JPH06269719A - Coating apparatus for viscous material - Google Patents

Coating apparatus for viscous material

Info

Publication number
JPH06269719A
JPH06269719A JP8024793A JP8024793A JPH06269719A JP H06269719 A JPH06269719 A JP H06269719A JP 8024793 A JP8024793 A JP 8024793A JP 8024793 A JP8024793 A JP 8024793A JP H06269719 A JPH06269719 A JP H06269719A
Authority
JP
Japan
Prior art keywords
coating
viscous material
acceleration
time management
deceleration control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8024793A
Other languages
Japanese (ja)
Inventor
Tomonori Kuratomi
智規 倉富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP8024793A priority Critical patent/JPH06269719A/en
Publication of JPH06269719A publication Critical patent/JPH06269719A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L24/743Apparatus for manufacturing layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L2224/743Apparatus for manufacturing layer connectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1241Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manipulator (AREA)
  • Coating Apparatus (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
  • Die Bonding (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

PURPOSE:To provide an apparatus capable of a quantitative coating by using a fixed quantity feeding device for viscous material. CONSTITUTION:The apparatus is equipped with a horizontal articulated robot 5, a viscous material feeding device 6, an acceleration/deceleration control part 3 for controlling the travel speed of the hands of the robot, and a abating time control part 2 for commanding the start/end of coating to the viscous material feeding device 6 and giving the travel speed command to the acceleration/deceleration control device 3. The acceleration/deceleration control part 3 operates the horizontal articulated robot 5 according to the set velocity V (s) and the action start command sent from the coating time control part 2. The viscous material feeding device 6 starts feeding the viscous material by the coating start command sent from the coating time control part 2 and stops feeding the viscous material by the coating finish command sent from the coating time control part 2, thus to constitute a coating apparatus for viscous material where the horizontal articulated robot is moved at a speed determined after considering the influence of non-fixed quantity prevailing at the time of coating start.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、機械部品の組立、電子
部品の基板への実装等において、粘性材料の塗布作業を
する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for applying viscous material in assembling mechanical parts, mounting electronic parts on a substrate, and the like.

【0002】[0002]

【従来の技術】従来、機械部品の組立や電子部品の基板
への実装等において、接着剤、シーリング剤のワークへ
の定量塗布が重要な作業となっており、定量塗布のため
に、例えば特開昭62−210071号公報に記載の粘
性材料塗布装置がある。
2. Description of the Related Art Conventionally, quantitative application of an adhesive or a sealing agent to a work has been an important task in the assembly of mechanical parts or mounting of electronic parts on a substrate. There is a viscous material coating device described in JP-A-62-210071.

【0003】すなわち、ロボットの手先のはけにシール
剤としてプライマを供給する粘性材料供給装置と手先に
はけを持つロボットとにより構成され、ロボットの手先
が移動する軌道形状のコーナーの部分ではロボットの手
先の移動速度が低下するといった塗布速度の変化に対応
して、粘性材料供給装置からのプライマ塗布量を制御す
ることによって、塗布部分に垂れやかすれを生じさせな
いようにしている。
That is, the robot is composed of a viscous material supply device for supplying a primer as a sealant to the brush of the hand of the robot and a robot having a brush at the hand of the robot. The amount of primer applied from the viscous material supply device is controlled in response to a change in the application speed such as a decrease in the moving speed of the hand, so that dripping or blurring does not occur in the application part.

【0004】[0004]

【発明が解決しようとする課題】このような粘性材料塗
布装置は、定量塗布に効果的ではあるが、塗布量を任意
に制御する機能を有する必要があり、粘性材料供給装置
が複雑かつ高価になる。さらに、塗布開始時点での塗布
の現象を考慮していない。すなわち、粘性材料供給装置
は、流量を制御しているが、一般にその制御は定常状態
における流量を一定にするもので、流れはじめにおける
流量は定常的に流れるときより多く流れるために場合に
よっては粘性材料の垂れが起こるという課題がある。
Although such a viscous material coating device is effective for quantitative coating, it needs to have a function of arbitrarily controlling the coating amount, which makes the viscous material supply device complicated and expensive. Become. Furthermore, the phenomenon of application at the start of application is not considered. That is, the viscous material supply device controls the flow rate, but in general, the control keeps the flow rate constant in the steady state, and the flow rate at the beginning of the flow is larger than that when the flow is steady. There is a problem that the material sags.

【0005】これらの課題を解決するため、本発明の目
的は、一定流量の粘性材料供給装置を用いて定量塗布を
可能にする装置の提供を目的とする。
In order to solve these problems, it is an object of the present invention to provide an apparatus which enables constant quantity coating using a viscous material supply apparatus having a constant flow rate.

【0006】[0006]

【課題を解決するための手段】上記目的を達成させるた
めに、本発明は、ロボットと、粘性材料供給装置と、ロ
ボット手先の移動速度を制御する加減速制御部と、粘性
材料供給装置へ塗布開始、終了を指令し、加減速制御部
へ移動速度指令を与える塗布時刻管理部と、粘性材料の
ワークへの塗布点において粘性材料の塗布線密度を測定
する塗布線密度測定部とから構成され、データとして、
線密度関数δ(S)、設定速度関数Vs(S)を利用す
る。
In order to achieve the above object, the present invention provides a robot, a viscous material supply device, an acceleration / deceleration control unit for controlling the moving speed of a robot hand, and a viscous material supply device. It consists of a coating time management unit that gives start and end commands and gives a movement speed command to the acceleration / deceleration control unit, and a coating linear density measurement unit that measures the coating linear density of the viscous material at the point of coating the viscous material on the workpiece. , As data,
The linear density function δ (S) and the set speed function Vs (S) are used.

【0007】[0007]

【作用】塗布時刻管理部は、加減速制御部に対して、動
作開始指令を出す。つぎにロボット手先が塗布開始点に
達したことを確認して、塗布時刻管理部は粘性材料供給
装置に対して塗布開始指令を出す。粘性材料供給装置は
塗布開始指令を受けて、粘性材料の送出を開始する。塗
布線密度測定部は、粘性材料の塗布状態を測定し、その
測定量から粘性材料の塗布線密度を演算し、塗布位置
(経路長S)の関数として線密度関数δ(S)を記憶す
る。塗布時刻管理部は、塗布線密度測定部から受け取
る、一つ前の動作についての線密度関数δ(S)から演
算して、塗布線密度が均一密度になるようにロボットの
設定速度関数Vs(S)を加減する。加減速制御部は、
設定速度関数Vs(S)どうりにロボットの手先が移動
するようにロボットを制御する。塗布時刻管理部は、塗
布を終了する点にロボット手先が到達したことを確認し
て、粘性材料供給装置に塗布終了指令を出す。粘性材料
供給装置は、塗布終了指令を受けて、粘性材料の送出を
終了する。
The coating time management unit issues an operation start command to the acceleration / deceleration control unit. Next, after confirming that the robot hand has reached the coating start point, the coating time management unit issues a coating start command to the viscous material supply device. The viscous material supply device receives the application start command and starts the delivery of the viscous material. The coating linear density measuring unit measures the coating state of the viscous material, calculates the coating linear density of the viscous material from the measured amount, and stores the linear density function δ (S) as a function of the coating position (path length S). . The coating time management unit calculates from the linear density function δ (S) for the previous operation received from the coating linear density measuring unit, and sets the robot's set speed function Vs (so that the coating linear density becomes uniform. Adjust S). The acceleration / deceleration control unit
The robot is controlled so that the hand of the robot moves in accordance with the set speed function Vs (S). The coating time management unit confirms that the robot hand has reached the point where the coating is finished, and issues a coating finish command to the viscous material supply device. The viscous material supply device receives the application end command and ends the delivery of the viscous material.

【0008】[0008]

【実施例】以下、本発明による一実施例を図面を基に説
明する。本発明では、同じ塗布動作を繰り返し実行する
ことにより、定量塗布の方法を学習してゆく手法を用い
ている。図1は、本発明による粘性材料塗布装置の構成
図である。水平多関節ロボット5の手先に固定治具15
によってノズル8、センサ7が装着してある。固定治具
15は、水平多関節ロボット5の上下旋回軸16によ
り、上下、回転する。ノズル8には、管14を通して粘
性材料供給装置6から粘性材料が供給される。ノズル8
からワーク9へ粘性材料13を塗布する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment according to the present invention will be described below with reference to the drawings. In the present invention, a method of learning the quantitative coating method by repeatedly executing the same coating operation is used. FIG. 1 is a configuration diagram of a viscous material coating device according to the present invention. Fixing jig 15 on the hand of horizontal articulated robot 5
The nozzle 8 and the sensor 7 are attached by the. The fixing jig 15 rotates up and down by the vertical turning shaft 16 of the horizontal articulated robot 5. The viscous material is supplied to the nozzle 8 from the viscous material supply device 6 through the pipe 14. Nozzle 8
The viscous material 13 is applied to the work 9 from.

【0009】粘性材料供給装置6は、後述する塗布時刻
管理部2からの塗布開始指令17を受け取ると粘性材料
の送出を開始し、塗布終了指令18を受け取ると送出を
停止する一定流量の粘性材料供給装置である。
The viscous material supply device 6 starts the delivery of the viscous material when it receives a coating start command 17 from the coating time management unit 2 which will be described later, and stops the delivery when it receives the coating end command 18, which is a constant flow rate of the viscous material. It is a supply device.

【0010】制御部分は、ロボットコントローラ1とし
てまとめてある。これらは、部分的に分けられたお互い
に通信する装置群であっても構わない。ロボットコント
ローラ1には、塗布時刻管理部2、加減速制御部3、塗
布線密度測定部4がある。本発明は、運動軌道を軌道の
始点からの経路長Sの関数として表現しておき、経路長
Sの時々刻々の増加速度を管理する加減速制御部でマニ
ピュレータの加減速制御を行うものである。
The control part is summarized as a robot controller 1. These may be partially divided device groups that communicate with each other. The robot controller 1 includes a coating time management unit 2, an acceleration / deceleration control unit 3, and a coating linear density measuring unit 4. The present invention expresses the motion trajectory as a function of the path length S from the starting point of the trajectory, and controls the acceleration / deceleration of the manipulator by an acceleration / deceleration control unit that manages the increasing speed of the path length S every moment. .

【0011】加減速制御部3は、本出願人による特願平
4−191380号公報に記載の加減速制御装置を利用
することができる。図5は、加減速制御部3のデータの
流れを示すブロック図である。図5をもとに動作を説明
する。演算処理は、経路速度指令設定部51、経路速度
偏差演算部53、経路加速度演算部54、経路速度演算
部55、経路長演算部56、停止制御部52の順序で実
行される。一定の制御周期にて繰り返され、運動軌道が
生成される。また、動作開始時には、つぎの処理を行
う。 1。 S=0 2。 V=0(経路上の移動速度を経路速度Vとして定
義する) 3。 SW=1
The acceleration / deceleration control unit 3 can use the acceleration / deceleration control device described in Japanese Patent Application No. 4-191380 filed by the present applicant. FIG. 5 is a block diagram showing a data flow of the acceleration / deceleration control unit 3. The operation will be described with reference to FIG. The calculation processing is executed in the order of the route speed command setting unit 51, the route speed deviation calculation unit 53, the route acceleration calculation unit 54, the route speed calculation unit 55, the route length calculation unit 56, and the stop control unit 52. The motion trajectory is generated by repeating the control with a constant control cycle. Further, at the start of operation, the following processing is performed. 1. S = 0 2. V = 0 (the moving speed on the route is defined as the route speed V) 3. SW = 1

【0012】経路速度指令設定部51は、経路長Sから
設定速度関数Vs(S)を用いて、データCをC=Vs
(S)として演算する。設定速度関数Vs(S)は、経
路上の速度設定を表す。速度選択SWに従って切り替え
処理58を行い、経路速度指令Vrを得る。
The route speed command setting unit 51 uses the set length function Vs (S) from the route length S to convert the data C into C = Vs.
Calculate as (S). The set speed function Vs (S) represents the speed setting on the route. The switching process 58 is performed according to the speed selection SW to obtain the route speed command Vr.

【0013】経路速度偏差演算部53は、経路速度指令
Vrから経路速度Vを差し引いて経路速度偏差Eを演算
する。
The route speed deviation calculator 53 calculates the route speed deviation E by subtracting the route speed V from the route speed command Vr.

【0014】経路加速度演算部54は、経路速度偏差E
から加速度関数F(E)を用いて、データBをB=F
(E)として演算する。加速度関数F(E)は加減速の
特性を表す。さらにデータBに加速度リミッタ50を作
用させて経路加速度Aを演算する。 +Amax ;B≧Amax A= B ;−Amax <B<Amax −Amax ;B≦−Amax Amax ;最大加速度
The route acceleration calculation unit 54 calculates the route velocity deviation E.
From the acceleration function F (E), the data B is B = F
Calculate as (E). The acceleration function F (E) represents the characteristics of acceleration / deceleration. Further, the acceleration limiter 50 is applied to the data B to calculate the path acceleration A. + Amax; B ≧ Amax A = B; −Amax <B <Amax −Amax; B ≦ −Amax Amax; maximum acceleration

【0015】経路速度演算部55は経路加速度Aを積算
して経路速度Vを求める。経路長演算部56は経路速度
Vを積算して経路長Sを求める。
The route speed calculator 55 integrates the route acceleration A to obtain a route speed V. The route length calculation unit 56 integrates the route speed V to obtain the route length S.

【0016】停止制御部52は、経路速度Vから減速停
止するまでの減速距離Wを計算し、経路残り長Lが減速
距離Wより小さくなると、経路速度指令Vrを0とする
よう速度選択SWを制御すると共に、軌道終点の教示点
でちょうど停止するように経路加速度演算部のパラメー
タを変更する。
The stop control unit 52 calculates the deceleration distance W from the route speed V to the deceleration stop, and when the remaining route length L becomes smaller than the deceleration distance W, the speed selection SW is set so that the route speed command Vr becomes 0. While controlling, the parameters of the path acceleration calculation unit are changed so as to just stop at the teaching point at the end point of the trajectory.

【0017】塗布線密度測定部4は、図3に示すよう
に、粘性材料13の塗布状態をセンサ7、つまりTVカ
メラによって採画し、画像Hの画像処理を行って、塗布
された粘性材料を軌跡方向20の線としてとらえ、その
線幅k(S)をもって、塗布位置(経路長S)の線密度
関数δ(S)として記憶する。
As shown in FIG. 3, the coating linear density measuring unit 4 samples the coating state of the viscous material 13 by the sensor 7, that is, a TV camera, performs image processing of the image H, and applies the coated viscous material. Is regarded as a line in the trajectory direction 20, and its line width k (S) is stored as a line density function δ (S) of the coating position (path length S).

【0018】あるいは、より正確を期するには、図4に
示すように軌跡方向20に垂直な方向のスリット光をあ
ててその反射光30の発生位置を斜め上方よりTVカメ
ラにて測定し、反射光30の発生位置の分布より演算し
て、経路長Sの位置での粘性材料の断面積A(S)をも
とめ線密度関数δ(S)とする方法をとることも可能で
ある。この場合、スリット光照射装置とTVカメラがセ
ンサ7に相当する(図1参照)。
Alternatively, for more accuracy, as shown in FIG. 4, a slit light in a direction perpendicular to the locus direction 20 is applied and the position where the reflected light 30 is generated is measured obliquely from above by a TV camera. It is also possible to use the method of calculating the cross-sectional area A (S) of the viscous material at the position of the path length S to obtain the linear density function δ (S) by calculating from the distribution of the generation position of the reflected light 30. In this case, the slit light irradiation device and the TV camera correspond to the sensor 7 (see FIG. 1).

【0019】塗布時刻管理部2の詳細と動作シーケンス
を図1及び図2を用いて説明する。まず、塗布時刻管理
部2は、加減速制御部3へ設定速度関数Vs(S)を送
る。縦軸に経路の線速度、横軸に時刻をとり、設定速度
関数Vs(S)と実際の経路速度Vを図2に示す。実際
の経路速度Vには加減速領域があるが、加速、減速操作
は加減速制御部3が自動的に行うので、設定速度関数V
s(S)に盛り込む必要はない。目的の塗布作業を行う
ため、水平多関節ロボット5の動作には、加速が終了
し、設定速度になったところで、塗布が開始できるよう
に助走区間21があり、塗布が終了し減速停止するオー
バラン区間23がある。その中間の部分では、繰り返し
学習によって獲得された、設定速度関数Vs(S)で動
作する塗布区間22がある。
The details and operation sequence of the coating time management unit 2 will be described with reference to FIGS. 1 and 2. First, the application time management unit 2 sends the set speed function Vs (S) to the acceleration / deceleration control unit 3. FIG. 2 shows the set velocity function Vs (S) and the actual route velocity V, where the vertical axis represents the linear velocity of the route and the horizontal axis represents the time. Although the actual route speed V has an acceleration / deceleration area, the acceleration / deceleration operation is automatically performed by the acceleration / deceleration control unit 3, so the set speed function V
It need not be included in s (S). In order to perform the desired coating operation, the operation of the horizontal articulated robot 5 has the run-up section 21 so that the coating can be started when the acceleration is completed and the set speed is reached. There is a section 23. In the middle part, there is a coating section 22 that operates with the set speed function Vs (S), which is acquired by iterative learning.

【0020】つぎに、塗布時刻管理部2は、加減速制御
部3へ動作開始指令11を送り(図1)、加減速制御部
3から時時刻刻変化する経路長Sを受け取り、塗布開始
点に到達したことを確認して、塗布開始指令17を粘性
材料供給装置6へ送る。つぎに、塗布時刻管理部2は、
経路長Sが塗布を終了する点に達したことを確認して、
塗布終了指令18を粘性材料供給装置6へ送る。ここか
ら先はオーバラン区間23(図2参照)となり、加減速
制御部3が減速操作を行ってロボット動作が終了する。
Next, the application time management unit 2 sends an operation start command 11 to the acceleration / deceleration control unit 3 (FIG. 1), receives the path length S that changes from time to time at the application start point. After confirming that the viscosity has reached, the application start command 17 is sent to the viscous material supply device 6. Next, the application time management unit 2
After confirming that the path length S has reached the point where coating is finished,
A coating end command 18 is sent to the viscous material supply device 6. From this point onwards, the overrun section 23 (see FIG. 2) is reached, and the acceleration / deceleration control unit 3 performs a deceleration operation and the robot operation ends.

【0021】設定速度関数Vs(S)の獲得方法を説明
する。塗布時刻管理部2は、まず、塗布動作開始前に塗
布線密度測定部4から線密度関数δ(S)を受け取るが
この情報は、一つ前の実行における結果である。目標と
する線密度をΔとして、以下の式により、設定速度関数
Vs(S)を変更する。 Vs(S)=Vs(S)(1+α×(δ(S+β)−Δ)) ここで、α(>0)、β(>0)の大きさは、装置の大
きさや粘性材料の粘度などによってきまる値で制御が安
定に働く値を設定する。
A method of acquiring the set speed function Vs (S) will be described. The coating time management unit 2 first receives the linear density function δ (S) from the coating linear density measuring unit 4 before the start of the coating operation, but this information is the result of the previous execution. With the target linear density being Δ, the set speed function Vs (S) is changed by the following equation. Vs (S) = Vs (S) (1 + α × (δ (S + β) −Δ)) where α (> 0) and β (> 0) depend on the size of the device and the viscosity of the viscous material. Set a value at which control works stably with a fixed value.

【0022】繰り返し実行回数が重なるに連れ、設定速
度関数Vs(S)は、塗布線密度関数δ(S)を一定値
Δにするような設定速度関数Vs(S)となる。
As the number of repeated executions increases, the set speed function Vs (S) becomes the set speed function Vs (S) that makes the coating linear density function δ (S) a constant value Δ.

【0023】本実施例では、上記のように、複数の繰り
返し動作中に逐次、設定速度関数Vs(S)を更新する
方法をとったが、設定速度関数Vs(S)は予め、他の
方法にて決定し固定して用いる方法も考えられる。例え
ば、試行動作として、上記の繰り返し補正する方法によ
り、Vs(S)を導いておき、実作業時には、Vs
(S)の学習を行わないで、試行動作にて導かれたVs
(S)を用いる方法でも良い。また、発見的な解法を適
用して、人間の直感に基づく設定の仕方もあるだろう。
これらの場合、実作業を行うときに、塗布線密度測定部
4や、センサ7は、必要ない。
In this embodiment, as described above, the method of sequentially updating the set speed function Vs (S) during a plurality of repetitive operations is used. However, the set speed function Vs (S) is previously changed by another method. It is also conceivable that the method is determined and fixed and used. For example, as a trial operation, Vs (S) is derived by the above-described method of repetitive correction, and Vs (S) is calculated during actual work.
Vs derived by the trial operation without learning (S)
A method using (S) may be used. Also, there may be a method of setting based on human intuition by applying a heuristic solution.
In these cases, the coating linear density measuring unit 4 and the sensor 7 are not necessary when performing the actual work.

【0024】また、本実施例では、目標とする線密度を
Δとして一定値にしたが、これを経路長の関数Δ(S)
として考えれば、経路上の塗布線密度を変化させながら
塗布する作業にも適用することができるのは明確であ
る。
Further, in the present embodiment, the target linear density is set to Δ and is set to a constant value, but this is a function of the path length Δ (S).
Therefore, it is clear that the present invention can be applied to the work of coating while changing the coating linear density on the path.

【0025】[0025]

【発明の効果】本発明による粘性材料塗布装置は、設定
速度関数Vs(S)を自由に設定できる加減速制御部を
構成要素としているので、塗布線密度を目標の線密度に
するような設定速度関数Vs(S)でロボットを動作さ
せることにより、粘性材料供給装置の塗布開始時点の不
定流量時の影響を考慮した定量塗布が可能である。さら
に、塗布線密度を経路長の関数Δ(S)に追従させるこ
とも可能となる。また、設定速度関数Vs(S)の決定
は、塗布線密度測定部が測定する線密度関数δ(S)を
利用して繰り返し変更することで自動的に行うことが可
能である。
Since the viscous material coating apparatus according to the present invention has an acceleration / deceleration control section that can freely set the set speed function Vs (S), the coating linear density is set to a target linear density. By operating the robot with the velocity function Vs (S), it is possible to perform quantitative coating in consideration of the influence of an indefinite flow rate at the coating start time of the viscous material supply device. Further, it becomes possible to make the coating linear density follow the function Δ (S) of the path length. Further, the set speed function Vs (S) can be automatically determined by repeatedly changing the linear density function δ (S) measured by the coating linear density measuring unit.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す説明図で、構成図であ
る。
FIG. 1 is an explanatory diagram showing an embodiment of the present invention and is a configuration diagram.

【図2】本発明の一実施例の設定速度関数Vs(S)お
よび実際の経路速度Vを示す図である。
FIG. 2 is a diagram showing a set speed function Vs (S) and an actual route speed V according to an embodiment of the present invention.

【図3】本発明の一実施例の塗布線密度を測定する方法
の説明図である。
FIG. 3 is an explanatory diagram of a method for measuring a coated linear density according to an embodiment of the present invention.

【図4】本発明の一実施例の塗布線密度を測定する別の
方法の説明図である。
FIG. 4 is an explanatory diagram of another method for measuring the coating linear density according to the embodiment of the present invention.

【図5】本発明の一実施例の加減速制御部のデータの流
れを示すブロック図である。
FIG. 5 is a block diagram showing a data flow of an acceleration / deceleration control unit according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ロボットコントローラ 2 塗布時刻管理部 3 加減速制御部 4 塗布線密度測定部 5 水平多関節ロボット 6 粘性材料供給装置 7 センサ 8 ノズル 9 ワーク 11 動作開始指令 13 粘性材料 14 管 15 固定冶具 16 上下旋回軸 17 塗布開始指令 18 塗布終了指令 20 軌跡方向 21 助走区間 22 塗布区間 23 オーバラン区間 30 反射光 50 加速度リミッタ 51 経路速度指令設定部 52 停止制御部 53 経路速度偏差演算部 54 経路加速度演算部 55 経路速度演算部 56 経路長演算部 58 切り換え処理 1 Robot Controller 2 Application Time Management Section 3 Acceleration / Deceleration Control Section 4 Application Line Density Measurement Section 5 Horizontal Articulated Robot 6 Viscous Material Supply Device 7 Sensor 8 Nozzle 9 Work 11 Operation Start Command 13 Viscous Material 14 Pipe 15 Fixture 16 16 Vertical Rotation Axis 17 Application start command 18 Application end command 20 Trajectory direction 21 Run-up section 22 Application section 23 Overrun section 30 Reflected light 50 Acceleration limiter 51 Path speed command setting section 52 Stop control section 53 Path speed deviation calculation section 54 Path acceleration calculation section 55 Path Speed calculation unit 56 Path length calculation unit 58 Switching process

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // H05K 1/18 G 7128−4E ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location // H05K 1/18 G 7128-4E

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ロボットと、粘性材料供給装置と、ロボ
ット手先の移動速度を制御する加減速制御部と、粘性材
料供給装置へ塗布開始、終了を指令し、加減速制御部へ
移動速度指令を与える塗布時刻管理部とを備え、前記加
減速制御部は、前記塗布時刻管理部から送られる設定速
度関数Vs(S)と動作開始指令に従いロボットを動作
させ、前記粘性材料供給装置は、前記塗布時刻管理部か
ら送られる塗布開始指令により、粘性材料の供給を開始
し、前記塗布時刻管理部から送られる塗布終了指令によ
り粘性材料の供給を停止する粘性材料塗布装置。
1. A robot, a viscous material supply device, an acceleration / deceleration control unit for controlling a moving speed of a robot hand, a viscous material supply device, and a movement speed command to the acceleration / deceleration control unit. A coating time management unit for giving the application time, the acceleration / deceleration control unit operates the robot according to the set speed function Vs (S) and the operation start command sent from the coating time management unit, A viscous material coating device that starts the supply of a viscous material by a coating start command sent from a time management unit, and stops the supply of a viscous material by a coating end command sent from the coating time management unit.
【請求項2】 ロボットと、粘性材料供給装置と、ロボ
ット手先の移動速度を制御する加減速制御部と、粘性材
料供給装置へ塗布開始、終了を指令し、加減速制御部へ
移動速度指令を与える塗布時刻管理部と、粘性材料のワ
ークへの塗布点において粘性材料の塗布線密度を測定す
る塗布線密度測定部とを備え、前記塗布時刻管理部は、
前記塗布線密度測定部により測定された線密度関数δ
(S)を用いて設定速度関数Vs(S)を決定し、前記
加減速制御部は、前記塗布時刻管理部から送られる設定
速度関数Vs(S)と動作開始指令に従いロボットを動
作させ、前記粘性材料供給装置は、前記塗布時刻管理部
から送られる塗布開始指令により、粘性材料の供給を開
始し、前記塗布時刻管理部から送られる塗布終了指令に
より粘性材料の供給を停止する粘性材料塗布装置。
2. A robot, a viscous material supply device, an acceleration / deceleration control unit for controlling the moving speed of the robot hand, a command for starting and ending coating to the viscous material supply device, and a moving speed command for the acceleration / deceleration control unit. A coating time management unit for giving and a coating linear density measuring unit for measuring the coating linear density of the viscous material at the coating point of the viscous material on the work, the coating time management unit,
Linear density function δ measured by the coating linear density measuring unit
(S) is used to determine the set speed function Vs (S), and the acceleration / deceleration control unit operates the robot according to the set speed function Vs (S) and the operation start command sent from the coating time management unit, The viscous material supply device starts the supply of the viscous material in response to the application start command sent from the application time management unit, and stops the supply of the viscous material in response to the application end command sent from the application time management unit. .
JP8024793A 1993-03-16 1993-03-16 Coating apparatus for viscous material Pending JPH06269719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8024793A JPH06269719A (en) 1993-03-16 1993-03-16 Coating apparatus for viscous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8024793A JPH06269719A (en) 1993-03-16 1993-03-16 Coating apparatus for viscous material

Publications (1)

Publication Number Publication Date
JPH06269719A true JPH06269719A (en) 1994-09-27

Family

ID=13712998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8024793A Pending JPH06269719A (en) 1993-03-16 1993-03-16 Coating apparatus for viscous material

Country Status (1)

Country Link
JP (1) JPH06269719A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6107857A (en) * 1995-09-05 2000-08-22 Sharp Kabushiki Kaisha Level converting circuit
JP2006341197A (en) * 2005-06-09 2006-12-21 Yaskawa Electric Corp Sealing agent applicator
JP2009050828A (en) * 2007-08-29 2009-03-12 Shibaura Mechatronics Corp Paste coating apparatus and paste coating method
JP2012114285A (en) * 2010-11-25 2012-06-14 Apic Yamada Corp Resin molding apparatus
JPWO2017037931A1 (en) * 2015-09-03 2018-04-26 株式会社安川電機 Processing locus editing apparatus, robot, article processing system, and article manufacturing method
JP2019136841A (en) * 2018-02-14 2019-08-22 ファナック株式会社 Robot system and control method of the same performing learning control based on processing result
KR20230142976A (en) * 2022-04-04 2023-10-11 (주)칼라일플루이드테크놀로지스코리아 Sealer applying apparatus for car body with adjustable nozzle height

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6107857A (en) * 1995-09-05 2000-08-22 Sharp Kabushiki Kaisha Level converting circuit
JP2006341197A (en) * 2005-06-09 2006-12-21 Yaskawa Electric Corp Sealing agent applicator
JP2009050828A (en) * 2007-08-29 2009-03-12 Shibaura Mechatronics Corp Paste coating apparatus and paste coating method
JP2012114285A (en) * 2010-11-25 2012-06-14 Apic Yamada Corp Resin molding apparatus
JPWO2017037931A1 (en) * 2015-09-03 2018-04-26 株式会社安川電機 Processing locus editing apparatus, robot, article processing system, and article manufacturing method
JP2019136841A (en) * 2018-02-14 2019-08-22 ファナック株式会社 Robot system and control method of the same performing learning control based on processing result
US11117257B2 (en) 2018-02-14 2021-09-14 Fanuc Corporation Robot system for performing learning control based on machining results and control method therefor
DE102019000890B4 (en) 2018-02-14 2024-04-18 Fanuc Corporation Robot system for executing learning control based on machining results and related control method
KR20230142976A (en) * 2022-04-04 2023-10-11 (주)칼라일플루이드테크놀로지스코리아 Sealer applying apparatus for car body with adjustable nozzle height

Similar Documents

Publication Publication Date Title
JP3712927B2 (en) Paste applicator
EP3569357B1 (en) Automatic polishing system
JP2015127080A (en) Robot, control method for robot and control program for robot
JP2008132487A (en) Method for determining spraying parameters for controlling a painting apparatus using spraying means
JP2000271888A (en) Robot controller
EP0528047B1 (en) Method of controlling flowrate of sealing material in sealing by industrial robot
JPH06269719A (en) Coating apparatus for viscous material
JPH10264060A (en) Teaching device of painting robot
JP2006081955A (en) Sealing system
JP3376000B2 (en) Control device and control method for sealing work robot
JPS6121757A (en) Controlling method of paint emitting amount in automatic painting by robot
JP2600715B2 (en) Robot servo control method
JP2005125134A (en) Coating apparatus
EP0432274B1 (en) Method of depositing material on a rotary member using a robot
JP2006315157A (en) Teaching method of coating robot
JPH078160B2 (en) Motor controller
JPH11188686A (en) Robot controller
JP2993708B2 (en) Industrial robot and its trajectory correction method
JPH0724386A (en) Method and device for controlling coated pattern width of sealing agent
JPH06106127A (en) Setting of painting conditions of coating device
JP4780551B2 (en) Application robot
JPS58214377A (en) Method for controlling spray gun for coating
JP2000301042A (en) Resin coating device
JP2703815B2 (en) Painting method
JPH06285402A (en) Method of controlling rate of flow of sealing agent in sealing robot