied to the iron core, and its value is small. Is desired. For the quality of iron loss, the thickness, resistivity, impurities,
The residual strain has an influence, but the magnetization characteristic (B 8 ) also has a great influence. From the above, improving the magnetization characteristics enables downsizing of the electric device and energy saving by reducing iron loss.

【0004】高磁束密度一方向性電磁鋼板の製造法とし
て田口悟等による方法が特公昭40−15644号公報
に開示されている。この方法で安定した成品を得るに
は、坂倉昭等の発明になる特開昭48−51852号公
報に示されている熱延条件が重要である。すなわち、二
次再結晶を安定して行わせるためには、AlNを過大な
大きさに析出させないという考え方に基づいて、熱延中
のAlN析出領域での材料の滞在時間を短くするべくA
lN析出温度以上から急冷却する必要がある。この条件
を満足させないと二次再結晶不良部(細粒と呼ぶ)が発
生する。
As a method for producing a high magnetic flux density unidirectional electrical steel sheet, a method by Satoru Taguchi et al. Is disclosed in Japanese Examined Patent Publication No. 40-15644. In order to obtain a stable product by this method, the hot rolling conditions disclosed in JP-A-48-51852, which is an invention of Sakakura Akira, are important. That is, in order to stably perform the secondary recrystallization, it is necessary to shorten the residence time of the material in the AlN precipitation region during hot rolling based on the idea that AlN is not precipitated in an excessively large size.
It is necessary to cool rapidly from the 1N precipitation temperature or higher. If this condition is not satisfied, secondary recrystallization defects (called fine grains) will occur.

【0005】このような考え方の熱延条件を一般的に使
われている連続熱延機で実施する場合の具体的な方法は
次の通りである。連続鋳造あるいは分塊圧延で製造した
150〜300mm厚のスラブを加熱後、粗熱延機で30
〜60mm厚の中間厚みに熱延し、その後に連続仕上熱延
機で最終板厚まで熱延される。最近では、粗熱延を行わ
ずに直接、30〜60mm厚に連続鋳造し、その後高温に
加熱し、あるいは加熱することなく鋳片の顕熱を利用し
て、連続仕上熱延機で最終板厚まで熱延されることもあ
る。
A specific method for carrying out the hot rolling condition of such an idea by a generally used continuous hot rolling machine is as follows. After heating a 150-300 mm thick slab produced by continuous casting or slabbing, 30
It is hot-rolled to an intermediate thickness of -60 mm and then hot-rolled to a final plate thickness by a continuous finishing hot rolling machine. Recently, continuous casting is performed directly to a thickness of 30 to 60 mm without performing rough hot rolling, and then heated to a high temperature, or by utilizing the sensible heat of the slab without heating, the final finishing hot rolling machine is used. It may be hot rolled to thickness.

【0006】このような実際の熱延方法に即して、適切
なAlNの析出状態を達成するための熱延時の鋼板温度
履歴を考えると次のようになる。連続仕上熱延機に入る
以前の中間厚み段階(通常30〜60mm)で、AlNの
析出温度以下に冷却しようとすると冷却効率が悪いうえ
に、板厚が厚いために表面部と中心部の温度差が大きく
なるために、AlNの存在状態が板厚方向で異なり適切
でない。更に、中間厚み段階で冷却すると、鋼板温度低
下により鋼材の変形抵抗が高まり、連続仕上熱延機に必
要な加工動力が大きくなり経済的でない。
The temperature history of the steel sheet during hot rolling for achieving an appropriate AlN precipitation state in accordance with such an actual hot rolling method is as follows. At the intermediate thickness stage (usually 30 to 60 mm) before entering the continuous finishing hot rolling machine, cooling efficiency is poor when trying to cool to below the precipitation temperature of AlN, and the temperature of the surface portion and the center portion is large due to the thick plate thickness. Since the difference becomes large, the existing state of AlN differs in the plate thickness direction and is not appropriate. Further, when cooling is performed in the intermediate thickness stage, the deformation resistance of the steel material increases due to the decrease in the steel plate temperature, and the processing power required for the continuous finishing hot rolling machine increases, which is not economical.

【0007】これに対し、中間厚み段階まではAlNの
析出領域以上の高い温度に保持し、連続仕上熱延機に入
り板厚の薄くなった段階で急冷する方法は、鋼材の冷却
効率、板厚方向でのAlNの均一状態、連続仕上熱延機
の必要動力の低減等になり望ましい。以上のような考え
で、熱延板のAlNを適切状態に制御するために、連続
仕上熱延機に入る前の温度を所定温度以上にすることが
採用される。
On the other hand, a method of maintaining the temperature higher than the precipitation region of AlN up to the intermediate thickness stage and quenching when entering the continuous finishing hot rolling machine when the plate thickness becomes thin is It is desirable because it makes AlN uniform in the thickness direction and reduces the power required for the continuous finishing hot rolling machine. Based on the above idea, in order to control the AlN of the hot rolled sheet to an appropriate state, it is adopted to set the temperature before entering the continuous finishing hot rolling machine to a predetermined temperature or higher.

【0008】ところで、最近は生産効率を上げ、又歩留
向上を狙ってコイル単重を大きくする傾向にあるため、
1本のコイル当たりの仕上熱延の圧延時間が長くなり、
仕上熱延前の粗熱延材が滞留することになるのでコイル
尾部の温度が下がり、二次再結晶不良が生じることがあ
る。あるいは、二次再結晶は生じるが、コイル長手方向
でのAlN析出状態が異なるため、得られる成品の磁束
密度がコイル長手で均一でない問題が出る。このコイル
尾部の温度低下による磁気特性劣化を防止するためにコ
イル全体の温度を高くすることが考えられる。
By the way, recently, there is a tendency to increase the unit weight of the coil in order to improve the production efficiency and improve the yield.
The rolling time for finishing hot rolling per coil becomes longer,
Since the crude hot-rolled material before the final hot-rolling will stay, the temperature of the coil tail portion will drop, and secondary recrystallization failure may occur. Alternatively, although secondary recrystallization occurs, since the AlN precipitation state in the coil longitudinal direction is different, there arises a problem that the magnetic flux density of the obtained product is not uniform in the coil longitudinal direction. It is conceivable to raise the temperature of the entire coil in order to prevent the deterioration of the magnetic characteristics due to the temperature decrease of the coil tail portion.

【0009】この場合、加熱エネルギーの増大、あるい
はスラブ加熱を現在以上に高める設備的対策が必要、等
の問題がある。又、コイル全体温度を上げると、連続仕
上熱延温度の高い頭部に圧延方向に長く伸びた二次再結
晶不良部(線混と呼ぶ)が生じることがある。この線混
は連続鋳造スラブを用いると顕著に発生するが、それ以
外にも低C,高Siの鋼素材になると発生する。
In this case, there is a problem that the heating energy is increased, or equipment measures for increasing the slab heating more than the present are required. In addition, when the temperature of the entire coil is increased, a secondary recrystallization defect portion (called a line mixture) elongated in the rolling direction may occur in the head portion having a high continuous hot rolling temperature. This wire mixing occurs remarkably when a continuous cast slab is used, but it also occurs in other low C and high Si steel materials.

【0010】この線混は特開昭54−120214号公
報に示されるように、熱延温度が高く熱延時に再結晶し
にくい場合に発生し易い。この最も再結晶し易い温度は
1100℃前後であり、AlNの析出温度領域とほぼ同
一であり、再結晶と析出制御を同時に満足させること
は、非常に困難である。特に、コイル単重を大きくして
生産効率を上げようとすると、頭部と尾部との温度差が
大きくなり問題は一層重大である。
This line mixing is likely to occur when the hot rolling temperature is high and recrystallization is difficult during hot rolling, as shown in Japanese Patent Laid-Open No. 54-120214. The temperature at which recrystallization is most likely is around 1100 ° C., which is almost the same as the precipitation temperature range of AlN, and it is very difficult to satisfy both recrystallization and precipitation control at the same time. In particular, if the unit weight of the coil is increased to increase the production efficiency, the temperature difference between the head and the tail becomes large, and the problem becomes more serious.

【0011】この差により、二次再結晶状態が異なる
と、磁気特性に変動が生じる。一般にJISで、方向性
電磁鋼板は磁気特性中の鉄損値により、等級が決まって
いるので、一本のコイル内で鉄損が変動していると、全
長に亘っての磁気特性を評価した後に、等級によってコ
イルを分割して製品化する必要がある。この作業によ
り、製品は小コイルとなり在庫が増大、作業量の付加等
の問題が生じる。この解決には、特公昭62−1458
号公報に示されるように、熱延板焼鈍時の冷却速度を頭
部と尾部で変える方法、特開昭57−165102号公
報に示されるように、連続仕上熱延に入る前で粗材の温
度を加熱、あるいは保熱する方法がある。
Due to this difference, when the secondary recrystallized state is different, the magnetic characteristics vary. Generally, according to JIS, the grain size of grain-oriented electrical steel sheets is determined by the iron loss value in the magnetic characteristics, so if the iron loss varies within one coil, the magnetic characteristics over the entire length were evaluated. After that, it is necessary to divide the coil into products according to the grade. By this work, the product becomes a small coil and the inventory increases, and problems such as the addition of the work amount occur. To solve this problem, Japanese Patent Publication No. 62-1458
As disclosed in JP-A-57-165102, a method of changing the cooling rate at the time of annealing a hot-rolled sheet between the head and the tail is adopted. There is a method of heating or keeping the temperature.

【0012】[0012]

【発明が解決しようとする課題】本発明は熱延時のコイ
ル長手方向における再結晶と、AlN析出との変動をな
くし、二次再結晶を均一に行わせることにより、コイル
長手方向で均一、安定した高磁束密度一方向性電磁鋼板
を製造する方法を提供するものである。
DISCLOSURE OF THE INVENTION The present invention eliminates fluctuations between recrystallization in the coil longitudinal direction during hot rolling and precipitation of AlN, and allows secondary recrystallization to be performed uniformly, so that it is uniform and stable in the coil longitudinal direction. The present invention provides a method for producing the high magnetic flux density unidirectional electrical steel sheet.

【0013】[0013]

【課題を解決するための手段】その要旨とするところ
は、次の通りである。重量比でC:0.095%以下、
Si:7.0%以下、Mn:0.03〜0.16%、S
とSeを単独あるいは複合して:0.005〜0.03
2%、酸化溶性Al:0.008〜0.052%、N:
0.003〜0.010%、残部:Fe及び不可避的不
純物を含む鋳造スラブを加熱、粗熱延し、その粗熱延材
を熱間のまま巻き取り、粗熱延材をAlNが実質的に析
出しない温度以上に保ち、その後に順次払い出し、先行
材の後端に後行材の先端を接合した後に、粗熱延材を連
続的に仕上熱延して熱延板とし、通常の1回圧延あるい
は中間焼鈍をはさんだ2回圧延を行うことを特徴とする
コイル長手方向に均一な高磁束密度を持つ一方向性電磁
鋼板の製造方法。
[Means for Solving the Problems] The gist of the invention is as follows. C: 0.095% or less by weight ratio,
Si: 7.0% or less, Mn: 0.03 to 0.16%, S
And Se alone or in combination: 0.005-0.03
2%, oxidizable Al: 0.008 to 0.052%, N:
A casting slab containing 0.003 to 0.010%, balance: Fe and unavoidable impurities is heated and rough hot rolled, and the rough hot rolled material is wound in a hot state, and the rough hot rolled material is substantially AlN. After the temperature is kept above the temperature at which it does not precipitate, the material is sequentially discharged, the leading end of the trailing material is joined to the trailing end of the preceding material, and the rough hot-rolled material is continuously hot-rolled to form a hot-rolled sheet. A method for producing a grain-oriented electrical steel sheet having a uniform high magnetic flux density in the longitudinal direction of a coil, characterized by performing two rolling cycles with rolling or intermediate annealing.

【0014】以下、本発明について詳細に説明する。本
発明者等は、まず連続仕上熱延入口温度と、磁気特性の
中で二次再結晶状態と最も対応する磁束密度との関係を
調査した。成分として略0.056%C、3.20%S
i、0.070%Mn、0.023%S、0.029%
酸可溶性Al、0.0078%Nを含有する15ton の
連続鋳造スラブを3パスの粗熱延で40mm厚とし、連続
仕上熱延で2.3mmとし、1120℃で2min の焼鈍
後、急冷却をし、0.30mmに圧延し、830℃で脱炭
焼鈍し、MgOを主成分とする焼鈍分離剤を塗布し、1
200℃で20hrの高温焼鈍を行った成品の磁束密度
(B8 )と連続仕上熱延入口温度との関係を図1に示
す。
The present invention will be described in detail below. The present inventors first investigated the relationship between the continuous finish hot rolling inlet temperature and the magnetic flux density that most corresponds to the secondary recrystallization state in the magnetic properties. About 0.056% C, 3.20% S as a component
i, 0.070% Mn, 0.023% S, 0.029%
A 15 ton continuous cast slab containing acid-soluble Al and 0.0078% N was 40 mm thick by 3-pass rough hot rolling, 2.3 mm hot rolling by continuous finishing, and was annealed at 1120 ° C for 2 min, followed by rapid cooling. Then, it is rolled to 0.30 mm, decarburized and annealed at 830 ° C., and an annealing and separating agent containing MgO as a main component is applied.
FIG. 1 shows the relationship between the magnetic flux density (B 8 ) and the continuous finish hot rolling inlet temperature of the product that was annealed at 200 ° C. for 20 hours at high temperature.

【0015】この図から分かるように、温度が低すぎて
も、高すぎてもB8 が極端に下がる。この低い場合が特
開昭48−51852号公報に示されたAlN不都合、
すなわちAlNの過剰析出による二次再結晶不良、低い
場合が特開昭54−120214号公報に示された線状
二次再結晶不良の発生による。そして、その限界温度内
では温度が高いほどB8 が優れていることが分かった。
特に、熱延コイルの先端から後端にかけて温度が連続的
に下がっており、頭部と尾部とで平均して90℃前後の
温度差があることから、1本のコイル(成品に対応)内
で磁気特性が変化することとなる。
As can be seen from this figure, B 8 is extremely lowered when the temperature is too low or too high. If this is low, the AlN inconvenience disclosed in JP-A-48-51852 is caused,
That is, the secondary recrystallization defect due to excessive precipitation of AlN is caused, and the low case is caused by the linear secondary recrystallization defect disclosed in JP-A-54-120214. It was also found that the higher the temperature, the better the B 8 within that limit temperature.
In particular, the temperature continuously decreases from the front end to the rear end of the hot-rolled coil, and there is an average temperature difference of about 90 ° C between the head and the tail, so that the inside of one coil (corresponding to the product) Will change the magnetic properties.

【0016】このB8 の変化は鉄損(W17/50 )とも対
応し、0.1Tで約0.025w/kgのW17/50 に相当す
ることを本発明者等は確認した。このような知見から、
本発明者等は新しい方法で、このコイル内での磁気特性
の変化を解消し、一定の磁気特性を持つコイルを製造す
ることに成功した。その実施態様を説明する。
The present inventors have confirmed that this change in B 8 also corresponds to the iron loss (W 17/50 ) and corresponds to W 17/50 of about 0.025 w / kg at 0.1T . From such knowledge,
The present inventors have succeeded in manufacturing a coil having a constant magnetic characteristic by eliminating a change in magnetic characteristic in the coil by a new method. The embodiment will be described.

【0017】まず鋼成分の限定理由について述べる。本
発明では溶鋼は転炉、電気炉等その溶製方法は問わない
が成分含有量は次の範囲に入る必要がある。Cが多くな
りすぎると脱炭焼鈍時間が長くなり、経済的でないので
0.095%以下とする。Cが少なすぎると磁気特性は
悪くなる傾向になるが、本発明の目的である均一特性を
得る方法には関係しないので時に限定しない。
First, the reasons for limiting the steel components will be described. In the present invention, the molten steel may be produced by any method such as a converter or an electric furnace, but its content must be within the following range. If C is too much, the decarburization annealing time becomes long and it is not economical, so the content is made 0.095% or less. When the amount of C is too small, the magnetic properties tend to deteriorate, but it is not limited because it is not related to the method of obtaining the uniform properties which is the object of the present invention.

【0018】Siは多くなると鉄損が向上し望ましい
が、他方非鉄分が増加することにより、磁束密度が劣化
するので、その製品が鉄損を要求するか、磁束密度を要
求するかによってSi量を決めればよい。但し、7.0
%を超えると、途中冷延工程で割れ易くなり、特性とし
ては鉄損も、磁束密度もよくならないので、7.0%以
下を限定条件とする。
When Si is increased, the iron loss is improved, which is desirable. On the other hand, when the nonferrous component is increased, the magnetic flux density is deteriorated. Therefore, the amount of Si depends on whether the product requires the iron loss or the magnetic flux density. Just decide. However, 7.0
If it exceeds 0.1%, cracking is likely to occur in the cold rolling process in the middle, and neither iron loss nor magnetic flux density is improved as characteristics, so 7.0% or less is the limiting condition.

【0019】本発明では二次再結晶に必要な析出物とし
てMnSあるいはMnSe及びその複合とAlNを用い
る。従って、必要最小限のMnSあるいはMnSeを確
保するために、Mnが0.03%以上、SあるいはSe
が0.005%以上、酸可溶性Alが0.008%以
上、Nが0.003%以上必要である。一方、これら析
出構成成分が多すぎるとスラブ加熱時に溶体化が不十分
となり二次再結晶不良が発生する。その限界として、M
nは0.16%、SあるいはSeは0.032%、酸化
溶性Alは0.052%、である。
In the present invention, MnS or MnSe and its composite and AlN are used as precipitates necessary for secondary recrystallization. Therefore, in order to secure the necessary minimum MnS or MnSe, Mn is 0.03% or more, S or Se.
Is 0.005% or more, acid-soluble Al is 0.008% or more, and N is 0.003% or more. On the other hand, if the amount of these precipitation constituents is too large, solution treatment becomes insufficient during slab heating, and secondary recrystallization failure occurs. As its limit, M
n is 0.16%, S or Se is 0.032%, and oxide-soluble Al is 0.052%.

【0020】又、Nは0.010%を超えるとブリスタ
ーと呼ばれる鋼板表面のふくれが発生する。残部はFe
及び不可避的不純物である。上記成分を含む溶鋼は鋳造
された後、加熱し、粗熱延され、高温状態で巻き取る。
本発明の最大の特徴はこの工程にある。すなわち、仕上
熱延前の板厚が厚く、温度の高い状態で粗熱延材を一旦
コイルに巻き取り、温度を全体に均一にした後、さらに
は、望ましくは補助外部加熱装置で温度を一層均一化し
た後に、仕上熱延することにある。
If N exceeds 0.010%, blisters on the surface of the steel sheet called blister occur. The balance is Fe
And unavoidable impurities. The molten steel containing the above components is cast, then heated, roughly hot rolled, and wound in a high temperature state.
The greatest feature of the present invention lies in this step. That is, after the finish hot rolling, the crude hot rolled material is once wound around a coil in a state where the plate thickness is large and the temperature is high, and the temperature is made uniform throughout. It is to finish hot rolling after homogenizing.

【0021】次に、このコイル状態に巻き取った粗材は
順次解きながら、仕上熱延されるわけであるが、本発明
の第2の特徴は、最初の粗熱延材の後端に次の粗熱延材
の先端を接合することにある。このように、粗熱延材を
連続化することにより、仕上熱延を一定速度で行うこと
が可能になり、粗熱延材が一定温度であることと相まっ
て、コイル全長に亘って温度が均一になり、インヒビタ
ーとしてのAlNの状態は一定となる。
Next, the rough material wound in this coil state is finish hot-rolled while being unwound one by one. The second characteristic of the present invention is that the first rough hot-rolled material has a trailing end. The purpose is to join the tips of the crude hot rolled materials. In this way, by making the crude hot-rolled material continuous, it is possible to perform the finish hot-rolling at a constant speed, and the temperature of the crude hot-rolled material is constant, and the temperature is uniform over the entire length of the coil. Then, the state of AlN as an inhibitor becomes constant.

【0022】特に、熱延板厚が薄くなると、通常は1本
のコイル内で仕上熱延の進行に伴って後端ほど温度が低
下してしまい、AlN状態が不均一になるが、本発明法
により、二次再結晶熱延板のAlNを一定状態に制御す
ることにより、製品コイルを今までになく大単重にして
も、一定の二次再結晶状態を維持でき、磁気特性が安定
する。仕上熱延を完了した熱延板は一定の長さごとに切
断されコイルとして巻き取られる。
In particular, when the thickness of the hot-rolled sheet becomes thin, the temperature generally decreases toward the rear end in one coil as the finish hot-rolling progresses, and the AlN state becomes non-uniform. By controlling the AlN of the secondary recrystallization hot rolled sheet to a constant state by the method, a constant secondary recrystallization state can be maintained even if the product coil has a higher unit weight than ever before, and the magnetic characteristics are stable. To do. The hot-rolled sheet which has been finished hot-rolled is cut into a predetermined length and wound into a coil.

【0023】特に、鉄損をよくするために製品板厚を薄
くしようとする場合、二次再結晶に最適な冷延率が決ま
っていることから熱延板厚が薄くなるが、これに対し本
発明は極めて効果が大きい。製品板厚0.23mmでは冷
延率が87%程度になる1.7mm前後の熱延板厚が適切
であるが、この板厚以下では仕上入口温度の低下が大き
く、本発明の適用効果は多大である。
In particular, when the product sheet thickness is to be reduced in order to improve the iron loss, the hot-rolled sheet thickness becomes thin because the optimum cold rolling rate for secondary recrystallization is determined. The present invention is extremely effective. With a product sheet thickness of 0.23 mm, a hot-rolled sheet thickness of about 1.7 mm, which gives a cold rolling rate of about 87%, is suitable, but with this sheet thickness or less, the finish inlet temperature drops significantly, and the application effect of the present invention is It's a lot.

【0024】又、仕上入口温度をコイル全体として上下
20℃の範囲に入れると、磁気特性差としてB8 が0.
02T、W17/50 が0.04w/kg以内に入り、JIS規
格の1グレード内に収まるので、コイルを大型にして
も、その熱延温度に応じた一定の磁気特性が得られ、鉄
損の等級差がないのでコイル分割もすることなく、製品
として安定して大単重コイル、例えば13ton 以上、と
して出荷できる。
When the finish inlet temperature is set in the range of 20 ° C. above and below the entire coil, B 8 is 0.
Since 02T, W 17/50 is within 0.04w / kg and falls within the JIS standard 1 grade, even if the coil is large, certain magnetic characteristics according to the hot rolling temperature can be obtained and the iron loss Since there is no grade difference, the product can be stably shipped as a large single-weight coil, for example, 13 tons or more, without splitting the coil.

【0025】ところで、粗熱延材を熱間で巻き取る条件
であるが、この段階ではAlNを析出させないことが必
須となるが、AlNの析出に対してはC,Si,Al,
Nが影響するので、本発明成分範囲では1090℃を下
がらない温度が望ましい。そして、時間については、こ
の温度以上であれば、実質的な圧延時間範囲である10
min 以下程度では問題はない。
By the way, under the condition that the rough hot-rolled material is hot-wound, it is essential that AlN is not precipitated at this stage. However, for precipitation of AlN, C, Si, Al,
Since N influences, a temperature not lower than 1090 ° C. is desirable in the range of the component of the present invention. Then, as for time, if it is above this temperature, it is a substantial rolling time range 10
There is no problem if it is less than min.

【0026】以上の条件で得られた熱延板は、一方向性
電磁鋼板を製造する通常の1回又は2回の圧延と焼鈍を
組み合わせた方法で処理され製品となる。本発明では、
AlNをインヒビターとして使用することから、高い最
終冷延率を基本とする特公昭40−15644号公報の
方法に適用することが最も効果的である。そこでこの方
法での実施態様を例として説明する。
The hot-rolled sheet obtained under the above conditions is processed into a product by the usual method of combining rolling or annealing once or twice for producing a grain-oriented electrical steel sheet. In the present invention,
Since AlN is used as an inhibitor, it is most effective to apply it to the method of Japanese Patent Publication No. 40-15644, which is based on a high final cold rolling rate. Therefore, an embodiment of this method will be described as an example.

【0027】熱延板は、900〜1150℃で2min 前
後の焼鈍後、急冷する。この熱延板焼鈍で二次再結晶板
の磁束密度は高くなる。次に、80%以上の圧延率で最
終板厚とする。最終製品板厚を薄くしようとすると、必
要熱延板の板厚も薄くなるので、熱延での圧延負荷が大
きくなり、さらには板厚形状が不良になる等の問題が生
じる。
The hot rolled sheet is annealed at 900 to 1150 ° C. for about 2 minutes and then rapidly cooled. This hot-rolled sheet annealing increases the magnetic flux density of the secondary recrystallized sheet. Next, the final plate thickness is made at a rolling rate of 80% or more. If the thickness of the final product is reduced, the required thickness of the hot-rolled sheet is also reduced, which causes a problem that the rolling load in hot rolling increases and the shape of the sheet thickness becomes defective.

【0028】そこで熱延設備の性能によっては、厚い熱
延板で我慢して、熱延板に35%前後の冷延を行い、そ
の後に上記焼鈍と最終冷延を行う方法も採用される。こ
れら冷延板は850℃程度で、約5min 以内の脱炭焼鈍
が行われ、その後、板間の焼き付きを防止するMgO,
Al2 3 等の分離材を塗布し、コイル状にされる。そ
して、1200℃程度の温度で5hr以上の二次再結晶と
純化を目的とした高温焼鈍が行われる。その後、通常
は、表面コーティングされ製品となる。
Therefore, depending on the performance of the hot rolling equipment, there is also adopted a method in which a thick hot rolled sheet is put up, cold rolling of about 35% is carried out on the hot rolled sheet, and then the above-mentioned annealing and final cold rolling are carried out. These cold-rolled sheets are decarburized and annealed at about 850 ° C. within about 5 minutes, and then MgO, which prevents seizure between the sheets,
A separating material such as Al 2 O 3 is applied to form a coil. Then, high temperature annealing for the purpose of purification and secondary recrystallization is performed at a temperature of about 1200 ° C. for 5 hours or more. Thereafter, it is usually surface-coated into a product.

【0029】[0029]

【実施例】【Example】

(実施例1)0.058%C、2.85%Si、0.0
7%Mn、0.024%S、0.027%酸可溶性A
l、0.007%Nを含有する250mm厚、13ton の
鋳造スラブを、1400℃に加熱後、粗熱延で35mm厚
にし、1190℃で巻き取り、順次払い出し、仕上入口
温度が1170℃で仕上熱延を一定速度で開始し、2.
3mm厚に仕上げた。一方、この先行材の後端部に後行材
の先端部を仕上熱延前面位置において走行状態で接合
し、先行材に引き続き後行材をも連続的に仕上熱延を行
った。
(Example 1) 0.058% C, 2.85% Si, 0.0
7% Mn, 0.024% S, 0.027% acid soluble A
1, 250 ton thickness, 13 ton cast slab containing 0.007% N was heated to 1400 ° C, then rough hot rolled to 35mm thickness, rolled up at 1190 ° C, and sequentially dispensed, finishing inlet temperature was 1170 ° C 1. Start hot rolling at a constant speed, 2.
Finished to a thickness of 3 mm. On the other hand, the leading end of the trailing material was joined to the trailing end of this leading material in the running state at the front position of the finishing hot rolling, and the succeeding material was continuously hot rolled for finishing after the preceding material.

【0030】この後行材の仕上入口温度は頭部が116
0℃であり、その後連続的に温度が下がったが一番温度
の低い尻部でも1152℃であった。仕上熱延後、巻き
取る迄の間に接合部で切断を行い、13ton のコイルと
した。この後行材の熱延板を1120℃で2min の焼鈍
後、0.30mm厚に冷延し、850℃で150sec の脱
炭焼鈍を行い、焼鈍分離材としてMgOを塗布し、12
00℃で20hrの高温焼鈍し、絶縁コーティングを施し
て製品とした。なお、この絶縁コーティングを行う連続
ラインにおいて、走行状態で連続的に鉄損を測定した。
The finishing inlet temperature of this succeeding material is 116 at the head.
The temperature was 0 ° C., and the temperature continuously decreased thereafter, but it was 1152 ° C. even in the bottom part having the lowest temperature. After the final hot rolling, the joint was cut before winding, to obtain a 13 ton coil. The hot rolled sheet of the following material was annealed at 1120 ° C. for 2 minutes, cold rolled to a thickness of 0.30 mm, decarburized and annealed at 850 ° C. for 150 seconds, and MgO was applied as an annealing separator.
The product was annealed at 00 ° C. for 20 hours at high temperature and an insulating coating was applied. In addition, in a continuous line for performing this insulation coating, iron loss was continuously measured in a running state.

【0031】この時に磁気特性はエプスタイン測定で、 頭部…B8 =1.93T、W17/50 =1.02w/kg 尻部…B8 =1.93T、W17/50 =1.03w/kg であり、その両端間の鉄損は一定値を示していた。この
ように13ton コイルが全長に亘って極めて均一な磁気
特性を示した。
[0031] In the magnetic properties are Epstein measurement at this time, the head ... B 8 = 1.93T, W 17/50 = 1.02w / kg buttocks ... B 8 = 1.93T, W 17/50 = 1.03w / kg, and the iron loss between both ends showed a constant value. Thus, the 13 ton coil showed extremely uniform magnetic characteristics over the entire length.

【0032】(実施例2)比較例として、実施例1と同
じ鋳造スラブを1400℃に加熱後、粗熱延で35mm厚
にし、仕上熱延で1.6mm厚の熱延板とした。この時
の、仕上入口温度は頭部が1150℃であり、その後圧
延が進行するに従って温度は連続的に下がり、尻部では
1064℃であった。次に、本発明例として、同上スラ
ブを粗熱延で35mm厚とし、1178℃で巻き取り、順
次払い出し、仕上入口温度が1153℃で仕上熱延を一
定速度で開始し、1.6mm厚に仕上げた。
Example 2 As a comparative example, the same cast slab as in Example 1 was heated to 1400 ° C., and then rough hot rolled to a thickness of 35 mm and finish hot rolled to a hot rolled sheet having a thickness of 1.6 mm. At this time, the finish inlet temperature was 1150 ° C. at the head, the temperature continuously decreased as the rolling proceeded, and was 1064 ° C. at the tail. Next, as an example of the present invention, the above slab is roughly hot rolled to a thickness of 35 mm, wound at 1178 ° C., and sequentially dispensed, finishing hot rolling is started at a constant speed at a finishing inlet temperature of 1153 ° C., and a thickness of 1.6 mm is obtained. Finished

【0033】一方、この先行材の後端部に後行材の先端
部を仕上熱延前面位置において走行状態で接合し、走行
材に引き続き後行材をも連続的に仕上熱延し、1.6mm
厚とした。この後行材の仕上入口温度は頭部が1151
℃であり、その後連続的に温度が下がったが一番温度の
低い尻部でも1139℃であった。仕上熱延後、巻き取
る迄の間に接合部で切断を行い、13ton のコイルとし
た。
On the other hand, the leading end of the trailing material is joined to the trailing end of the preceding material in the running state at the front surface of the finishing hot rolling, and the trailing material is continuously hot rolled to finish the running material. .6 mm
Made thick The finish inlet temperature of this succeeding material is 1151 at the head.
C., and the temperature dropped continuously thereafter, but it was 1139 ° C. even in the bottom part having the lowest temperature. After the final hot rolling, the joint was cut before winding, to obtain a 13 ton coil.

【0034】この後行材と比較熱延材を1100℃で2
min の焼鈍後、0.18mm厚に冷延し、830℃で12
0sec の脱炭焼鈍を行い、焼鈍分離材としてMgOを塗
布し、1200℃で20hrの高温焼鈍し、絶縁コーティ
ングを施して製品とした。なお、この絶縁コーティング
を行う焼鈍ラインにおいて、走行状態で連続的に鉄損を
測定した。
This succeeding material and the comparative hot rolled material were heated at 1100 ° C. for 2 hours.
After annealing for min, cold-roll to 0.18 mm thickness and
Decarburization annealing was performed for 0 sec, MgO was applied as an annealing separating material, high temperature annealing was performed at 1200 ° C. for 20 hours, and an insulating coating was applied to obtain a product. In the annealing line for this insulating coating, the iron loss was continuously measured while running.

【0035】この時の磁気特性はエプスタイン測定で、
比較材は、 頭部…B8 =1.91T、W17/50 =0.80w/kg 尻部…B8 =1.72T、W17/50 =二次再結晶不良の
ため極めて大であり、その両端部間の鉄損は連続的に変
化していた。そのため、頭部からその鉄損レベルに応じ
て切断して、小コイルとせざるを得なかった。これに対
し、本発明材は、 頭部…B8 =1.91T、W17/50 =0.80w/kg 尻部…B8 =1.91T、W17/50 =0.82w/kg でありその両端間の鉄損はほぼ一定であり、13ton の
コイルが1本の製品として評価された。
The magnetic characteristics at this time are measured by Epstein,
The comparative material has a head: B 8 = 1.91T, W 17/50 = 0.80w / kg, buttocks B 8 = 1.72T, W 17/50 = extremely large due to secondary recrystallization failure. , The iron loss between both ends was continuously changing. Therefore, there was no choice but to cut from the head according to the iron loss level to form a small coil. On the other hand, the material of the present invention has a head portion ... B 8 = 1.91 T, W 17/50 = 0.80 w / kg, and a bottom portion ... B 8 = 1.91 T, W 17/50 = 0.82 w / kg. The iron loss between both ends was almost constant, and a 13 ton coil was evaluated as one product.

【0036】(実施例3)0.060%C、3.15%
Si、0.07%Mn、0.025%S、0.030%
酸可溶性Al、0.008%Nを含有する250mm厚、
13ton の鋳造スラブを1400℃に加熱後、粗熱延で
35mm厚にし、1140℃で巻き取り、補助加熱装置を
用いて粗バーの温度を均一化した後に、順次払い出し、
仕上入口温度が1173℃で仕上熱延を一定速度で開始
し、2.3mm厚に仕上げた。一方、この先行材の後端部
に後行材の先端部を仕上熱延前面位置において走行状態
で接合し、先行材に引き続き後行材を連続的に仕上熱延
した。
(Example 3) 0.060% C, 3.15%
Si, 0.07% Mn, 0.025% S, 0.030%
Acid-soluble Al, 250 mm thickness containing 0.008% N,
After heating a 13 ton cast slab to 1400 ° C, rough hot rolling to a thickness of 35 mm, winding at 1140 ° C, homogenizing the temperature of the rough bar using an auxiliary heating device, and then sequentially paying it out,
When the finishing inlet temperature was 1173 ° C., hot rolling for finishing was started at a constant rate to finish to a thickness of 2.3 mm. On the other hand, the leading end of the trailing material was joined to the trailing end of the preceding material in the running state at the front surface of the finish hot rolling, and the trailing material was continuously hot rolled after the leading material.

【0037】この後行材の仕上入口温度は頭部が116
8℃であり、その後連続的に温度が下がったが一番温度
の低い尻部でも1160℃であった。仕上熱延後、巻き
取る迄の間に接合部で切断し、13ton のコイルとし
た。この後行材の熱延板を1.6mm厚まで冷延し、11
00℃で2min の焼鈍をし、0.18mm厚に冷延し、8
30℃で120sec の脱炭焼鈍を行い、焼鈍分離材とし
てMgOを塗布し、1200℃で20hrの高温焼鈍を
し、絶縁コーティングを施して製品とした。なお、この
絶縁コーティングを行う連続ラインにおいて、走行状態
で連続的に鉄損を測定した。
The finish inlet temperature of the trailing material is 116 at the head.
The temperature was 8 ° C., and the temperature dropped continuously thereafter, but it was 1160 ° C. even in the bottom part having the lowest temperature. After the finish hot rolling, it was cut at the joint portion before winding, to obtain a 13 ton coil. The hot rolled sheet of the succeeding material is cold rolled to a thickness of 1.6 mm,
Anneal for 2 min at 00 ℃, cold-roll to 0.18 mm thickness, and
Decarburization annealing was performed at 30 ° C. for 120 seconds, MgO was applied as an annealing separating material, high temperature annealing was performed at 1200 ° C. for 20 hours, and an insulating coating was applied to obtain a product. In addition, in a continuous line for performing this insulation coating, iron loss was continuously measured in a running state.

【0038】この時の磁気特性はエプスタイン測定で、 頭部…B8 =1.93T、W17/50 =0.77w/kg 尻部…B8 =1.92T、W17/50 =0.79w/kg であり、その両端間の鉄損は一定値を示していた。この
コイルは13ton のまま1本の製品として評価された。
[0038] In the magnetic properties are Epstein measurement at this time, the head ... B 8 = 1.93T, W 17/50 = 0.77w / kg buttocks ... B 8 = 1.92T, W 17/50 = 0. It was 79 w / kg, and the iron loss between both ends showed a constant value. This coil was evaluated as a single product with 13 tons.

【0039】[0039]

【発明の効果】本発明によれば、コイル長手方向で均一
な磁性が得られるので品質管理、在庫管理が容易で、か
つ大単重製品が確保できる。
According to the present invention, since uniform magnetism is obtained in the longitudinal direction of the coil, quality control and inventory control are easy, and a large unit weight product can be secured.

【図面の簡単な説明】[Brief description of drawings]

【図1】磁束密度に及ぼす仕上熱延入口温度の影響を示
す図表である。
FIG. 1 is a chart showing the influence of a finish hot rolling inlet temperature on a magnetic flux density.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西林 茂 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 (72)発明者 植野 清 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Shigeru Nishibayashi 20-1 Shintomi, Futtsu-shi Nippon Steel Co., Ltd. Technology Development Division (72) Inventor Kiyoshi Ueno 20-1 Shintomi, Futtsu-shi Nippon Steel Co., Ltd. Technology Development Division

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量比で C :0.095%以下、 Si:7.0%以下、 Mn:0.03〜0.16%、 SとSeを単独あるいは複合して:0.005〜0.0
32%、 酸化溶性Al:0.008〜0.052%、 N :0.003〜0.010%、 残部:Fe及び不可避的不純物を含む鋳造スラブを加
熱、粗熱延し、その粗熱延材を熱間のまま巻き取り、粗
熱延材をAlNが実質的に析出しない温度以上に保ち、
その後に順次払い出し、先行材の後端に後行材の先端を
接合した後に、粗熱延材を連続的に仕上熱延して熱延板
とし、通常の1回圧延あるいは中間焼鈍をはさんだ2回
圧延を行うことを特徴とするコイル長手方向に均一な高
磁束密度を持つ一方向性電磁鋼板の製造方法。
1. A weight ratio of C: 0.095% or less, Si: 7.0% or less, Mn: 0.03 to 0.16%, S and Se alone or in combination: 0.005 to 0. .0
32%, Oxide-soluble Al: 0.008 to 0.052%, N: 0.003 to 0.010%, balance: Fe, and a cast slab containing inevitable impurities are heated and rough hot rolled, and the rough hot rolled. The material is wound in the hot state, and the hot rolled material is maintained at a temperature above which AlN does not substantially precipitate,
After that, it is sequentially paid out, and after joining the leading end of the following material to the trailing end of the preceding material, the rough hot-rolled material is continuously finish hot-rolled to form a hot-rolled sheet, and ordinary single rolling or intermediate annealing is performed. A method for producing a grain-oriented electrical steel sheet having a uniform high magnetic flux density in the longitudinal direction of a coil, which comprises rolling twice.
【請求項2】 コイル全長に亘って、仕上入口温度を所
期の温度に対し上下20℃の範囲として仕上熱延するこ
とを特徴とする請求項1記載の方法。
2. The method according to claim 1, wherein the finish hot rolling is performed over the entire length of the coil so that the finish inlet temperature is within a range of 20 ° C. above and below the desired temperature.
【請求項3】 仕上熱延後の板厚を1.7mm以下とする
ことを特徴とする請求項1又は2記載の方法。
3. The method according to claim 1 or 2, wherein the plate thickness after the finish hot rolling is 1.7 mm or less.
【請求項4】 粗熱延材を熱間のまま巻き取り、109
0℃以上の温度で払い出し、先行材の後端に後行材の先
端を接合することを特徴とする請求項1,2,3いずれ
かに記載の方法。
4. The crude hot-rolled material is wound as it is, 109
The method according to any one of claims 1, 2 and 3, wherein the material is discharged at a temperature of 0 ° C or higher, and the leading end of the trailing material is joined to the trailing end of the preceding material.
JP8483193A 1993-04-12 1993-04-12 Production of grain-oriented silicon steel sheet having uniform high magnetic flux density in longitudinal direction of coil Pending JPH06299245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8483193A JPH06299245A (en) 1993-04-12 1993-04-12 Production of grain-oriented silicon steel sheet having uniform high magnetic flux density in longitudinal direction of coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8483193A JPH06299245A (en) 1993-04-12 1993-04-12 Production of grain-oriented silicon steel sheet having uniform high magnetic flux density in longitudinal direction of coil

Publications (1)

Publication Number Publication Date
JPH06299245A true JPH06299245A (en) 1994-10-25

Family

ID=13841726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8483193A Pending JPH06299245A (en) 1993-04-12 1993-04-12 Production of grain-oriented silicon steel sheet having uniform high magnetic flux density in longitudinal direction of coil

Country Status (1)

Country Link
JP (1) JPH06299245A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512290A (en) * 1974-06-26 1976-01-09 Matsushita Electric Ind Co Ltd IDOSHIKITOSHISOCHI
JPS61259804A (en) * 1985-05-11 1986-11-18 エスエムエス シユレ−マン・ジ−マグ アクチエンゲゼルシヤフト Method and device for rolling band material before finishingto hot wide band material
JPS6248725A (en) * 1985-08-26 1987-03-03 Agency Of Ind Science & Technol Novel chelate resin and production thereof
JPH0617133A (en) * 1992-07-03 1994-01-25 Nippon Steel Corp Production of grain-oriented silicon steel sheet having uniform magnetism even in the case of heavy weight coil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512290A (en) * 1974-06-26 1976-01-09 Matsushita Electric Ind Co Ltd IDOSHIKITOSHISOCHI
JPS61259804A (en) * 1985-05-11 1986-11-18 エスエムエス シユレ−マン・ジ−マグ アクチエンゲゼルシヤフト Method and device for rolling band material before finishingto hot wide band material
JPS6248725A (en) * 1985-08-26 1987-03-03 Agency Of Ind Science & Technol Novel chelate resin and production thereof
JPH0617133A (en) * 1992-07-03 1994-01-25 Nippon Steel Corp Production of grain-oriented silicon steel sheet having uniform magnetism even in the case of heavy weight coil

Similar Documents

Publication Publication Date Title
JPS6160896B2 (en)
JPH0753885B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPS6250529B2 (en)
US5139582A (en) Method of manufacturing an oriented silicon steel sheet having improved magnetic characeristics
JPH059580A (en) Production of grain-oriented silicon steel sheet extremely excellent in magnetic property
JPH11335736A (en) Production of high magnetic flux density grain oriented silicon steel sheet extremaly low in core loss
JPH06299245A (en) Production of grain-oriented silicon steel sheet having uniform high magnetic flux density in longitudinal direction of coil
JP4206538B2 (en) Method for producing grain-oriented electrical steel sheet
JP3397293B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP2659655B2 (en) Thick grain-oriented electrical steel sheet with excellent magnetic properties
KR970007333B1 (en) Method for manufacturing oriented electrical steel sheet having high magnetic density
JPH08157963A (en) Production of grain oriented silicon steel sheet
JPH0351770B2 (en)
JPH10273726A (en) Manufacture of grain oriented silicon steel sheet with stable magnetic property in longitudinal direction of coil
JPH08269553A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3546114B2 (en) Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density
JPH1150153A (en) Production of grain oriented silicon steel sheet with extremely high magnetic flux density
JP2703468B2 (en) Stable manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JPH086139B2 (en) Method for manufacturing thick unidirectional electrical steel sheet with excellent magnetic properties
JPH1046248A (en) Production of nonoriented magnetic steel sheet high in magnetic flux density and low in core loss
KR100256343B1 (en) The manufacturing method for oriented electric steel sheet with low temperature heating type
JPS62180015A (en) Manufacture of grain oriented thin electrical sheet having low iron loss and high magnetic flux density
JP2001198606A (en) Cold rolling method for obtaining grain oriented silicon steel sheet small in variation of magnetic property in cold rolling direction
JP3369371B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JPH10306318A (en) Manufacture of grain oriented silicon steel sheet having stable and extremely high magnetic flux density in longitudinal direction of coil