JPH06298639A - Sustained release pharmaceutical preparation - Google Patents

Sustained release pharmaceutical preparation

Info

Publication number
JPH06298639A
JPH06298639A JP8885093A JP8885093A JPH06298639A JP H06298639 A JPH06298639 A JP H06298639A JP 8885093 A JP8885093 A JP 8885093A JP 8885093 A JP8885093 A JP 8885093A JP H06298639 A JPH06298639 A JP H06298639A
Authority
JP
Japan
Prior art keywords
layer
drug
release preparation
complex
drug sustained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8885093A
Other languages
Japanese (ja)
Inventor
Hiroyuki Irie
洋之 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP8885093A priority Critical patent/JPH06298639A/en
Publication of JPH06298639A publication Critical patent/JPH06298639A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a sustained release pharmaceutical preparation capable of releasing a definite amount of medicine over a long period. CONSTITUTION:This sustained release pharmaceutical preparation has plural layers containing a complex of a medicine and a biodegradable organic substance, e.g. a polymer of lactic acid, glycolic acid or lactone or a copolymer thereof or collagen and ceramics and all layers except outermost layer of the plural layers are covered by the outside layer and in a ratio of the complex in each layer of the plural layers to ceramic, the ratio of the outside layer is smaller than that of the inner layer. As the ceramics, a material having biological affinity, e.g. calcium phosphate-based compound, CaO.P2O5-based glass, alumina or zirconia is preferably used. Since a ratio of the complex is small in the outside layer having large contact area with the biological tissue, decomposition of an organic substance occurs slowly. Since a ratio of the complex is large regardless of small contact area with biological tissue also in the inner layer, the organic substance is readily decomposed and as a result, release amount of the medicine becomes definite in each layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薬物徐放製剤に関す
る。
FIELD OF THE INVENTION The present invention relates to a drug sustained-release preparation.

【0002】[0002]

【従来の技術】薬物および担体を含有し、生体内におい
て徐々に担体が分解して薬物を放出する薬物徐放製剤
は、医療分野においては広く利用されている。例えば、
癌のような様々な疾患に対して、薬物徐放製剤を患部付
近に埋入する。薬物徐放製剤中、担体が徐々に分解され
て薬物が徐放される。この結果、局所的に有効な薬物濃
度が持続されるので、薬物の全身投与による治療方法に
比べて、副作用を極めて減少させることができる。
2. Description of the Related Art A drug sustained-release preparation containing a drug and a carrier, in which the carrier is gradually decomposed in the living body to release the drug, is widely used in the medical field. For example,
For various diseases such as cancer, a drug sustained-release preparation is implanted near the affected area. In the drug sustained-release preparation, the carrier is gradually decomposed to release the drug slowly. As a result, the locally effective drug concentration is maintained, so that side effects can be significantly reduced as compared with the treatment method by systemic administration of the drug.

【0003】上述のような薬物徐放製剤に使用される担
体としては、例えば、ポリ乳酸のような生分解性有機物
質が用いられている。生分解性有機物質は、生体内で除
々に分解され、最終的には生体に吸収されて消滅してし
まう性質を有する。
As a carrier used in the above-mentioned drug sustained-release preparation, a biodegradable organic substance such as polylactic acid is used. The biodegradable organic substance has a property that it is gradually decomposed in the living body and is eventually absorbed by the living body and disappears.

【0004】従来の薬物徐放製剤は、このような生分解
性有機物質と所望の薬剤とを混合して、所望の形状に成
形することにより製造されている。
Conventional drug sustained-release preparations are produced by mixing such a biodegradable organic substance and a desired drug and molding the mixture into a desired shape.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述の
ような生分解性有機物質を担体とする薬物徐放製剤は、
その薬物の放出特性は担体の分解性に依存する。すなわ
ち、担体の分解は、生体組織と接触している薬物徐放製
剤の表面で起こるため、埋入初期の薬物徐放製剤の表面
積が大きなときには、担体の分解量が多く、薬物も多く
放出されるが、埋入後長期間経過すると、薬物徐放製剤
が分解されてその表面積が減少するので、担体の分解が
埋入初期に比べて減少し、薬物の放出量も少なくなる。
However, the drug sustained-release preparation using the above-mentioned biodegradable organic substance as a carrier is
The release characteristics of the drug depend on the degradability of the carrier. That is, the carrier is decomposed on the surface of the drug sustained-release preparation which is in contact with the living tissue, and therefore when the surface area of the drug sustained-release preparation at the initial stage of implantation is large, the amount of carrier decomposed is large and a large amount of the drug is released. However, after a long period of time after implantation, the drug sustained-release preparation is decomposed and its surface area is reduced, so that the decomposition of the carrier is reduced as compared to the initial stage of implantation and the amount of drug released is also reduced.

【0006】このように、従来の単に生分解性有機物質
と薬剤を複合させた薬物徐放製剤は、生分解性有機物質
の分解特性と相関して、埋入初期から消滅に至るまでの
薬物の放出量が不均一である。このため、薬物を副作用
を起こし難い適当な量で一定に放出させることは不可能
である。
[0006] As described above, the conventional drug sustained-release preparations in which a biodegradable organic substance and a drug are simply combined with each other are correlated with the decomposition characteristics of the biodegradable organic substance, and the drug from the initial stage of implantation to the disappearance of the drug. The release amount of is uneven. For this reason, it is impossible to constantly release the drug in an appropriate amount that does not easily cause side effects.

【0007】本発明は、かかる点に鑑みてなされたもの
であり、一定量の薬物を長期間にわたって放出させるこ
とができる薬物徐放製剤を提供する。
The present invention has been made in view of the above points, and provides a drug sustained-release preparation capable of releasing a fixed amount of drug over a long period of time.

【0008】[0008]

【課題を解決するための手段】本発明は、薬物と生分解
性有機物質との複合体およびセラミックスを包含する複
数の層を有し、前記複数の層の最外層を除く全ての層が
当該層の一つ外側の層に被覆されている薬物徐放製剤で
あって、前記複数の層の各層における前記複合体のセラ
ミックスに対する割合が内側の層よりも外側の層の方が
小さくなっていることを特徴とする薬物徐放製剤を提供
する。
The present invention has a plurality of layers containing a complex of a drug and a biodegradable organic substance and ceramics, and all layers except the outermost layer of the plurality of layers are concerned. A drug sustained-release preparation coated on one outer layer, wherein the ratio of the composite to ceramics in each of the plurality of layers is smaller in the outer layer than in the inner layer. Disclosed is a drug sustained-release preparation.

【0009】以下、本発明を更に詳細に説明する。The present invention will be described in more detail below.

【0010】本発明の薬物徐放製剤に使用する生分解性
有機物質は、例えば、乳酸、グリコール酸、ラクトンの
ポリマーまたはこれらのコポリマー若しくはコラーゲン
である。
The biodegradable organic substance used in the drug sustained-release preparation of the present invention is, for example, a polymer of lactic acid, glycolic acid, a lactone or a copolymer thereof or collagen.

【0011】また、薬物は特に限定されないが、ゲンタ
マイシンのような抗生物質等が使用できる。このような
薬物は、上述の生分解性有機物質と複合されて、複合体
となっている。
The drug is not particularly limited, but antibiotics such as gentamicin can be used. Such a drug is complexed with the above-mentioned biodegradable organic substance to form a complex.

【0012】また、もう一つの構成成分であるセラミッ
クスは、例えば、リン酸カルシウム系化合物(例えば、
水酸化アパタイト、β−リン酸三カルシウム)、CaO
・P2 5 系ガラス、アルミナ、ジルコニア等の生体親
和性のよいものが望ましい。
[0012] The other component, ceramics, is, for example, a calcium phosphate compound (for example,
Hydroxyapatite, β-tricalcium phosphate), CaO
· P 2 O 5 based glass, alumina, those good biocompatibility of zirconia desired.

【0013】本発明の薬物徐放製剤の各層は、上述の薬
物と生分解性有機物質の複合体およびセラミックスを包
含する。より具体的には、複合体からなる層中にセラミ
ックスの粉末または顆粒が分散しているものであって
も、セラミックスからなる層中に粉末状または顆粒状の
複合体が分散しているものであってもよい。
Each layer of the drug sustained-release preparation of the present invention contains a composite of the above-mentioned drug and a biodegradable organic substance and ceramics. More specifically, even if the powder or granules of ceramics are dispersed in the layer made of a composite, the powdered or granular composite is dispersed in the layer made of ceramics. It may be.

【0014】本発明の薬物徐放製剤は、上述の構成から
なる層が積層されている。そして、最外層を除く全ての
層の周面は、その一つ外側の層に被覆されている。
In the drug sustained-release preparation of the present invention, the layers having the above constitution are laminated. The peripheral surfaces of all layers except the outermost layer are covered with the outer layer.

【0015】本発明の薬物徐放製剤の層数は、少なくと
も2層以上、好ましくは、3層以上である。
The number of layers of the drug sustained-release preparation of the present invention is at least 2 or more, preferably 3 or more.

【0016】本発明の薬物徐放製剤の各層における上述
の複合体のセラミックスに対する割合(以下、単に占有
率ともいう)は内側の層よりも外側の層の方が小さい。
好ましくは、各層における複合体の占有率は、本発明の
薬物徐放製剤を生体内に埋入した場合に、当該層が生体
組織と接触する面積がいかなる値であっても生分解性有
機物質の分解が各層間で略一定になるように設定され
る。
The ratio of the above-mentioned complex to the ceramics in each layer of the drug sustained-release preparation of the present invention (hereinafter, also simply referred to as occupancy rate) is smaller in the outer layer than in the inner layer.
Preferably, the occupancy rate of the complex in each layer is such that, when the drug sustained-release preparation of the present invention is implanted in a living body, the biodegradable organic substance has any value in the area in which the layer comes into contact with living tissue. Is set so that the decomposition of is almost constant between each layer.

【0017】より具体的には、本発明の薬物徐放製剤
を、球形等の比較的単純な形状に成形した場合、生分解
性有機物質の生体内での分解率と時間の関係は放物線状
に変化する。これは、分解率が、薬物徐放製剤の表面積
の変化に依存していることを示している。半径Rの球形
の薬物徐放製剤であって、中心部〜第n層で構成されて
いる場合、nが十分大きな数値のとき、任意な第m層
(1<m≦n)での生分解性有機物質の体積占有率v
と、中心から第m層までの距離rの間に下記式(1)に
示す関係が成り立つようにすると、薬物徐放製剤の分解
が進行して薬物徐放製剤の表面積が減少しても複合体と
生体組織との接触面積(その時点での表面積×v)に変
化がないので生分解性有機物質の分解が略一定に保たれ
る。
More specifically, when the drug sustained-release preparation of the present invention is molded into a relatively simple shape such as a sphere, the relationship between the biodegradable organic substance decomposition rate in vivo and time is parabolic. Changes to. This indicates that the degradation rate depends on the change in the surface area of the drug sustained release preparation. A spherical drug sustained-release preparation having a radius R, and in the case of being composed of a central part to an n-th layer, when n is a sufficiently large numerical value, biodegradation in an arbitrary m-th layer (1 <m ≦ n) Occupancy of Organic Organic Substances v
And the distance r from the center to the m-th layer is made to satisfy the relationship shown in the following formula (1), even if the decomposition of the drug sustained-release preparation proceeds and the surface area of the drug sustained-release preparation decreases, the composite Since there is no change in the contact area between the body and the biological tissue (surface area at that time xv), the decomposition of the biodegradable organic substance is kept substantially constant.

【0018】1/v ∝ r2 ・・・・ (1) 従って、生分解性有機物質の分解速度、すなわち、薬物
の放出量をより正確に一定に維持するには、全層数nを
大きくし、かつ、上記式(1)の関係を満たす薬剤徐放
製剤を作製すればよい。
1 / v ∝ r 2 ··· (1) Therefore, in order to maintain the decomposition rate of the biodegradable organic substance, that is, the drug release amount more accurately and constant, the total number of layers n is increased. In addition, a drug sustained-release preparation satisfying the relationship of the above formula (1) may be prepared.

【0019】また、本発明の薬物徐放製剤の形状および
サイズは特に限定されないが、例えば、直径3〜15mm
の略球形状である。特に、上述のように薬物の放出量を
一定にする観点からは球形であることが好ましい。
The shape and size of the drug sustained-release preparation of the present invention are not particularly limited, but for example, the diameter is 3 to 15 mm.
Is a substantially spherical shape. In particular, the spherical shape is preferable from the viewpoint of keeping the drug release amount constant as described above.

【0020】このように本発明の薬物徐放製剤によれ
ば、各層における複合体の占有率を変更することによっ
て、各層が生体組織に接触する際の薬物放出量を容易に
制御できる。
As described above, according to the drug sustained-release preparation of the present invention, by changing the occupancy rate of the complex in each layer, the amount of drug released when each layer comes into contact with living tissue can be easily controlled.

【0021】次に、上述の本発明の薬物徐放製剤の製造
方法について説明する。第1の方法は、まず、薬物およ
び生分解性有機物質の複合体を調製する。例えば、生分
解性有機物質としてポリ乳酸を使用する場合、ポリ乳酸
を加熱溶融し、これに薬物を添加して溶解または分散さ
せることにより溶融複合体を得ることができる。また、
乳酸−グリコール酸コポリマーの粉末と薬物の粉末とを
所定の割合で混合して粉状複合体とすることができる。
後者は、薬物または生分解性有機物質が熱的安定性が低
い場合に有効である。
Next, a method for producing the above-mentioned drug sustained-release preparation of the present invention will be described. The first method first prepares a complex of drug and biodegradable organic material. For example, when polylactic acid is used as the biodegradable organic substance, the melted complex can be obtained by heating and melting polylactic acid and adding a drug thereto to dissolve or disperse it. Also,
The lactic acid-glycolic acid copolymer powder and the drug powder can be mixed at a predetermined ratio to form a powdery complex.
The latter is effective when the drug or biodegradable organic substance has low thermal stability.

【0022】次に、このような複合体を粉状または粒状
のセラミックス(以下、単にセラミックスという)と所
定の割合で混合した後に所望の形状に成形して内層部を
得る。すなわち、上述の溶融複合体の場合には、この溶
融複合体にセラミックス粒子を混合した後、得られた混
合物を鋳込成形することにより内層部を得ることができ
る。一方、上述の粉状複合体の場合には、この粉状複合
体をセラミックス粒子と混合した後、得られた混合物を
圧縮成形することにより内層部を得ることができる。
Next, such a composite is mixed with powdery or granular ceramics (hereinafter simply referred to as ceramics) at a predetermined ratio and then molded into a desired shape to obtain an inner layer portion. That is, in the case of the above-mentioned melted composite, the inner layer portion can be obtained by mixing the ceramic particles with the melted composite and then casting the obtained mixture. On the other hand, in the case of the powdery composite described above, the inner layer portion can be obtained by mixing the powdery composite with the ceramic particles and then compression-molding the obtained mixture.

【0023】この後、複合体のセラミックスに対する割
合が少なくなるように複合体およびセラミックスを混合
した混合物を調製し、この混合物を内層部の周囲を被覆
するように、上述と同様にして成形して外層部を得る。
この工程を複数回繰り返すことにより、多層構造でかつ
各層における上述の複合体のセラミックスに対する割合
が内側の層よりも外側の層の方が小さい本発明の薬物徐
放製剤を得ることができる。
Thereafter, a mixture is prepared by mixing the composite and the ceramic so that the ratio of the composite to the ceramic is reduced, and the mixture is molded in the same manner as described above so as to coat the periphery of the inner layer portion. Get the outer layer.
By repeating this step a plurality of times, it is possible to obtain the drug sustained-release preparation of the present invention which has a multilayer structure and in which the ratio of the above-mentioned complex in each layer to the ceramic is smaller in the outer layer than in the inner layer.

【0024】また、本発明の薬物徐放製剤の第2の製造
方法は、まず、多層構造であって各層の気孔率が異なる
セラミックス多孔体を作製する。すなわち、セラミック
ス原料を成形して所定の気孔率を有する内層部を得る。
この後、この内層部の周面を被覆するようにセラミック
ス原料を成形し、内層部よりも低い気孔率を有する外層
部を得る。同様の操作を繰り返して最外層部に近い層ほ
ど気孔率が低くなっている多層状のセラミックス多孔体
を得る。
In the second method for producing a drug sustained-release preparation of the present invention, first, a ceramic porous body having a multi-layer structure and each layer having a different porosity is produced. That is, the ceramic raw material is molded to obtain the inner layer portion having a predetermined porosity.
Then, the ceramic raw material is molded so as to cover the peripheral surface of the inner layer portion to obtain an outer layer portion having a porosity lower than that of the inner layer portion. The same operation is repeated to obtain a multilayer ceramic porous body in which the porosity decreases toward the outermost layer.

【0025】ここで、各層の成形は、例えば、セラミッ
クス粉末に、水、発泡剤および気泡安定剤を添加してス
ラリーを調製し、このスラリーを所定の型に鋳込んだ後
乾燥させて焼成するか、または、互いに連通する気孔を
有するウレタンフォームを用意し、このウレタンフォー
ムにセラミックス粉末のスラリーを浸み込ませた後、乾
燥および焼成してウレタンフォームを焼失させることに
より行なうことができる。しかし、これらの方法に限定
されず、通常のセラミックス多孔体の製造方法を適用す
ることが可能である。
Here, for forming each layer, for example, water, a foaming agent and a bubble stabilizer are added to ceramic powder to prepare a slurry, which is cast in a predetermined mold, dried and then fired. Alternatively, a urethane foam having pores communicating with each other may be prepared, and a slurry of ceramic powder may be soaked in the urethane foam, followed by drying and firing to burn out the urethane foam. However, the method is not limited to these methods, and it is possible to apply an ordinary method for manufacturing a porous ceramic body.

【0026】上述のようにして得られたセラミックス多
孔体に薬物および生分解性有機物質の複合体を含浸させ
る。例えば、上述の薬物とポリ乳酸との溶融複合体中に
セラミックス多孔体を浸漬させた後減圧条件下に放置
し、溶融複合体をセラミックス多孔体の気孔中に浸み込
ませ、冷却することにより、多層構造でかつ各層におけ
る上述の複合体のセラミックスに対する割合が内側の層
よりも外側の層の方が小さい本発明の薬物徐放製剤を得
ることができる。
The ceramic porous body obtained as described above is impregnated with a complex of a drug and a biodegradable organic substance. For example, by immersing the ceramic porous body in a molten composite of the above-mentioned drug and polylactic acid and then leaving it under reduced pressure conditions, the molten composite is soaked in the pores of the ceramic porous body, and cooled. It is possible to obtain the drug sustained-release preparation of the present invention which has a multilayer structure and in which the ratio of the above-mentioned complex in each layer to the ceramic is smaller in the outer layer than in the inner layer.

【0027】[0027]

【作用】本発明の薬物徐放製剤は、各層は、薬物と生分
解性有機物質との複合体およびセラミックスが組み合わ
されている。従って、薬物徐放製剤は、生体内に埋入し
た場合に最外層から中心に向かって徐々に生分解性有機
物質が分解されていくが、各層が生体組織と接触した場
合に、複合体と生体組織の接触面積が複合体単独の場合
に比べて少なくなるため、生分解性有機物質の分解が起
こり難い。
In each layer of the drug sustained-release preparation of the present invention, a composite of a drug and a biodegradable organic substance and ceramics are combined. Therefore, when the drug sustained-release preparation is implanted in a living body, the biodegradable organic substance is gradually decomposed from the outermost layer toward the center. Since the contact area of the biological tissue is smaller than that of the complex alone, the biodegradable organic substance is less likely to be decomposed.

【0028】また、外側の層は複合体のセラミックスに
対する割合が小さいので、層全体の生体組織との接触面
積は大きいにもかかわらず、生分解性有機物質の分解が
ゆっくりと起こる。これに対して内側の層が生体組織と
接触する際には、外側の層に比べて複合体のセラミック
スに対する割合が大きいので、この層全体の生体組織と
の接触面積は小さくなっているが外側の層に比べて生分
解性物質の分解が起こりやすい。このような結果、薬物
徐放製剤の各層における薬物の放出量が略一定となる。
Further, since the outer layer has a small ratio of the composite to the ceramics, the biodegradable organic substance is decomposed slowly even though the contact area of the whole layer with the living tissue is large. On the other hand, when the inner layer comes into contact with the biological tissue, the ratio of the composite to the ceramics is larger than that of the outer layer, so the contact area of the entire layer with the biological tissue is small, but Degradation of biodegradable substances is more likely to occur than in the layer. As a result, the amount of drug released in each layer of the drug sustained-release preparation becomes substantially constant.

【0029】[0029]

【実施例】本発明を、図面を参照して詳細に説明する。The present invention will be described in detail with reference to the drawings.

【0030】実施例1 図1は、本発明の薬物徐放製剤の一例を示す断面図であ
る。図中11は、直径5mmの略球形状の第1層である。
第1層11は、抗生物質の1種であるゲンタマイシンと
ポリDL乳酸の複合体12中にβ−リン酸三カルシウム
(以下、β−TCPという)顆粒13が分散してなる。
第1層11中の複合体の体積占有率は80%である。複
合体12中のゲンタマイシンとポリ乳酸の混合比は1:
1である。また、β−TCP顆粒13の粒子径は100
〜500μmである。
Example 1 FIG. 1 is a sectional view showing an example of the drug sustained-release preparation of the present invention. In the figure, 11 is a substantially spherical first layer having a diameter of 5 mm.
The first layer 11 is composed of β-tricalcium phosphate (hereinafter referred to as β-TCP) granules 13 dispersed in a complex 12 of gentamicin which is one kind of antibiotics and poly-DL-lactic acid.
The volume occupancy rate of the composite in the first layer 11 is 80%. The mixing ratio of gentamicin and polylactic acid in the complex 12 is 1 :.
It is 1. The particle size of β-TCP granules 13 is 100.
Is about 500 μm.

【0031】この第1層11の周面には、表面が略球面
状で厚さ3mmの第2層14が設けられている。第2層1
4は、第1層11と同様に、複合体12中にβ−TCP
顆粒13が分散されてなり、この複合体12の体積占有
率は40%である。
A second layer 14 having a substantially spherical surface and a thickness of 3 mm is provided on the peripheral surface of the first layer 11. Second layer 1
4 is β-TCP in the composite 12 as in the first layer 11.
The granules 13 are dispersed, and the volume occupancy rate of the composite 12 is 40%.

【0032】さらに、第2層14の周面には、厚さ2mm
の表面が略球面状である第3層15が設けられている。
第3層15は、第1層11と同様に、複合体12中にβ
−TCP顆粒13が分散されている。第3層15中の複
合体12の体積占有率は20%である。
Further, the peripheral surface of the second layer 14 has a thickness of 2 mm.
Is provided with a third layer 15 having a substantially spherical surface.
Similar to the first layer 11, the third layer 15 has β in the composite 12.
-TCP granules 13 are dispersed. The volume occupancy rate of the composite 12 in the third layer 15 is 20%.

【0033】以上のような構成からなる薬物徐放製剤1
0は、最も内側の第1層11から最外層の第3層15に
おける複合体12の体積占有率が、夫々80、40、2
0%となっている。このため、生体内に埋入した当初に
は、最外層の第3層15が生体組織と接触するが、第3
層15における複合体12の体積占有率が小さいので、
第3層全体の生体組織との接触面積は大きいが、第3層
15中の複合体12が生体組織と接触する面積は比較的
小さい。このため、ポリDL乳酸がゆっくりと分解する
ので、ゲンタマイシンも少量づつ放出される。
Drug sustained-release preparation 1 having the above constitution
0 means that the volume occupancy of the composite 12 in the innermost first layer 11 to the outermost third layer 15 is 80, 40, 2 respectively.
It is 0%. Therefore, at the beginning of implantation in a living body, the outermost third layer 15 comes into contact with living tissue, but
Since the volume occupancy of the composite 12 in the layer 15 is small,
The contact area of the entire third layer with the living tissue is large, but the area of the complex 12 in the third layer 15 with the living tissue is relatively small. Therefore, poly-DL-lactic acid is slowly decomposed, and gentamicin is also released little by little.

【0034】薬物徐放製剤10を生体内に埋入した後時
間が経過するに連れて、内側の第2層14が生体組織に
接触するが、内側の層ほど表面積が小さくなるため、第
2層14全体と生体組織との接触面積は小さくなる。し
かし、第2層14は第3層15よりも複合体12の体積
占有率が大きいので複合体12が生体組織と接触する面
積は第3層15の場合に比べて大きくなり、ポリDL乳
酸の分解が起こりやすくなる。この結果、第2層14に
おけるゲンタマイシンの放出量は第3層15と略等しく
なる。
As time elapses after the drug sustained-release preparation 10 is implanted in the living body, the inner second layer 14 comes into contact with the living tissue, but since the inner layer has a smaller surface area, the second layer The contact area between the entire layer 14 and the living tissue is small. However, since the second layer 14 has a larger volume occupancy rate of the composite 12 than the third layer 15, the area in which the composite 12 comes into contact with the living tissue is larger than that of the third layer 15, and thus the poly DL lactic acid Decomposition is likely to occur. As a result, the amount of gentamicin released in the second layer 14 becomes substantially equal to that in the third layer 15.

【0035】第1層11においても、上述の第2層14
と同様に、複合体12の体積占有率が第2層14および
第3層15よりも大きくなっているので、ポリDL乳酸
の分解がより一層起こりやすくなり、結果として、ゲン
タマイシンの放出量が第2層14および第3層15と略
等しくなる。
Also in the first layer 11, the above-mentioned second layer 14 is used.
Similarly, since the volume occupancy rate of the complex 12 is larger than that of the second layer 14 and the third layer 15, the decomposition of poly-DL-lactic acid is more likely to occur, and as a result, the release amount of gentamicin is less than that of the second layer 14 and the third layer 15. It is substantially equal to the second layer 14 and the third layer 15.

【0036】このようにして、最外層の第3層15から
第2層14を経て第1層11に至るまでの長期間にわた
ってゲンタマイシンの放出量が略一定に保たれる。
In this way, the amount of gentamicin released is kept substantially constant for a long period of time from the outermost third layer 15 to the second layer 14 to the first layer 11.

【0037】また、上述のようにDLポリ乳酸が分解し
て消滅した後に残されたβ−TCP顆粒13は、生体親
和性に優れているので生体に悪影響を与えるおそれが少
なく、最終的には生体組織に吸収される。
The β-TCP granules 13 left after the DL polylactic acid is decomposed and disappeared as described above are excellent in biocompatibility and are less likely to adversely affect the living body. It is absorbed by living tissues.

【0038】次に、上述の薬物徐放製剤10は次のよう
にして製造した。まず、ゲンタマイシンを、120℃に
加熱溶解したポリDL乳酸に重量比で1:1の割合で混
合して溶融複合体を得た。
Next, the above-mentioned drug sustained-release preparation 10 was produced as follows. First, gentamicin was mixed with poly DL lactic acid heated and dissolved at 120 ° C. in a weight ratio of 1: 1 to obtain a molten composite.

【0039】次に、この溶融複合体に対してβ−TCP
顆粒(100〜500μm)を20vol%となるよう
に添加し、120℃でよく混合した。得られた混合物
を、内部に内径5mmの球形状のキャビティが形成された
テフロン製の二つ割鋳型に鋳込んだ。溶融複合体を冷却
して固化させることにより、略球形状の第1層11を作
製した。
Next, β-TCP was applied to this molten composite.
Granules (100-500 μm) were added to 20 vol% and mixed well at 120 ° C. The obtained mixture was cast into a Teflon-made split mold in which a spherical cavity having an inner diameter of 5 mm was formed. By cooling the molten composite to solidify it, a substantially spherical first layer 11 was produced.

【0040】次に、溶融複合体に対してβ−TCP顆粒
を60vol%となるように添加し、120℃でよく混
合して混合物を得た。図2に示すように、二つ割鋳型2
1,22の突合せ面に夫々形成された直径8mmの半球形
のキャビティ21a,22aに夫々少過剰量の混合物2
3,24を充填した。次いで、図3に示すように、混合
物31の略中央に第1層11が位置するように、二つ割
鋳型21,22を突合せた。この後、冷却固化させ、過
剰量の混合物31aを除去して、第2層15が第1層1
1の周面上に成形した。
Next, β-TCP granules were added to the molten composite so as to be 60 vol%, and well mixed at 120 ° C. to obtain a mixture. As shown in FIG. 2, the split mold 2
A small excess amount of the mixture 2 is formed in each of the hemispherical cavities 21a and 22a having a diameter of 8 mm formed on the abutting surfaces of 1 and 22, respectively.
3,24 was filled. Next, as shown in FIG. 3, the split molds 21 and 22 were butted so that the first layer 11 was located substantially in the center of the mixture 31. Then, the mixture is cooled and solidified, and the excess amount of the mixture 31a is removed, so that the second layer 15 becomes the first layer 1.
1 was molded on the peripheral surface.

【0041】さらに、溶融複合体に対してβ−TCP顆
粒を80vol%となるように添加し、120℃でよく
混合して、混合物を得た。この混合物を、第2層と同様
にして、内部に直径10mmの球形状のキャビティが形成
された二つ割鋳型を用いて、第2層15の周面上に鋳込
成形して、第2層15の周面を被覆するように第3層1
6が設けられた。
Further, β-TCP granules were added to the melted composite so as to be 80 vol% and well mixed at 120 ° C. to obtain a mixture. This mixture is cast-molded on the peripheral surface of the second layer 15 using a split mold in which a spherical cavity having a diameter of 10 mm is formed in the same manner as the second layer. The third layer 1 so as to cover the peripheral surface of the layer 15.
6 was provided.

【0042】上述のような薬物徐放製剤10の製造方法
によれば、加熱溶解したポリDL乳酸に所定量のゲンタ
マイシンを添加しているので、ゲンタマイシンをポリD
L乳酸中に均一に分散させることができる。
According to the method for producing the drug sustained-release preparation 10 as described above, since a predetermined amount of gentamicin is added to heat-dissolved poly-DL-lactic acid, gentamicin is added to poly-D-lactic acid.
It can be uniformly dispersed in L-lactic acid.

【0043】実施例2 図4は、本発明の薬剤徐放製剤の第2の実施例を示す断
面図である。
Example 2 FIG. 4 is a sectional view showing a second example of the drug sustained-release preparation of the present invention.

【0044】図中40は、直径15mmの略球形状であっ
て多層構造からなる薬剤徐放製剤である。最内層の第1
層41から、外側に向かって、第2層42、第3層43
および最外層である第4層44が順次積層されている。
これらの第1層41から第4層44の各層は、ゲンタマ
イシンおよびL乳酸−グルコール酸コポリマーを含有す
る複合体45とβ−TCP顆粒46からなる。各層にお
ける複合体45の体積占有率は、第1層が80%、第2
層が50%、第3層が30%、第4層が20%である。
Reference numeral 40 in the figure is a drug sustained-release preparation having a substantially spherical shape with a diameter of 15 mm and having a multilayer structure. Innermost first
From the layer 41 toward the outside, the second layer 42 and the third layer 43
The fourth layer 44, which is the outermost layer, is sequentially stacked.
Each of the first to fourth layers 41 to 44 is composed of a complex 45 containing gentamicin and an L-lactic acid-glycolic acid copolymer and β-TCP granules 46. The volume occupancy of the composite 45 in each layer is 80% for the first layer and 2% for the second layer.
The layer is 50%, the third layer is 30%, and the fourth layer is 20%.

【0045】このような構成からなる4層構造の薬剤徐
放製剤40は、実施例1の薬剤徐放製剤10と同様の効
果を奏する。特に、本実施例の場合には、4層構造で構
成されているため、実施例1の3層構造の場合に比べて
薬物の放出量をより正確に一定にすることができる。
The four-layered drug sustained-release preparation 40 having such a structure has the same effect as the drug sustained-release preparation 10 of the first embodiment. Particularly, in the case of the present embodiment, since it has a four-layer structure, the drug release amount can be more accurately made constant than in the case of the three-layer structure of the first embodiment.

【0046】上述の薬物徐放製剤40は以下のように製
造した。まず、ジベカシン粉末を、L乳酸−グリコール
酸コポリマーの粉末に重量比1:1の割合で混合して粉
状複合体を得た。この粉状複合体に、β−TCP顆粒
(100〜300μm)を粉状複合体に対して20vo
l%になるように添加し、さらによく混合した。
The above-mentioned drug sustained-release preparation 40 was manufactured as follows. First, dibekacin powder was mixed with powder of L-lactic acid-glycolic acid copolymer at a weight ratio of 1: 1 to obtain a powdery composite. To this powdery complex, β-TCP granules (100 to 300 μm) were added to the powdery complex in an amount of 20 vo
It was added so as to be 1% and further mixed well.

【0047】このようにして得られた混合物を、内部に
内径8mmの球形のキャビティが形成された耐熱性ゴム型
の内部に充填し、このゴム型に1000kg/cm2 の等
方加圧を加えながら80℃の加温を施して圧縮成形し、
冷却した後にゴム型からとり出して第1層41を得た。
The mixture thus obtained was filled into a heat-resistant rubber mold having a spherical cavity with an inner diameter of 8 mm formed therein, and isotropic pressure of 1000 kg / cm 2 was applied to the rubber mold. While heating at 80 ℃, compression molding,
After cooling, it was taken out from the rubber mold to obtain the first layer 41.

【0048】次に、上述の粉状複合体に、β−TCP顆
粒を50vol%になるように添加してよく混合した。
この混合物を、内部に内径11mmの球形状のキャビティ
が形成された耐熱性ゴム型に内部に、その中央に第1層
41を配置して充填した。この後、このゴム型に100
0kg/cm2 の等方加圧を加えながら80℃の加温を施
して圧縮形成し、第1層41の周面上に厚さ3mmの第2
層42を設けた。
Next, β-TCP granules were added to the above powdery complex so as to be 50 vol% and mixed well.
The mixture was filled in a heat-resistant rubber mold having a spherical cavity having an inner diameter of 11 mm formed therein, with the first layer 41 arranged in the center thereof. After this, add 100 to this rubber mold.
While applying an isotropic pressure of 0 kg / cm 2 , it is heated at 80 ° C. to form a compression film, and the second layer having a thickness of 3 mm is formed on the peripheral surface of the first layer 41.
Layer 42 was provided.

【0049】以下、第2層42と同様の手順に従って、
上述の粉状複合体にβ−TCP顆粒を夫々70vol%
および80vol%になるように添加した混合物を、各
々内部に内径13mm,15mmの球形のキャビティが形成
された耐熱ゴム型を用いて、第2層42の上に順次圧縮
成形して、上述の4層構造からなる薬物徐放製剤40を
得た。
Then, following the same procedure as for the second layer 42,
70 vol% of β-TCP granules to each of the above powdery composites
And 80 vol% of the mixture were sequentially compression-molded on the second layer 42 using a heat-resistant rubber mold in which spherical cavities having inner diameters of 13 mm and 15 mm were formed. A drug sustained-release preparation 40 having a layered structure was obtained.

【0050】本実施例の製造方法によれば生分解性有機
物質を加熱融解する必要がなく、圧縮成形も比較的低温
条件下で行われているので、薬物が加熱による劣下を受
ける恐れが少なく、また、融点が高い生分解性有機物質
も使用できる。
According to the production method of this example, it is not necessary to heat and melt the biodegradable organic substance, and the compression molding is also carried out under relatively low temperature conditions. Biodegradable organic substances having a low melting point and a high melting point can also be used.

【0051】実施例3 図5は、本発明の薬物徐放製剤の第3の実施例を示す断
面図である。図中50は、直径14mmの略球形状であって
多層構造からなる薬剤徐放製剤である。最内層の第1層
51から外側に向かって第2層52および第3層53が
順次積層されている。各層51〜53は水酸化アパタイ
ト(以下、HAPという)多孔体54中に、ゲンタマイ
シンおよびポリ乳酸を含有する複合体55が含浸されて
いる。各層における複合体54の体積占有率は、第1層
51が80%、第2層52が50%、第3層53が30
%である。これらの第1層51〜第3層53は一体構造
になっている。
Example 3 FIG. 5 is a sectional view showing a third example of the drug sustained-release preparation of the present invention. In the figure, reference numeral 50 denotes a drug sustained-release preparation having a substantially spherical shape with a diameter of 14 mm and having a multilayer structure. A second layer 52 and a third layer 53 are sequentially stacked from the innermost first layer 51 toward the outside. In each of the layers 51 to 53, a hydroxyapatite (hereinafter referred to as HAP) porous body 54 is impregnated with a complex 55 containing gentamicin and polylactic acid. The volume occupancy of the composite 54 in each layer is 80% for the first layer 51, 50% for the second layer 52, and 30 for the third layer 53.
%. The first layer 51 to the third layer 53 have an integrated structure.

【0052】このような構成からなる薬物徐放製剤50
は、実施例1の薬剤徐放製剤10と同様の効果を奏す
る。特に、本実施例の場合には、多層構造のHAP多孔
体が一体になっているので、第1層51のポリ乳酸まで
分解した後も、HAP多孔体は、一体となって生体組織
中に残っているので、特に、本実施例の薬物徐放製剤5
0を骨組織中に埋入して使用した場合には、薬物を放出
した後にHAPが自家骨化して埋入箇所において良好に
骨成形が得られる点で優れている。
Drug sustained-release preparation 50 having such a constitution
Has the same effect as the drug sustained-release preparation 10 of Example 1. Particularly, in the case of this example, since the HAP porous body having a multi-layer structure is integrated, even after the polylactic acid of the first layer 51 is decomposed, the HAP porous body is integrated into the living tissue. Since it remains, the drug sustained-release preparation 5 of this example is particularly used.
When 0 is used by embedding it in bone tissue, it is excellent in that HAP is self-ossified after the drug is released and good bone formation can be obtained at the implantation site.

【0053】上述の薬物徐放製剤50を以下のようにし
て製造した。まず、HAP粉末30gに水15ml、発泡剤
(ポリオキシエチルノニルフェノール系)3ml、気泡安
定剤(ポリアクリル酸アンモニウム系)15mlを加えて混
合して発泡させて、第1発泡スラリーを調製した。この
第1発泡スラリーを、内部に内径7mmの球形状のキャビ
ティが形成されたシリコンゴム製の二つ割鋳型に鋳込ん
だ後乾燥させて二つ割鋳型から取り出し、第1層51に
相当する第1の予備成形体を得た。
The above-mentioned drug sustained-release preparation 50 was produced as follows. First, to 30 g of HAP powder, 15 ml of water, 3 ml of a foaming agent (polyoxyethylnonylphenol type) and 15 ml of a foam stabilizer (ammonium polyacrylate type) were added, mixed and foamed to prepare a first foaming slurry. The first foamed slurry is cast into a silicone rubber mold having a spherical cavity having an inner diameter of 7 mm and is dried and taken out from the mold, corresponding to the first layer 51. A first preform was obtained.

【0054】次に、HAP粉末30gに、水10ml、発泡
剤2ml、気泡安定剤10mlを加えて混合して発泡させて第
2発泡スラリーを調製した。図6に示すように、二つ割
鋳型61,62の突合せ面に夫々形成された直径11mm
の半球形のキャビティ61a,62aに夫々第2発泡ス
ラリー23,24を充填した。次いで、図7に示すよう
に、第2発泡スラリー71の略中央に第1の予備成形体
72が位置するように、二つ割鋳型61,62を突合せ
た。乾燥させた後過剰量の第2発泡スラリーの乾燥物7
1aを除去して、第2層52に相当する部分を第1の予
備成形体72の周面上に成形して、第2の予備成形体を
得た。
Next, to 30 g of HAP powder, 10 ml of water, 2 ml of a foaming agent, and 10 ml of a foam stabilizer were added and mixed to form a second foaming slurry. As shown in FIG. 6, a diameter of 11 mm formed on the abutting surfaces of the split molds 61 and 62, respectively.
The second foaming slurries 23 and 24 were filled in the hemispherical cavities 61a and 62a, respectively. Then, as shown in FIG. 7, the split molds 61 and 62 were butted so that the first preform 72 was located substantially at the center of the second foamed slurry 71. After drying, an excess amount of the dried product 7 of the second foaming slurry 7
1a was removed, and a portion corresponding to the second layer 52 was molded on the peripheral surface of the first preform 72 to obtain a second preform.

【0055】さらに、HAP粉末30gに、水6ml、発
泡剤1ml、気泡安定剤6mlを加えて混合して発泡させて
第3発泡スラリーを調製した。この第3発泡スラリー
を、二つ割鋳型の突合せ面に夫々形成された直径14mm
の半球形のキャビティに夫々第3発泡スラリーを充填し
た。次いで、第3発泡スラリーの略中央に先の工程で得
られた第2の予備成形体を配置して二つ割鋳型を突合せ
た。乾燥させた後過剰量の第3発泡スラリーの乾燥物を
除去して、第3層53に相当する部分を第2の予備成形
体72の周面上に成形して、第3の予備成形体を得た。
Further, to 30 g of HAP powder, 6 ml of water, 1 ml of a foaming agent and 6 ml of a foam stabilizer were added and mixed to form a third foaming slurry. This third foaming slurry is used to form a 14 mm diameter on the abutting surface of a split mold.
The third foam slurry was filled in each of the hemispherical cavities. Then, the second preform obtained in the previous step was placed at approximately the center of the third foamed slurry, and the split molds were butted. After drying, an excessive amount of the dried material of the third foamed slurry is removed, and a portion corresponding to the third layer 53 is molded on the peripheral surface of the second preformed body 72 to form a third preformed body. Got

【0056】得られた第3の予備成形体を1200℃で
1時間焼成し、HAPを焼結させると共に発泡剤および
気泡安定剤成分を消滅させて3層構造のHAP多孔体を
得た。このようにして作製したHAP多孔体の各層の気
孔率が、第1層が80%、第2層が50%、第3層が3
0%であった。
The third preform thus obtained was calcined at 1200 ° C. for 1 hour to sinter the HAP and eliminate the foaming agent and cell stabilizer components to obtain a HAP porous body having a three-layer structure. The porosity of each layer of the HAP porous body thus produced was 80% for the first layer, 50% for the second layer, and 3 for the third layer.
It was 0%.

【0057】次に、ゲンタマイシンを120℃に加熱し
て溶解されたポリ乳酸に重量比1:1の割合で混合し
て、溶融複合体を得た。この溶融複合体に上述のHAP
多孔体を浸漬し、これらを収容する容器を密閉容器内に
収容し、密閉容器内部を減圧条件にしてHAP多孔体の
気孔中に溶融複合体を含浸させた。この後、冷却して溶
融複合体を固化させて上述の薬物徐放製剤50を得た。
Next, gentamicin was heated to 120 ° C. and mixed with the dissolved polylactic acid at a weight ratio of 1: 1 to obtain a molten composite. The above HAP was added to this molten composite.
The porous body was dipped, a container containing these was housed in a closed container, and the inside of the closed container was depressurized to impregnate the molten composite in the pores of the HAP porous body. After that, the molten complex was solidified by cooling to obtain the above drug sustained-release preparation 50.

【0058】実施例4 実施例3の薬物徐放製剤の製造方法におけるHAP多孔
体の作製方法を変更した場合について説明する。
Example 4 The case where the method for producing the HAP porous body in the method for producing the drug sustained-release preparation of Example 3 was changed will be described.

【0059】まず、互いに連通する気孔を有し、夫々の
気孔率が80%、60%、40%である3種類のウレタ
ンフォームを用意した。これらのウレタンフォームを加
工して、図8に示すような直径14mmの3層構造からな
るウレタンフォーム加工体81を作製した。加工体81
は、ウレタンフォーム気孔率80%の第1層81、気孔
率60%の第2層82および気孔率40%の第3層83
で構成されている。
First, three types of urethane foam having pores communicating with each other and having porosities of 80%, 60% and 40% respectively were prepared. By processing these urethane foams, a urethane foam processed body 81 having a three-layer structure with a diameter of 14 mm as shown in FIG. 8 was produced. Processed body 81
Is a first layer 81 having a porosity of 80%, a second layer 82 having a porosity of 60%, and a third layer 83 having a porosity of 40%.
It is composed of.

【0060】次に、HAP粉末に10重量%解膠剤を添加
した後水を加えて混合し、濃度20重量%のスラリーを
調製した。このスラリーを、ウレタンフォーム加工体8
0に吸収させた。これにより、スラリーがウレタンフォ
ームの互いに連通する気孔84の内部に浸透した。乾燥
後、1200℃で1時間焼成し、HAPを焼結させると
共にウレタンフォームを消滅させて、3層構造のHAP
多孔体を得た。このHAP多孔体の各層の気孔率は、最
内層部の第1層が80%、第2層が60%、最外層部の
第3層が40%であった。
Next, 10% by weight of a deflocculant was added to the HAP powder, and then water was added and mixed to prepare a slurry having a concentration of 20% by weight. This slurry is used as a urethane foam processed body 8
Absorbed to 0. As a result, the slurry permeated into the pores 84 of the urethane foam that communicate with each other. After drying, it is baked at 1200 ° C for 1 hour to sinter the HAP and extinguish the urethane foam.
A porous body was obtained. The porosity of each layer of this HAP porous body was 80% for the first layer in the innermost layer, 60% for the second layer, and 40% for the third layer in the outermost layer.

【0061】得られたHAP多孔体に、実施例3と同様
に調製した溶融複合体を、同様の手順に従って含浸させ
た後冷却して固化することにより、3層構造の薬物徐放
製剤を得た。得られた薬物徐放製剤において、複合体の
体積占有率は、第1層が80%、第2層が60%、最外
層部の第3層が40%であった。
The obtained HAP porous body was impregnated with the molten complex prepared in the same manner as in Example 3 according to the same procedure and then cooled and solidified to obtain a drug sustained-release preparation having a three-layer structure. It was In the obtained drug sustained-release preparation, the volume occupancy of the complex was 80% for the first layer, 60% for the second layer, and 40% for the third layer in the outermost layer.

【0062】このようにして得られた薬物徐放製剤は、
実施例4と同様の効果を奏する。
The drug sustained-release preparation thus obtained is
The same effect as that of the fourth embodiment is obtained.

【0063】[0063]

【発明の効果】本発明の薬剤徐放製剤は、各層における
薬物および生分解性有機物質を含む複合体のセラミック
スに対する割合が内層部よりも外層部の方が小さくなっ
ているので、生体内に埋入した際に、外層部および内層
部における生体組織と薬剤徐放製剤との接触面積が異な
っていても生分解性有機物質の分解が略一定に起こるの
で、埋入当初から全ての薬物が放出されるまでの薬物の
放出量を一定に保つことができる。
INDUSTRIAL APPLICABILITY Since the ratio of the complex containing the drug and the biodegradable organic substance to the ceramics in each layer of the drug sustained-release preparation of the present invention is smaller in the outer layer than in the inner layer, it can be used in vivo. When implanted, the biodegradable organic substance decomposes almost uniformly even if the contact area between the biological tissue and the drug sustained-release preparation in the outer and inner layers is different. The release amount of the drug can be kept constant until it is released.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の薬物徐放製剤の第1の実施例を示す断
面図。
FIG. 1 is a cross-sectional view showing a first embodiment of a drug sustained-release preparation of the present invention.

【図2】同実施例の薬物徐放製剤の製造方法の一工程を
示す説明図。
FIG. 2 is an explanatory view showing one step of a method for producing a drug sustained release preparation of the same example.

【図3】同実施例の薬物徐放製剤の製造方法の一工程を
示す説明図。
FIG. 3 is an explanatory view showing one step of the method for producing a drug sustained-release preparation of the same example.

【図4】本発明の薬物徐放製剤の第2の実施例を示す断
面図。
FIG. 4 is a sectional view showing a second embodiment of the drug sustained-release preparation of the present invention.

【図5】本発明の薬物徐放製剤の第3の実施例を示す断
面図。
FIG. 5 is a sectional view showing a third embodiment of the drug sustained-release preparation of the present invention.

【図6】同実施例の薬物徐放製剤の製造方法の一工程を
示す説明図。
FIG. 6 is an explanatory view showing one step of a method for producing a drug sustained release preparation of the same example.

【図7】同実施例の薬物徐放製剤の製造方法の一工程を
示す説明図。
FIG. 7 is an explanatory view showing one step of the method for producing the drug sustained release preparation of the same Example.

【図8】本発明の薬物徐放製剤の製造方法の他の実施例
において使用するウレタンフォーム加工体を示す断面
図。
FIG. 8 is a cross-sectional view showing a urethane foam processed body used in another example of the method for producing a drug sustained-release preparation of the present invention.

【符号の説明】[Explanation of symbols]

10…薬物徐放製剤、11…第1層、12…複合体、1
3…β−TCP顆粒、14…第2層、15…第3層、2
1,22…二つ割鋳型、23,24…混合物。
10 ... Drug sustained-release preparation, 11 ... First layer, 12 ... Complex, 1
3 ... β-TCP granules, 14 ... second layer, 15 ... third layer, 2
1, 22 ... Split mold, 23, 24 ... Mixture.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 薬物と生分解性有機物質との複合体およ
びセラミックスを包含する複数の層を有し、前記複数の
層の最外層を除く全ての層が当該層の一つ外側の層に被
覆されている薬物徐放製剤であって、前記複数の層の各
層における前記複合体のセラミックスに対する割合が内
側の層よりも外側の層の方が小さくなっていることを特
徴とする薬物徐放製剤。
1. A plurality of layers including a complex of a drug and a biodegradable organic substance and ceramics, and all layers other than the outermost layer of the plurality of layers are one outer layer of the layer. A coated drug sustained-release preparation, characterized in that the ratio of the composite to ceramics in each of the plurality of layers is smaller in the outer layer than in the inner layer. Formulation.
JP8885093A 1993-04-15 1993-04-15 Sustained release pharmaceutical preparation Pending JPH06298639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8885093A JPH06298639A (en) 1993-04-15 1993-04-15 Sustained release pharmaceutical preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8885093A JPH06298639A (en) 1993-04-15 1993-04-15 Sustained release pharmaceutical preparation

Publications (1)

Publication Number Publication Date
JPH06298639A true JPH06298639A (en) 1994-10-25

Family

ID=13954464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8885093A Pending JPH06298639A (en) 1993-04-15 1993-04-15 Sustained release pharmaceutical preparation

Country Status (1)

Country Link
JP (1) JPH06298639A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10229A (en) * 1996-04-19 1998-01-06 Dainippon Ink & Chem Inc Slow-releasable bioactive and bioabsorbable organic-inorganic compounded material having bone inducing or bone conducting function
WO2001062232A1 (en) * 2000-02-21 2001-08-30 Australian Nuclear Science & Technology Organisation Controlled release ceramic particles, compositions thereof, processes of preparation and methods of use
US6441073B1 (en) 1999-08-17 2002-08-27 Taki Chemical Co., Ltd. Biological materials
GB2399499A (en) * 2003-03-13 2004-09-22 Nanotrend Ino Tech Inc A porous apatite grain taste-masked oral dosage form
WO2004089417A1 (en) * 2003-04-07 2004-10-21 National Institute For Materials Science Drug-enclosing multilayer structure particulate and process for producing the same
JP2005512614A (en) * 2001-09-24 2005-05-12 ミレニアム・バイオロジクス,インコーポレイテッド Porous ceramic composite bone graft

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10229A (en) * 1996-04-19 1998-01-06 Dainippon Ink & Chem Inc Slow-releasable bioactive and bioabsorbable organic-inorganic compounded material having bone inducing or bone conducting function
US6441073B1 (en) 1999-08-17 2002-08-27 Taki Chemical Co., Ltd. Biological materials
WO2001062232A1 (en) * 2000-02-21 2001-08-30 Australian Nuclear Science & Technology Organisation Controlled release ceramic particles, compositions thereof, processes of preparation and methods of use
JP2005512614A (en) * 2001-09-24 2005-05-12 ミレニアム・バイオロジクス,インコーポレイテッド Porous ceramic composite bone graft
GB2399499A (en) * 2003-03-13 2004-09-22 Nanotrend Ino Tech Inc A porous apatite grain taste-masked oral dosage form
GB2399499B (en) * 2003-03-13 2006-12-27 Nanotrend Ino Tech Inc Stable and taste masked pharmaceutical dosage form using porous apatite grains
CN100377745C (en) * 2003-03-13 2008-04-02 杏力奈米生技股份有限公司 Stabilized medicine preparation form with by porous kietyoite covering flavour
US8182831B2 (en) 2003-03-13 2012-05-22 Nanotrend Ino-Tech Inc. Stable and taste masked pharmaceutical dosage form using porous apatite grains
WO2004089417A1 (en) * 2003-04-07 2004-10-21 National Institute For Materials Science Drug-enclosing multilayer structure particulate and process for producing the same

Similar Documents

Publication Publication Date Title
Chevalier et al. Fabrication of porous substrates: a review of processes using pore forming agents in the biomaterial field
US5714103A (en) Process for the production of shaped articles having a predetermined pore structure
US4969913A (en) Ceramics composites
US6221477B1 (en) Material and process for producing the same
EP1152709B1 (en) Controlled release composite
JP4723188B2 (en) Porous biocompatible implant material and method for producing the same
JP2572606B2 (en) Manufacturing method of superficially porous calcium phosphate ceramics
AU2002325762B2 (en) Porous ceramic composite bone grafts
JP2702953B2 (en) Chemical impregnated ceramics
US7799839B2 (en) Porous material having hierarchical pore structure and preparation method thereof
Descamps et al. Manufacture of hydroxyapatite beads for medical applications
JPH07194688A (en) Biomedical implant material and its manufacturing method
WO1998023556A1 (en) Method of production of ceramics
Zirak et al. Fabrication, drug delivery kinetics and cell viability assay of PLGA-coated vancomycin-loaded silicate porous microspheres
JPH06298639A (en) Sustained release pharmaceutical preparation
JPH06228011A (en) Calcium phosphate-based sustained release material for drug and its production
Román et al. An optimized β‐tricalcium phosphate and agarose scaffold fabrication technique
KR100941374B1 (en) Bio-degradable triple pore ceramic-polymer scaffold and preparation method thereof
US20050013973A1 (en) Implant
JP3718708B2 (en) Calcium phosphate bioceramic sintered body and method for producing the same
JPH09299472A (en) Implant material for living body and its preparation
JP2003212756A (en) Drug sustained release agent
HU200416B (en) Method for producing biocompatible layered body of calcium phosphate content
JP3152665B2 (en) Carrier for sustained release agent and method for producing the same
JPH041122A (en) Sustained release material and production thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020709