JPH06264203A - Production of ti-al intermetallic compound - Google Patents

Production of ti-al intermetallic compound

Info

Publication number
JPH06264203A
JPH06264203A JP5419893A JP5419893A JPH06264203A JP H06264203 A JPH06264203 A JP H06264203A JP 5419893 A JP5419893 A JP 5419893A JP 5419893 A JP5419893 A JP 5419893A JP H06264203 A JPH06264203 A JP H06264203A
Authority
JP
Japan
Prior art keywords
lamella
phase
heat treatment
temperature
grain boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5419893A
Other languages
Japanese (ja)
Other versions
JP3382285B2 (en
Inventor
Kohei Taguchi
功平 田口
Tomohiko Ayada
倫彦 綾田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP05419893A priority Critical patent/JP3382285B2/en
Publication of JPH06264203A publication Critical patent/JPH06264203A/en
Application granted granted Critical
Publication of JP3382285B2 publication Critical patent/JP3382285B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a Ti-Al intermetallic compd. having excellent characteristics by subjecting the compd. to heat treatment to control spaces in lamellar layers. CONSTITUTION:The compd. is subjected to heat treatment to increase spaces in lamellar layers so as to obtain a strong lammellar structure in which the spaces in lamellar layers are controlled to desired spaces and lamellar grains are directly in contact with one another without the presence of other phases on the interfaces of grains. The heat treatment is carried out at temp. lower than the solid phase line and completed by increasing the interlayer spaces by joining lamellas. Preferable result is often obtd. when the heat treatment is carried out in an (alpha+gamma) two-phase region, further in the temp. range from (T-100) to T deg.C temp. T is the temp. where the gamma-phase precipitates when the compd. in the alpha phase or alpha2 phase or their coexistence phase is cooled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種機器の部品や耐火
構造物あるいは高温用弾性部材などに好適なTi−Al
系金属間化合物の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to Ti-Al suitable for parts of various equipments, refractory structures, high temperature elastic members and the like.
The present invention relates to a method for producing an intermetallic compound.

【0002】[0002]

【従来の技術】Ti−Al系金属間化合物は耐熱性,耐
酸化性,耐摩耗性等に優れしかも軽量であるなどの優れ
た性質をもつため、各種用途に使われる素材として有望
視されている。この種の金属間化合物を利用する製品例
としては、例えば高温で使用される外壁材や、タ−ビン
部材、ピストンやバルブシステム等のエンジン部品など
が考えられている。
2. Description of the Prior Art Ti-Al intermetallic compounds have excellent properties such as excellent heat resistance, oxidation resistance, wear resistance and the like, and are lightweight, and are therefore regarded as promising materials for various applications. There is. As examples of products that use this type of intermetallic compound, for example, outer wall materials used at high temperatures, turbine members, engine parts such as pistons and valve systems, and the like are considered.

【0003】Ti−Al系金属間化合物の組織の一態様
として、ラメラを含む組織が知られている。ラメラは、
主としてγからなる板状の相と主としてα2 (Ti3
l)からなる板状の相とがおおむね交互に積層した層状
組織であり、その1つの塊をラメラ粒と呼ぶ。γ相は主
としてTiAlからなるが、Ti3 AlやAl3 Ti等
が少量含まれている場合もある。ラメラ組織の強度はき
わめて高い。
A lamella-containing structure is known as one aspect of the structure of the Ti-Al intermetallic compound. The lamella is
A plate-like phase mainly consisting of γ and mainly α 2 (Ti 3 A
1) is a layered structure in which plate-like phases composed of 1) are generally alternately laminated, and one lump thereof is called a lamella grain. The γ phase is mainly composed of TiAl, but may contain a small amount of Ti 3 Al, Al 3 Ti, or the like. The strength of the lamella structure is extremely high.

【0004】ラメラ組織の層間隔を制御する手段とし
て、特開平3−199358号公報に記載されているよ
うに、95面積%以上のα相(Ti固溶体相)を作製し
た後の熱処理によって、ラメラ組織を微細化する製造方
法が提案されている。但し、ラメラ組織の層間隔を増大
させる方法は見られない。なお、α相はTi固溶体相、
α2 相はTi3 Al固溶体相、γ相はTiAl固溶体相
である。
As a means for controlling the layer spacing of the lamella structure, as described in Japanese Patent Application Laid-Open No. 3-199358, a lamella is formed by heat treatment after producing an α phase (Ti solid solution phase) of 95 area% or more. A manufacturing method for refining the structure has been proposed. However, no method has been found for increasing the layer spacing of the lamella structure. The α phase is a Ti solid solution phase,
The α 2 phase is a Ti 3 Al solid solution phase, and the γ phase is a TiAl solid solution phase.

【0005】[0005]

【発明が解決しようとする課題】前記ラメラ組織を含む
Ti−Al系金属間化合物は、ラメラの形成過程と成長
過程が明らかでなく、ラメラ組織を制御するための効果
的な方法が知られていなかった。例えば、微細なラメラ
を低温度域で熱処理した場合には、ラメラ粒界に乱れた
層状組織ができることがあり、そのような組織はTi−
Al系金属間化合物の優れた特質を生かしきれない。
With respect to the Ti-Al intermetallic compound containing the lamella structure, the lamella formation process and the growth process are not clear, and an effective method for controlling the lamella structure is known. There wasn't. For example, when a fine lamella is heat-treated in a low temperature range, a disordered layered structure may be formed in the lamella grain boundary, and such a structure has a Ti-structure.
The excellent characteristics of Al-based intermetallic compounds cannot be fully utilized.

【0006】また、本発明者らの行った研究によると、
互いに隣り合うラメラ粒同志が、例えばγ相を間に介す
ることなく直接ラメラ粒界において結合し、かつラメラ
粒界の凹凸が大きく、更には三次元的に食い込み合って
いるものが強度的に優れていることが判ったが、このよ
うなラメラ組織をいかにして得るかが明らかでなかっ
た。
According to the research conducted by the present inventors,
Lamellar grains that are adjacent to each other are directly bonded at the lamellar grain boundary without, for example, the γ phase interposed, and the unevenness of the lamellar grain boundary is large, and further, those that three-dimensionally interlock are excellent in strength. However, it was not clear how to obtain such a lamellar structure.

【0007】従って本発明の目的は、ラメラ組織を含む
Ti−Al系金属間化合物においてラメラ組織のもつ優
れた特質を生かすことができるようにラメラ組織を制御
可能とし、ラメラをより高性能なものにすることにあ
る。
Therefore, an object of the present invention is to control the lamella structure so that the excellent characteristics of the lamella structure in the Ti-Al intermetallic compound containing the lamella structure can be utilized, and the lamella having higher performance can be obtained. Is to

【0008】[0008]

【課題を解決するための手段】本発明者らは、ラメラの
成長過程についての研究を行った結果、次に述べるよう
な特徴的な2つの成長過程があることを見出だした。 (1)低温度域で見られる成長(乱れた層状組織の発
達) 層間隔の微細なラメラを熱処理した際に見られる成長
で、特に滑らかなラメラ粒界において見られ、ラメラ粒
界から新たなラメラ粒が成長する。この場合、隣りのラ
メラの方向と強い関係があり、更に成長するに伴って粒
内のラメラの方向の影響を受けることにより、複雑に連
続して方向の変化する規則性の乱れた層状組織が形成さ
れる。このような成長は、(T−100)℃以下の温度
域で起こりやすい。
As a result of research on the growth process of lamella, the present inventors have found that there are two characteristic growth processes as described below. (1) Growth observed in low temperature region (development of disordered lamellar structure) Growth observed when heat-treating fine lamellas with inter-layer spacing, particularly observed in smooth lamella grain boundaries, and newly observed from lamella grain boundaries. Lamella grains grow. In this case, there is a strong relationship with the direction of the adjacent lamella, and by further being affected by the direction of the lamella in the grain as it grows, a layered structure with disordered regularity in which the direction changes in a complex and continuous manner It is formed. Such growth is likely to occur in a temperature range of (T-100) ° C or lower.

【0009】なお、T℃は、図3に一例を示したよう
に、α相域もしくはα2 相域もしくはこれらの共存領域
から冷却した際にγが析出する温度である。これは組成
によって大きく変化し、冷却速度や添加元素によっても
変化する場合がある。冷却速度が速くなると、低温度側
にずれることがある。いずれにしても、ラメラが形成さ
れるにはαもしくはα2 相域からγが析出することが必
要である。
[0009] Incidentally, T ° C., as shown in the example of FIG. 3, is the temperature at which γ is precipitated upon cooling from alpha phase region or alpha 2 phase region or these coexistence region. This greatly changes depending on the composition, and may change depending on the cooling rate and the added element. As the cooling rate increases, the temperature may shift to the low temperature side. In any case, it is necessary for γ to be precipitated from the α or α 2 phase region in order to form lamella.

【0010】(2)高温度域で見られる成長(ラメラの
合体と層方向への成長) 主として、同一ラメラ粒内において層状組織が合体(も
しくは凝集)することにより、層間隔を増大させるもの
で、このラメラの合体(主として層状α2 の合体)は、
ラメラの粒界近傍・粒内のどちらにおいても見られる
が、この層状組織は、合体により層間隔を増大させると
同時にラメラの板状体面に平行な方向に成長する。この
成長によって、前記(1)に見られるような乱れた層状
組織が発生しなくなり、最初の層方向が維持される。
(2) Growth observed in a high temperature range (coalescence of lamellas and growth in the layer direction) Mainly because layer structures are coalesced (or aggregated) within the same lamella grain to increase the layer interval. , This lamella coalescing (mainly layered α 2 coalescing) is
This lamellar structure grows in the direction parallel to the lamella plate surface at the same time as the layer spacing increases due to coalescence, although it can be seen both near and within the lamella grain boundaries. By this growth, the disordered layered structure as seen in (1) above is not generated, and the initial layer direction is maintained.

【0011】また、場合によっては、粒界あるいは粒内
から新たなラメラ粒が成長する場合もあるが、この場合
でも新たなラメラ粒の層間隔が増大することにより、優
先的に成長するため、層状組織が乱れることはほとんど
なく、層方向を維持したまま成長する。
In some cases, new lamella grains may grow from the grain boundaries or within the grains. Even in this case, the layer spacing of the new lamella grains increases, so that the lamella grains preferentially grow. The layered structure is hardly disturbed and grows while maintaining the layer direction.

【0012】このラメラの成長によってラメラの粒界が
大きく凹凸形状をなすようになり、ラメラ粒同志が互い
の粒界において大きく食い込み合う組織となる。また、
冷却後にラメラ粒界にγ相が連続して存在することがな
く、ラメラ粒同志(特にα2同志、γ同志)が直接結合
した高強度なラメラ粒界が得られる。従って本発明の目
的を達成させるためには、(2)の方法が適している。
Due to the growth of the lamella, the grain boundaries of the lamella become large and uneven, and the lamella grains become a structure in which they largely dig into each other. Also,
After cooling, the γ phase does not continuously exist in the lamella grain boundaries, and a high-strength lamella grain boundary in which the lamella grains (especially α 2 and γ) are directly bonded is obtained. Therefore, the method (2) is suitable for achieving the object of the present invention.

【0013】上述の(2)の成長を遂げるためには大き
く分けて2つの方法がある。第1の方法は、α相域から
比較的速い冷却速度で冷却し、ラメラ組織を形成させた
のちに、所定の温度域、例えば(T−100)℃〜T℃
の温度範囲に保持する方法。この温度範囲に保持するた
めには、例えば図4に示すように室温まで冷却し再加熱
を行ってもよいし、あるいは図5に示されるように、連
続冷却過程で一定時間保持してもよい。
There are roughly two methods for achieving the above-mentioned growth (2). The first method is to cool from the α phase region at a relatively high cooling rate to form a lamella structure, and then to a predetermined temperature region, for example, (T-100) ° C to T ° C.
How to keep in the temperature range. In order to maintain this temperature range, for example, it may be cooled to room temperature and reheated as shown in FIG. 4, or may be held for a certain period of time in a continuous cooling process as shown in FIG. .

【0014】第2の方法は、図6に示すように、α相域
から比較的遅い速度で冷却し、ラメラ組織を形成させた
後、(T−100)℃〜T℃の温度範囲の連続冷却速度
を制御することによって、実質的にこの温度範囲に保持
する方法。この方法の場合のα相域からの冷却速度は、
例えば45at%Al以上では、10℃/分〜300℃/
分、45at%Al未満では、1℃/分〜30℃/分にす
るとよい。それより速いとラメラ粒界が凹凸の少ない組
織になってしまう。それより遅いと、γ粒が分離析出す
る場合がある。
In the second method, as shown in FIG. 6, after cooling from the α phase region at a relatively slow rate to form a lamella structure, a temperature range of (T-100) ° C. to T ° C. is continuously applied. A method of maintaining substantially this temperature range by controlling the cooling rate. The cooling rate from the α phase region in this method is
For example, at 45 at% Al or more, 10 ° C / min to 300 ° C /
If it is less than 45 at% Al, it is recommended to set it to 1 ° C / min to 30 ° C / min. If it is faster than that, the lamella grain boundary becomes a structure with less irregularities. If it is slower than that, γ grains may be separated and precipitated.

【0015】特にこの第2の方法は、部材中に組成のむ
らがあることによってγ相が析出する温度(T℃)に差
が生じる場合に好適である。すなわち、同一部材中にT
℃の違う部分が存在する場合は連続冷却が好都合であ
る。
This second method is particularly suitable when there is a difference in the temperature (T ° C.) at which the γ phase precipitates due to uneven composition in the member. That is, T in the same member
Continuous cooling is convenient when there are parts with different temperatures.

【0016】上記熱処理を(α+γ)2相域で実施する
と、ラメラの合体が生じやすくなる場合がある。その理
由は、Tiの固溶体であるαの拡散速度が速いことに起
因するものと推測される。このラメラの合体によって、
ラメラ層間隔の増加が格段に起こりやすくなる。なお、
冷却が速いことにより平衡状態からのずれが大きい場合
には、方向の乱れたラメラが発生しやすくなるので、1
200℃以上で熱処理すると好結果が得られる場合があ
る。
When the above heat treatment is carried out in the (α + γ) two-phase region, lamella coalescence may easily occur. It is assumed that the reason is that the diffusion rate of α, which is a solid solution of Ti, is high. By the combination of this lamella,
The lamellar layer spacing is much more likely to occur. In addition,
If the deviation from the equilibrium state is large due to the rapid cooling, lamella with a disordered direction is likely to occur.
Good results may be obtained by heat treatment at 200 ° C. or higher.

【0017】また、T℃以上に保持したのち、T℃以下
まで冷却する際の冷却速度が比較的遅い場合にはラメラ
の成長が進行しやすいため、(T−50)℃〜T℃の温
度域とするのが良い場合がある。T℃以上の温度域では
ラメラが存在せず、αまたはα2 相となるので、T℃以
上ではラメラの合体は起こりえない。(T−100)℃
以下では、特にラメラ粒界からの方向の乱れたラメラの
成長が起こりやすくなり、本発明の目的に合致するラメ
ラ組織が得にくい場合がある。
Further, after the temperature is kept at T ° C. or higher, if the cooling rate at the time of cooling to T ° C. or lower is relatively slow, lamella growth is likely to proceed, so that the temperature of (T-50) ° C. to T ° C. It may be good to set it as the area. In the temperature range of T ° C or higher, lamella does not exist and becomes α or α 2 phase, so that lamella coalescence cannot occur at T ° C or higher. (T-100) ° C
In the following, particularly, the growth of lamella having a disordered direction from the lamella grain boundary is likely to occur, and it may be difficult to obtain a lamella structure that meets the object of the present invention.

【0018】従って前記の目的を果たすための本発明
は、ラメラ組織を含むTi−Al系金属間化合物の製造
方法において、ラメラの層間隔を増加させる熱処理を固
相線温度以下で行うことを特徴とする。本発明によって
得られるラメラ組織は、互いに隣り合うラメラ粒同志
が、連続する他の相を間に介することなく直接ラメラ同
志の界面において結合する組織となる。この金属間化合
物は、互いに隣接する上記ラメラ粒の粒界が凹凸形状を
なしており、その凹凸部においてラメラ同志が互いに三
次元的に食い込み合っている。
Therefore, the present invention for achieving the above object is characterized in that, in the method for producing a Ti-Al intermetallic compound containing a lamella structure, the heat treatment for increasing the lamella layer spacing is performed at a temperature below the solidus temperature. And The lamella structure obtained by the present invention is a structure in which adjacent lamella grains are directly bonded at the interface of the lamellas without interposing another continuous phase. In this intermetallic compound, the grain boundaries of the lamella grains that are adjacent to each other form an irregular shape, and the lamellae are mutually three-dimensionally bite into each other in the irregular portion.

【0019】本発明の金属間化合物の組成は、ラメラを
形成可能な組成域であればよいが、TiとAlの2元系
の場合には、35〜50at%Alの範囲が適している。
更には、(α+γ)2相域を存在させることのできる4
1〜50at%Alの範囲が好適である。また、諸特性の
改善を図るためにSi,Nb,Mn,Cr,V,Pb等
の添加元素や、TiB2 ,Y2 3 ,Ti5 Si3 等の
セラミックス,金属間化合物の微細強化物を添加する
か、析出させるなどして改質されたラメラ組織を含むT
i−Al系金属間化合物にも効果があり、ラメラが存在
する全ての組織に対して有効である。
The composition of the intermetallic compound of the present invention may be in the composition range capable of forming a lamella, but in the case of a binary system of Ti and Al, the range of 35 to 50 at% Al is suitable.
Furthermore, it is possible to have a (α + γ) 2 phase region 4
A range of 1 to 50 at% Al is suitable. In addition, in order to improve various characteristics, additive elements such as Si, Nb, Mn, Cr, V, and Pb, ceramics such as TiB 2 , Y 2 O 3 , and Ti 5 Si 3 and micro-reinforced compounds of intermetallic compounds. T containing a lamella structure modified by adding or precipitating
It is also effective for i-Al intermetallic compounds and is effective for all tissues in which lamellae exist.

【0020】なお、上記金属間化合物中に組成のむらが
あるとラメラの成長速度にばらつきが生じやすいので、
微細にむらを制御することが容易な粉末や箔等を原料に
用いた焼結法や、更に微細な組織が容易に得られる反応
合成法(反応焼結法)による製造方法が適している。
If the composition of the intermetallic compound is uneven, the growth rate of the lamella tends to vary.
Suitable are a sintering method using as a raw material a powder, foil, or the like for which fine unevenness can be easily controlled, or a production method by a reaction synthesis method (reactive sintering method) that can easily obtain a finer structure.

【0021】[0021]

【作用】上述したラメラの合体(層間隔の増加)と、ラ
メラ粒界でのラメラの成長とは互いに密接な関係があ
り、これらは同時に進行するものと考えられる。その理
由は以下のようであると推測される。ラメラはγとα
(もしくはα2 )の界面を有するため、合体により界面
が減ればエネルギー的により安定な状態になる。同時
に、ラメラ粒界においては、層間隔の小さい層状組織か
らエネルギー的により安定な大きい層状組織に溶解再析
出することにより、層間隔の大きな層状組織が層と平行
な方向に成長する。
The coalescence of lamellae (increased layer spacing) described above and the growth of lamellas at the lamella grain boundaries are closely related to each other, and it is considered that these proceed simultaneously. The reason is presumed to be as follows. Lamella is γ and α
Since it has an interface of (or α 2 ), it becomes energetically more stable if the interface is reduced by coalescence. At the same time, in the lamella grain boundary, the layered structure having a large layer spacing grows in the direction parallel to the layer by dissolution and re-precipitation from the layered structure having a small layer spacing to a larger layer structure that is energetically more stable.

【0022】ラメラの合体は粒内においても進行するの
で、合体過程ではラメラ粒内において層間隔のばらつき
が生じ、これによってラメラ粒界における成長速度に層
単位での違いが生じる。その結果、層単位の大きな凹凸
が発生し、粒界において一方のラメラ粒が他方のラメラ
粒に大きく食い込むようになる。このようなラメラの合
体と粒界での成長が同時に進行することによって大きな
凹凸が発生しやすくなり、この成長は、(T−100)
℃からT℃の間で起こりやすいことが本発明者らの研究
により判った。
Since the lamella coalescence proceeds even within the grains, the layer spacing varies within the lamella grains during the coalescence process, which causes a difference in the growth rate at the lamella grain boundary on a layer-by-layer basis. As a result, large unevenness is generated in the layer unit, and one lamella grain largely digs into the other lamella grain at the grain boundary. Large ruggedness is likely to occur due to such lamella coalescence and growth at the grain boundary simultaneously, and this growth is (T-100).
It has been found by the study of the present inventors that this phenomenon is likely to occur between 0 ° C and T ° C.

【0023】上記のようにラメラが板状体面に平行な方
向に成長をとげたラメラ組織は、ラメラの粒界部におい
て、互いに隣り合うラメラ粒同志が、連続する他の相を
間に介することなく直接ラメラ同志の界面において結合
しており、しかも粒界が凹凸形状をなしており、その凹
凸部が互いに食い込み合っており、かつ、凹凸部におけ
る相手側のラメラ粒への食い込み長さがラメラの層間隔
以上ある。更には、ラメラの粒界同志が三次元的に食い
込み合っている。このような粒界の状態を、この明細書
では粒界の形態Aと称する。
In the lamella structure in which the lamella grows in the direction parallel to the plate-like body surface as described above, the adjacent lamella grains are adjacent to each other in the lamella grain boundary portion. Instead, they are directly bonded at the interfaces of the lamellas, and the grain boundaries have an irregular shape, and the irregularities bite into each other, and the length of biting into the mating lamella grains in the irregularities is the lamella. There is more than the layer interval. Furthermore, the lamella grain boundary comrades dig into each other in three dimensions. Such a state of grain boundaries is referred to as grain boundary form A in this specification.

【0024】上述のラメラの合体は、α領域から冷却す
ることにより微細なラメラを形成させ、その後の熱処理
を(α+γ)2相領域でかつ(T−100)℃〜T℃の
温度に一定時間保持することにより、ラメラ粒界の制御
が達成された例である。ラメラを合体させるには、熱処
理を行う際にある特定の温度範囲に保持することが重要
であり、保持後の冷却速度には直接的な関連性のないこ
とも判明した。従って熱処理後の冷却は、ガス急冷等の
急速冷却でもよい。こうしてラメラ層間隔を制御するこ
とにより、目的に応じた特性(強度、硬度、耐熱性、耐
衝撃性等)をコントロールすることが可能になり、Ti
−Al系金属間化合物の高性能化が図れる。
The above-mentioned lamellae coalescence forms a fine lamella by cooling from the α region, and the subsequent heat treatment is performed in the (α + γ) two-phase region and at a temperature of (T-100) ° C to T ° C for a certain period of time. This is an example in which the control of the lamella grain boundary is achieved by maintaining the temperature. It was also found that in order to combine the lamellae, it is important to maintain a certain temperature range during the heat treatment, and it is not directly related to the cooling rate after the retention. Therefore, the cooling after the heat treatment may be rapid cooling such as gas quenching. By controlling the lamella layer spacing in this way, it becomes possible to control the characteristics (strength, hardness, heat resistance, impact resistance, etc.) according to the purpose.
-Higher performance of the Al-based intermetallic compound can be achieved.

【0025】[0025]

【実施例】下記表1に、組成と熱処理条件等を変えたN
o.1〜No.17について、層間隔が制御されたデー
タを示す。表1において、粒界の形態がAまたはA+B
のものが、層間隔の増加が達成された本発明の目的に適
合する組織である。粒界の形態がBまたはCとなったも
のは、本発明の目的に適合しない。
[Examples] Table 1 below shows N with different compositions and heat treatment conditions.
o. 1-No. 17 shows data with controlled layer spacing. In Table 1, the grain boundary morphology is A or A + B
The following is a tissue suitable for the purpose of the present invention in which an increase in the layer spacing is achieved. A grain boundary morphology of B or C does not meet the purpose of the present invention.

【0026】表1において粒界の形態がAまたはA+B
となったものは、全てラメラの合体によるラメラ層間隔
の増加(例えば図1に示すような層間隔の増加)が観察
された。このことから、ラメラが合体することによりラ
メラ層間隔の増加と粒界形態Aが達成されることが判っ
た。
In Table 1, the grain boundary morphology is A or A + B.
In all of the above, an increase in lamella layer spacing (for example, an increase in layer spacing as shown in FIG. 1) due to lamella coalescence was observed. From this result, it was found that the lamella layer spacing and the grain boundary morphology A were achieved by the coalescence of the lamellas.

【0027】[0027]

【表1】 [Table 1]

【0028】[No.8,No.9](実施例) TiとAlの粉末を、Ti−46at%Alの組成となる
ように秤量混合し、この混合体を所定の形状に圧粉成形
したのちに、それぞれPseudo-HIP(擬HIP)で加圧し
ながら反応焼結(反応合成)を生じさせ、Ti−Al系
金属間化合物を得た。更に、真空雰囲気中で1350℃
(α相域)まで加熱し、室温までガス急冷した。冷却は
(T−100)℃〜T℃の範囲を300℃毎分の冷却速
度で行った。以上の工程により、微細なラメラ(平均層
間隔0.4μm)からなるTiAl+Ti3 Al部材が
得られたが、このままでは粒界の凹凸が小さく(粒界の
形態B)、しかも粒界にγ相が連続して存在するため、
望まれる組織ではない。そこでこの部材を、Ar雰囲気
中で1300℃に再加熱し、30℃毎分で冷却すること
により、No.8のラメラ組織(層間隔が1.0μm)
を得た。
[No. 8, No. 9] (Example) Ti and Al powders were weighed and mixed so as to have a composition of Ti-46 at% Al, and this mixture was compacted into a predetermined shape, and then each was pseudo-HIP (pseudo-HIP). ), The reaction sintering (reaction synthesis) was caused while pressurizing, and a Ti-Al-based intermetallic compound was obtained. Furthermore, in a vacuum atmosphere, 1350 ° C
The mixture was heated to (α phase region), and gas was rapidly cooled to room temperature. The cooling was performed in the range of (T-100) ° C to T ° C at a cooling rate of 300 ° C per minute. Through the above steps, a TiAl + Ti 3 Al member composed of a fine lamella (average layer spacing 0.4 μm) was obtained. However, the grain boundary unevenness was small (grain boundary form B) and the γ phase was formed in the grain boundary. Because there are consecutive
Not the desired organization. Therefore, this member was reheated to 1300 ° C. in an Ar atmosphere and cooled at 30 ° C. per minute, so that No. 8 lamella structure (layer spacing 1.0 μm)
Got

【0029】擬HIPはアルミナ粉末等の圧力媒体を用
いた擬似等方圧プレスである。反応焼結(自己伝播高温
合成法)は、TiとAlの混合粉末等をその反応温度以
上に加熱することによって混合粉末の一部に反応を生じ
させ、その時に発生する反応熱により次々と反応を伝播
させる方法である。反応焼結を利用する製造方法によれ
ば微細な組織が容易に得られるが、他の方法、例えばT
iAlとTi3 Alからなる金属間化合物の粉末を通常
の焼結やHIP等を用いた加圧焼結によって製造する方
法や、溶製材を鍛造するなどして微細な組織にし、再結
晶温度に保持することによっても製造可能である。
Pseudo HIP is a pseudo isotropic press using a pressure medium such as alumina powder. The reaction sintering (self-propagating high temperature synthesis method) causes a reaction of a part of the mixed powder by heating the mixed powder of Ti and Al or the like above the reaction temperature, and the reaction heat generated at that time causes the reaction to occur one after another. Is a method of propagating. Although a fine structure can be easily obtained by the manufacturing method using reaction sintering, other methods such as T
A method of producing a powder of an intermetallic compound composed of iAl and Ti 3 Al by ordinary sintering or pressure sintering using HIP, or by forging a molten material into a fine structure to obtain a recrystallization temperature. It can also be manufactured by holding.

【0030】また、No.8と同一組成の金属間化合物
を前記反応合成によって得たのち、1350℃まで加熱
し更に室温まで急冷して組織を微細化したものを、真空
雰囲気中で1300℃に再加熱し、更にガス急冷するこ
とにより、No.9のラメラ組織(層間隔:0.8μ
m)が得られた。
No. An intermetallic compound having the same composition as that of No. 8 was obtained by the above-mentioned reaction synthesis, then heated to 1350 ° C. and then rapidly cooled to room temperature to refine the structure, and then reheated to 1300 ° C. in a vacuum atmosphere, and further gas quenched. No. Lamellar structure of 9 (layer spacing: 0.8μ
m) was obtained.

【0031】これらNo.8とNo.9は、いずれもα
領域から冷却することによって、微細なラメラを形成さ
せ、その後に行われる熱処理を、(α+γ)2相領域で
かつ(T−50)℃〜T℃の温度に一定時間保持するこ
とによりラメラが合体し、ラメラ層間隔の増加と、ラメ
ラ粒界の制御(粒界の形態BからAへの転換)が達成さ
れた。粒界の形態がAのラメラ粒は、図2に示されるよ
うに、互いに隣り合うラメラ同志が直接粒界において結
合しており、ラメラ同志の粒界が互いに大きく食い込み
合っている箇所が多く見られる。
These No. 8 and No. 9 is α
By cooling from the region, a fine lamella is formed, and the heat treatment to be performed thereafter is held in the (α + γ) two-phase region and at a temperature of (T-50) ° C to T ° C for a certain period of time so that the lamella coalesces. However, an increase in lamella layer spacing and control of lamella grain boundaries (conversion of grain boundary form B to A) were achieved. As shown in Fig. 2, in lamella grains with grain boundary morphology A, adjacent lamellae are directly bonded to each other at grain boundaries, and there are many places where the lamellae's grain boundaries largely dig into each other. To be

【0032】従ってラメラ粒界にラメラ粒以外の相であ
るγ相が連続していることはほとんどなく、ラメラ粒同
志が直接接している。しかも、ラメラ層間隔dと他のラ
メラ粒への食い込み長さHとの関係が、H/d>3であ
る層が多く観察された。このようなH/d>3の大きな
食い込みは、粒界の形態Aにおいて多く観察された。ま
た、No.8とNo.9の比較により、ラメラの合体
は、熱処理において、ある温度範囲に保持することが重
要であり、保持後の冷却速度には関連のないことが判っ
た。
Therefore, the γ phase, which is a phase other than the lamella grains, is rarely continuous at the lamella grain boundaries, and the lamella grains are in direct contact with each other. Moreover, the relationship between the lamella layer spacing d and the biting length H into other lamella grains was found to be many in which H / d> 3. Such a large bite of H / d> 3 was often observed in the grain boundary form A. In addition, No. 8 and No. From the comparison of No. 9, it was found that it is important for the lamella coalescence to be kept in a certain temperature range during the heat treatment, and it is not related to the cooling rate after the holding.

【0033】ラメラの合体は図1に示すようなものであ
る。すなわち、α2 相が互いに結合して一体となり、ラ
メラ粒の端部で縞の数が減っている。そしてα2 の間に
γ相(ハッチングを施した部分)が存在している。この
図においては、図示下側の層数に比べて図示上側の層数
が合体により減少している。このような合体は、本発明
を実施することによって、ラメラ粒界近傍だけでなく、
ラメラ粒の内部でも見られる。
The lamella coalescence is as shown in FIG. That is, the α 2 phases are bonded to each other and integrated, and the number of stripes is reduced at the ends of the lamella grains. And the γ phase (hatched portion) exists between α 2 . In this figure, the number of layers on the upper side in the figure is smaller than that on the lower side in the figure due to uniting. Such coalescence, by carrying out the present invention, not only near the lamella grain boundary,
It is also found inside lamella grains.

【0034】[No.3〜5,10〜12,15〜1
7]前記No.8と同様の工程を経てラメラを形成させ
たが、組成と熱処理温度あるいは冷却速度等を変化させ
た例である。No.5とNo.12は、(α+γ)2相
域以外の温度範囲で熱処理したものであり、粒界の形態
がB,Cであるからいずれも粒界評価が「×(不良)」
である。従って、(α+γ)2相域で熱処理するのがよ
い。
[No. 3-5, 10-12, 15-1
7] No. A lamella was formed through the same steps as in Example 8, but the composition and the heat treatment temperature or the cooling rate were changed. No. 5 and No. No. 12 was heat treated in a temperature range other than the (α + γ) 2 phase region, and the grain boundary morphology was B or C, so that the grain boundary evaluation was “x (poor)”.
Is. Therefore, it is preferable to perform the heat treatment in the (α + γ) 2 phase region.

【0035】また、46at%Alでは、(T−100)
℃〜T℃の温度範囲の熱処理で粒界評価が全て「○
(良)」となったが、44,48at%Alでは、(T−
50)℃〜T℃の温度範囲で「○(良)」、(T−10
0)℃〜(T−50)℃の温度範囲では、「△(やや
良)」であった。
With 46 at% Al, (T-100)
Grain boundary evaluation is all “○” by heat treatment in the temperature range of ℃ to T ℃.
(Good), but with 44,48 at% Al, (T-
50) "○ (good)" in the temperature range of ℃ ~ T ℃, (T-10
In the temperature range of 0) ° C to (T-50) ° C, it was “Δ (somewhat good)”.

【0036】このように、組成が変化しても(T−10
0)℃からT℃の温度範囲で熱処理を実施すれば、粒界
評価「×」がなかったので良いといえるが、粒界評価が
全て「○」になったのは(T−50)℃〜T℃の温度範
囲なので、この範囲が更に好ましいと言える。この温度
範囲は、組成よりも、最初に作られる微細ラメラの層間
隔や、急冷による過飽和の度合いによって影響を受ける
と思われるが、この温度範囲に保持することにより概ね
うまくゆくことが判った。
In this way, even if the composition changes (T-10
It can be said that if the heat treatment is carried out in the temperature range of 0) ° C. to T ° C., there is no grain boundary evaluation “x”. However, all of the grain boundary evaluations are “◯” (T-50) ° C. It can be said that this range is more preferable because the temperature range is from to T ° C. It was found that this temperature range is influenced more by the layer spacing of the fine lamella formed first and the degree of supersaturation by quenching rather than the composition, but it was found that holding in this temperature range generally succeeds.

【0037】[No.1,2,6,7,14,15]こ
れらはいずれもαから連続冷却工程(図6)を実施した
例である。冷却速度をコントロールする温度範囲は(T
−100)℃〜T℃であり、場合によっては(T−5
0)℃〜T℃でもよい。
[No. 1, 2, 6, 7, 14, 15] These are all examples in which the continuous cooling step (FIG. 6) is performed from α. The temperature range that controls the cooling rate is (T
-100) ° C to T ° C, and in some cases (T-5
0) ° C-T ° C may be sufficient.

【0038】粒界の形態がAであるNo.6を柱状の曲
げ試験片に加工し、800℃で大気中で曲げ試験を実施
したところ、 103.8kg/mm2 で破断した。この試験片の
破面は、そのほとんどがラメラ粒内で破壊を生じてお
り、しかも破面は凹凸が鋭くかつ細かくなっており、ラ
メラ粒界が強いことが判る。
No. 1 in which the grain boundary morphology is A. 6 was processed into a columnar bending test piece, and a bending test was performed at 800 ° C. in the atmosphere. As a result, 103.8 kg / mm 2 It broke at. It can be seen that most of the fracture surfaces of this test piece are fractured within the lamella grains, and the fracture surfaces are sharp and fine, and the lamella grain boundaries are strong.

【0039】これに対して、粒界の形態がBであるN
o.2を、No.6と同じ条件で曲げ試験を行ったとこ
ろ、No.6よりもはるかに低い荷重(82.4kg/mm2
で破壊してしまった。No.2の破断後の破面は、多く
が粒界に沿って破壊しており、破面が粗く、ぼこぼこと
しているなど、ラメラ粒界が弱い組織であったことが判
る。このような組織では、強度の高いラメラ組織の特性
を十分に引き出すことができない。
On the other hand, N in which the grain boundary morphology is B
o. No. 2 When a bending test was conducted under the same conditions as No. 6, No. Load much lower than 6 (82.4kg / mm 2 )
It was destroyed by. No. It can be seen that most of the fracture surfaces after fracture of No. 2 fracture along the grain boundaries, and the fracture surfaces are rough and uneven, and the lamella grain boundaries are weak. With such a structure, it is not possible to sufficiently bring out the characteristics of a lamellar structure having high strength.

【0040】45at%Al以上の場合、例えばNo.7
のように46at%Alの組成のものを300℃毎分
[(T−100)℃〜T℃]で冷却した場合は、粒界に
形態Aの組織がほとんど見られず、粒界評価が「×」で
あった。更にはNo.15のように48at%Alの組成
のものを300℃毎分[(T−100)℃〜T℃]で冷
却した場合は、粒界の一部に形態A以外の組織が観察さ
れたため、粒界評価が「△(やや良)」であった。
When the content is 45 at% Al or more, for example, No. 7
As described above, when a composition of 46 at% Al is cooled at 300 ° C./min [(T-100) ° C. to T ° C.], almost no structure of form A is found in the grain boundaries, and the grain boundary evaluation is “ X ”. Furthermore, No. When a composition having a composition of 48 at% Al, such as No. 15, was cooled at 300 [deg.] C./min [(T-100) [deg.] C.-T [deg.] C.], a structure other than morphology A was observed in a part of the grain boundary. The field evaluation was "△ (somewhat good)".

【0041】No.7と同一の条件でも部材が大きい場
合は、中心部分の冷却速度が周辺部よりも僅かに遅くな
るため粒界評価が「△」となる場合があった。従ってこ
の組成範囲では300℃毎分よりも遅い速度で冷却する
ことにより、粒界評価「○」の組織が得られる。10℃
毎分より遅いと、ラメラ以外の等軸γが析出する場合が
あるので10℃毎分以上とするのがよい。更に1℃毎分
より遅いと、γの体積率が39%以上になり、耐熱強度
が低下する場合があるので、これより速いことが望まし
い場合がある。
No. When the member was large even under the same conditions as in No. 7, the cooling rate of the central portion was slightly slower than that of the peripheral portion, so that the grain boundary evaluation might be “Δ”. Therefore, in this composition range, by cooling at a rate slower than 300 ° C. per minute, the structure of grain boundary evaluation “◯” is obtained. 10 ° C
If it is slower than every minute, equiaxed γ other than lamella may be precipitated, so it is preferable to set the temperature to 10 ° C. per minute or more. Further, if it is slower than 1 ° C. per minute, the volume ratio of γ becomes 39% or more, and the heat resistance strength may be lowered. Therefore, it may be desirable to be faster than this.

【0042】組成が45at%Al未満の場合には、例え
ばNo.2のように44at%Alの組成のものを30℃
毎分[(T−100)℃〜T℃]で冷却した場合は、粒
界評価が「×」であった。また、No.1のように44
at%Alの組成のものを10℃毎分[(T−100)℃
〜T℃)]で冷却した場合は、粒界評価が「○」であっ
た。また、45at%Al以上の時と同じ理由で、冷却速
度は30℃毎分よりも遅く1℃毎分より速く、更には
0.1℃毎分よりも速くするのがよい。
When the composition is less than 45 at% Al, for example, No. The composition of 44at% Al like 2 is 30 ℃
When cooled at [(T-100) ° C. to T ° C.] per minute, the grain boundary evaluation was “x”. In addition, No. 44 like 1
At% Al composition is 10 ° C / min [(T-100) ° C
.About.T ° C.)], the grain boundary evaluation was “◯”. Further, for the same reason as when it is 45 at% Al or more, it is preferable that the cooling rate is slower than 30 ° C. per minute, faster than 1 ° C. per minute, and further faster than 0.1 ° C. per minute.

【0043】[0043]

【発明の効果】本発明によれば、熱処理によってラメラ
のもつ優れた特性を発揮させることができるようにな
り、優れた強度等を発揮するTi−Al系金属間化合物
を得ることができる。
According to the present invention, the excellent characteristics of the lamella can be exhibited by the heat treatment, and the Ti-Al intermetallic compound exhibiting excellent strength and the like can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例によって得られたラメラ組織
の一部の拡大図。
FIG. 1 is an enlarged view of a part of lamella tissue obtained according to an embodiment of the present invention.

【図2】本発明の一実施例によって得られたラメラ粒界
の拡大図。
FIG. 2 is an enlarged view of lamella grain boundaries obtained according to an example of the present invention.

【図3】Ti−Alの平衡状態図。FIG. 3 is an equilibrium diagram of Ti—Al.

【図4】熱処理・冷却工程における時間と温度との関係
の一例を示す図。
FIG. 4 is a diagram showing an example of a relationship between time and temperature in a heat treatment / cooling process.

【図5】熱処理・冷却工程における時間と温度との関係
の他の例を示す図。
FIG. 5 is a diagram showing another example of the relationship between time and temperature in the heat treatment / cooling step.

【図6】熱処理・冷却工程における時間と温度との関係
の更に別の例を示す図。
FIG. 6 is a diagram showing yet another example of the relationship between time and temperature in the heat treatment / cooling step.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ラメラ組織を含むTi−Al系金属間化合
物の製造において、ラメラ層間隔を増加させる熱処理を
固相線温度以下で行うことを特徴とするTi−Al系金
属間化合物の製造方法。
1. A method for producing a Ti—Al-based intermetallic compound, characterized in that in the production of a Ti—Al-based intermetallic compound containing a lamella structure, a heat treatment for increasing the lamella layer spacing is performed at a solidus temperature or lower. .
【請求項2】上記層間隔の増加を、ラメラの合体を生じ
させる熱処理によって行うことを特徴とする請求項1記
載の製造方法。
2. The manufacturing method according to claim 1, wherein the increase in the layer spacing is performed by a heat treatment that causes coalescence of lamellas.
【請求項3】上記熱処理を(α+γ)2相領域で行うこ
とを特徴とする請求項1または請求項2記載の製造方
法。
3. The method according to claim 1, wherein the heat treatment is performed in a (α + γ) 2 phase region.
【請求項4】α相域もしくはα2 相域あるいはこれらの
共存領域から冷却した際にγ相が析出する温度をT℃と
した場合、上記熱処理を(T−100)℃〜T℃の温度
範囲で実施する請求項1または請求項2記載の製造方
法。
4. When the temperature at which the γ phase precipitates when cooled from the α phase region or α 2 phase region or a coexistence region thereof is T ° C., the heat treatment is performed at a temperature of (T-100) ° C. to T ° C. The manufacturing method according to claim 1, which is carried out within a range.
【請求項5】T℃以上の温度域に保持したのち、T℃以
下に冷却し、ラメラ組織を形成させたのちに(T−10
0)℃〜T℃の温度範囲に実質的に保持することを特徴
とする請求項1または請求項2に記載の製造方法。
5. A lamella structure is formed after maintaining a temperature range of T ° C. or higher and then cooling to T ° C. or lower (T-10).
The method according to claim 1 or 2, wherein the temperature is substantially maintained in the temperature range of 0) ° C to T ° C.
JP05419893A 1993-03-15 1993-03-15 Method for producing Ti-Al-based intermetallic compound Expired - Fee Related JP3382285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05419893A JP3382285B2 (en) 1993-03-15 1993-03-15 Method for producing Ti-Al-based intermetallic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05419893A JP3382285B2 (en) 1993-03-15 1993-03-15 Method for producing Ti-Al-based intermetallic compound

Publications (2)

Publication Number Publication Date
JPH06264203A true JPH06264203A (en) 1994-09-20
JP3382285B2 JP3382285B2 (en) 2003-03-04

Family

ID=12963849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05419893A Expired - Fee Related JP3382285B2 (en) 1993-03-15 1993-03-15 Method for producing Ti-Al-based intermetallic compound

Country Status (1)

Country Link
JP (1) JP3382285B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087364A (en) * 2011-10-19 2013-05-13 General Electric Co <Ge> Titanium aluminide application process, and article with titanium aluminide surface
EP2924134A1 (en) 2014-03-27 2015-09-30 Daido Steel Co.,Ltd. Ti-Al-based heat-resistant member
CN111975003A (en) * 2020-08-14 2020-11-24 西北工业大学 Method for regulating and controlling titanium-aluminum alloy full lamellar structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087364A (en) * 2011-10-19 2013-05-13 General Electric Co <Ge> Titanium aluminide application process, and article with titanium aluminide surface
US9650705B2 (en) 2011-10-19 2017-05-16 General Electric Company Titanium aluminide application process and article with titanium aluminide surface
EP2924134A1 (en) 2014-03-27 2015-09-30 Daido Steel Co.,Ltd. Ti-Al-based heat-resistant member
US9670787B2 (en) 2014-03-27 2017-06-06 Daido Steel Co., Ltd. Ti—Al-based heat-resistant member
CN111975003A (en) * 2020-08-14 2020-11-24 西北工业大学 Method for regulating and controlling titanium-aluminum alloy full lamellar structure
CN111975003B (en) * 2020-08-14 2022-12-27 西北工业大学 Method for regulating and controlling titanium-aluminum alloy full lamellar structure

Also Published As

Publication number Publication date
JP3382285B2 (en) 2003-03-04

Similar Documents

Publication Publication Date Title
CN101457314B (en) Titanium aluminide alloys
CN1140640C (en) Method for manufacture of steel products of precipitation hardened martensitic steel, steel products obtained with such method and use of said steel products
JPH01272742A (en) Low density aluminum alloy solidified article and its production
US5632827A (en) Aluminum alloy and process for producing the same
JPS61195945A (en) Cobalt-chromium hard alloy
EP0638657B1 (en) Powder forging method of aluminum alloy powder of high proof stress and toughness
JP3459138B2 (en) TiAl-based intermetallic compound joined body and method for producing the same
JP3382285B2 (en) Method for producing Ti-Al-based intermetallic compound
JP2003147482A (en) Non-heatteated high strength and high toughness forging, and production method therefor
JPH05117800A (en) Production of oxide-dispersed and reinforced iron base alloy
JP2000192148A (en) Steel wire rod excellent in cold workability and its production
Christodoulou et al. The Role of Borides in Near‐γ Titanium Aluminides
JPH05255827A (en) Production of alloy based on tial intermetallic compound
JP3374553B2 (en) Method for producing Ti-Al-based intermetallic compound-based alloy
JPS60204857A (en) Aluminum alloy and article using same
Kim Design of high performance structural alloys using second phases
JP2813516B2 (en) TiAl-based intermetallic compound and its production method
JP2807400B2 (en) High strength magnesium-based alloy material and method of manufacturing the same
JPH07173557A (en) Tial-based intermetallic compound alloy excellent in workability, toughness and high temperature strength
JP3924632B2 (en) Manufacturing method of thick ultrafine ferritic steel
JP2803455B2 (en) Manufacturing method of high density powder sintered titanium alloy
JP3419481B2 (en) Ti-Al intermetallic compound
JPH08291378A (en) Method for heat treating titanium-aluminum intermetallic compound
JPH10110229A (en) Ti-al intermetallic compound excellent in creep strength and its production
JPH05311365A (en) Method for improving mechanical property of ti-al intermetallic compound

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20071220

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20081220

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20091220

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20091220

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20091220

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees