JPH0625919A - Conjugate fiber, its production and spinneret - Google Patents

Conjugate fiber, its production and spinneret

Info

Publication number
JPH0625919A
JPH0625919A JP5053126A JP5312693A JPH0625919A JP H0625919 A JPH0625919 A JP H0625919A JP 5053126 A JP5053126 A JP 5053126A JP 5312693 A JP5312693 A JP 5312693A JP H0625919 A JPH0625919 A JP H0625919A
Authority
JP
Japan
Prior art keywords
thermoplastic polymer
fiber
heat shrinkage
spinneret
central
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5053126A
Other languages
Japanese (ja)
Other versions
JP3269874B2 (en
Inventor
Takao Akagi
孝夫 赤木
Masao Kawamoto
正夫 河本
Keiji Fukuda
啓司 福田
Isao Tokunaga
勲 徳永
Original Assignee
Kuraray Co Ltd
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP11818392 priority Critical
Priority to JP4-118183 priority
Application filed by Kuraray Co Ltd, 株式会社クラレ filed Critical Kuraray Co Ltd
Priority to JP05312693A priority patent/JP3269874B2/en
Publication of JPH0625919A publication Critical patent/JPH0625919A/en
Application granted granted Critical
Publication of JP3269874B2 publication Critical patent/JP3269874B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a conjugate fiber having excellent stretchability and elastic recovery and capable of giving a cloth having excellent characteristics such as bulkiness, crispness, body and repulsion comparable to those of wool cloth and suitable for tailoring a luxury dress. CONSTITUTION:The objective conjugate fiber has a multi-lobe modified cross-section consisting of a core part and extending in the fiber direction and >=3 protruded parts surrounding the core part, connected to the core part and extending in the fiber direction. The core part is made of a thermoplastic polymer (A) having a shrinkage stress of >=0.3g/d and a thermal shrinkage of >=15% and at least a part of the protruded part is made of a thermoplastic polymer (B) having a thermal shrinkage smaller than that of the thermoplastic polymer (A). The present invention also relates to the production process of the fiber and a spinneret for the production.

Description

【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【産業上の利用分野】本発明は伸縮性複合繊維、その製
造方法、それに用いる紡糸口金装置および前記複合繊維
から得られる布帛に関する。詳細には、本発明は、天然
繊維、特にウールのもつ弾性的伸縮性およびその回復性
を有する複合繊維、その製造方法、そのための口金装置
および該複合繊維から得られる布帛に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stretchable composite fiber, a method for producing the same, a spinneret device used therefor, and a cloth obtained from the composite fiber. More specifically, the present invention relates to a natural fiber, in particular, a composite fiber having elastic elasticity and recovery property of wool, a method for producing the same, a spinneret device therefor, and a fabric obtained from the composite fiber.
【0002】[0002]
【従来の技術】天然繊維よりなる布帛の有する優れた特
性、例えば張り、腰、ふくらみ、ぬめりのなさ、しなや
かさ、ソフトさなどの風合を合成繊維製の布帛に付与す
るために従来から各種の方法が提案されている。例え
ば、合成繊維に絹の風合を付与する方法としては、繊維
断面の異形化、異収縮繊維の混繊化、流体処理による繊
維の絡合、異繊度繊維の混合、繊維の極細化などが提案
されている。また、合成繊維にウールの風合を付与する
方法としては、繊維の仮撚加工、流体加工、ギヤ捲縮加
工などにより後加工して機械的捲縮を付与する方法;製
糸時に異方冷却や異方加熱を行う方法;熱的性質の異な
るポリマーをサイドバイサイド型または芯鞘型に複合し
てポリマーの熱的性質の差により捲縮させる方法;起毛
加工による方法などが提案されている。
2. Description of the Related Art Various kinds of conventional fabrics have been used to impart excellent properties of natural fiber fabrics such as tension, waist, bulge, non-slip, suppleness and softness to synthetic fiber fabrics. The method of is proposed. For example, as a method of imparting a silky feel to synthetic fibers, it is possible to change the cross-section of the fiber, mix differently-shrinked fibers, entangle the fibers by fluid treatment, mix fibers with different fineness, or make the fibers ultrafine. Proposed. Further, as a method for imparting a wool texture to the synthetic fiber, a method for imparting a mechanical crimp by post-processing such as false twisting, fluid working, or gear crimping of the fiber; anisotropic cooling during spinning or A method of conducting anisotropic heating; a method of compounding polymers having different thermal properties in a side-by-side type or a core-sheath type to crimp due to the difference in thermal properties of the polymers;
【0003】上記した従来の方法による場合は天然繊維
に類似した特性を合成繊維にある程度付与できるもの
の、未だ充分満足のゆくものではなく、特に天然繊維に
おけるような布帛中での大きなウエーブ立ちを合成繊維
に付与することは極めて困難であるのが実情である。ウ
エーブ立ちの小さい合成繊維製の布帛はタテ・ヨコの伸
びが少なく、衣服として仕立てた時に仕立て映えがせ
ず、天然繊維製の布帛から仕立てた衣服におけるような
高級感が得られない。
According to the above-mentioned conventional method, although properties similar to natural fibers can be imparted to synthetic fibers to a certain extent, they are not yet sufficiently satisfactory, and in particular, a large wave standing in a fabric such as natural fibers is synthesized. In reality, it is extremely difficult to apply it to fibers. A fabric made of synthetic fibers with a small wave standing does not have a large vertical and horizontal stretch, does not look good when tailored as clothes, and does not have the high-class feeling of clothes made from a fabric made of natural fibers.
【0004】また、合成繊維製の織物中に空隙を発生さ
せて織物に伸縮性を付与するために、繊維断面を図2の
(イ)または(ロ)に示すように、比較的高収縮性のポリマ
ーCと低収縮性ポリマーDとがサイドバイサイド型で結
合した二葉型複合繊維として糸にねじれを発生させるこ
とが提案されている[特開昭59−59920号公報−
図2の(イ)、特開平3−287810号公報−図2の
(ロ)]。しかし、図2の(イ)の繊維の場合は、ねじ
れが一方向のみに生ずるため、サテンのような糸があま
り強く拘束されない織物ではねじれの発現により織物中
に空隙が生じて織物にタテ・ヨコの伸縮性がある程度付
与されるものの、平織のように糸が強く拘束される織物
では糸がある程度自由に動き得る空隙が生じず、タテ・
ヨコの伸びやボリューム感を付与できない。また、図2
の(ロ)の繊維の場合は、高収縮性ポリマーCを中心に
間欠的に反転するねじれが発現するが、繊維断面が偏平
であるために、そのねじれだけでは織物中に十分な空隙
を保つことができず、織物の伸縮性やボリューム感が充
分ではない。
Further, in order to give a stretchability to the fabric by generating voids in the fabric made of synthetic fiber, the cross section of the fiber is shown in FIG.
As shown in (a) or (b), it has been proposed to generate twist in a yarn as a bileaflet type composite fiber in which a polymer C having a relatively high shrinkage and a polymer D having a low shrinkage are bonded side by side. [JP-A-59-59920]
2 (a), JP-A-3-287810-FIG. 2 (b)]. However, in the case of the fiber of (a) in FIG. 2, since twisting occurs only in one direction, in a woven fabric such as satin where the yarn is not so strongly restrained, a twist occurs, which causes voids in the woven fabric to cause vertical warp in the woven fabric. Although some stretchability is imparted to the weft, in fabrics in which the threads are strongly constrained, such as plain weave, there are no voids in which the threads can move freely,
It is not possible to add horizontal expansion and volume. Also, FIG.
In the case of the (b) fiber, a twist that intermittently reverses around the high-shrinkage polymer C is developed, but since the fiber cross section is flat, the twist alone maintains a sufficient void in the woven fabric. It is not possible, and the stretchability and volume feeling of the woven fabric are not sufficient.
【0005】更に、伸縮性の合成繊維を得る方法とし
て、熱可塑性エラストマーから合成繊維を製造すること
が提案されている(特公平2−36683号公報等)。
しかしながら、熱可塑性エラストマーからなる合成繊維
は、その伸縮性が極端に高いことにより、例えばスポー
ツウエアのような極度に高い伸縮性が要求される特殊な
用途には適するものの、ウールなどの天然繊維の有する
自然な伸縮性に欠けていおり、通常の衣服には適してい
ない。また、熱可塑性エラストマーからなる繊維は熱収
縮応力が0.1〜0.2g/デニールと小さいため、布
帛にした場合に伸縮性はあるもののふくらみが発現しに
くく、風合の劣ったものになる。
Further, as a method for obtaining stretchable synthetic fibers, it has been proposed to produce synthetic fibers from a thermoplastic elastomer (Japanese Patent Publication No. 2-36833).
However, synthetic fibers made of a thermoplastic elastomer have extremely high stretchability, and thus are suitable for special applications requiring extremely high stretchability such as sportswear, but synthetic fibers made of natural fibers such as wool. It lacks the natural elasticity it has and is not suitable for ordinary clothing. In addition, since the fiber made of a thermoplastic elastomer has a small heat shrinkage stress of 0.1 to 0.2 g / denier, when it is made into a cloth, it has elasticity, but it is difficult to develop a bulge, resulting in poor texture. .
【0006】[0006]
【発明が解決しようとする課題】本発明の目的は、天然
のウールとほぼ同程度の自然で且つ良好な伸縮性および
弾性回復性を有し、仕立て映えのする布帛を製造するこ
とのできる合成繊維、その製造方法、そのための製造装
置およびそのような合成繊維により得られた布帛を提供
することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to produce a synthetic fabric which is almost as natural as natural wool and has good stretchability and elastic recovery, and which can produce a tailor-made cloth. It is an object of the present invention to provide a fiber, a manufacturing method thereof, a manufacturing apparatus therefor, and a fabric obtained by such a synthetic fiber.
【0007】[0007]
【課題を解決するための手段】上記の目的を達成すべく
色々検討を重ねた結果、本発明者らは、熱収縮率の異な
る特定の複数の熱可塑性ポリマーから特定の複合形態お
よび断面構造を有する複合繊維を製造すると、上記の目
的を達成できることを見出して本発明を完成した。
As a result of various studies to achieve the above object, the present inventors have found that a specific composite morphology and a cross-sectional structure can be formed from a specific plurality of thermoplastic polymers having different heat shrinkage rates. The present invention has been completed by finding that the above object can be achieved by producing a composite fiber having the above.
【0008】すなわち、本発明は、熱可塑性ポリマー
(A)からなる繊維軸方向に伸びる中心部と、該中心部
を取り囲んで中心部に連結して設けた繊維軸方向に伸び
る3個以上の突出部とからなる多葉断面を有する異形断
面繊維であって、該中心部は熱収縮応力が0.3g/デ
ニール以上および熱収縮率が15%以上である熱可塑性
ポリマー(A)より構成され、且つ各突出部の少なくと
も一部は熱可塑性ポリマー(A)よりも熱収縮率の小さ
い熱可塑性ポリマー(B)より構成されていることを特
徴とする異形断面複合繊維である。
That is, according to the present invention, a central portion made of a thermoplastic polymer (A) extending in the axial direction of a fiber and three or more protrusions extending in the axial direction of the fiber provided around the central portion and connected to the central portion. A modified cross-section fiber having a multi-lobed cross section, the central part of which is composed of a thermoplastic polymer (A) having a heat shrinkage stress of 0.3 g / denier or more and a heat shrinkage rate of 15% or more, Further, the modified cross-section composite fiber is characterized in that at least a part of each protruding portion is composed of a thermoplastic polymer (B) having a heat shrinkage ratio smaller than that of the thermoplastic polymer (A).
【0009】上記した本発明の異形断面複合繊維は、種
々の方法により製造することができるが、そのうちで
も、次の製造方法による場合は、良好な特性を有する本
発明の複合繊維を工程性よく、円滑に製造することがで
きる。すなわち、本発明は、熱収縮応力が0.3g/デ
ニール以上および熱収縮率が15%以上である中心部を
形成する熱可塑性ポリマー(A)の中心部流れに対して、
熱可塑性ポリマー(A)よりも熱収縮率の小さい熱可塑性
ポリマー(B)の3個以上の流れを口金板に設けた紡糸
孔(カウンターボア)に至る手前で該中心流れを取り囲
んで互いに分離した位置から各々直角方向またはほぼ直
角方向に導入して、熱可塑性ポリマー(A)と熱可塑性
ポリマー(B)からなる複合流れを形成させ、該複合流
れを口金板に設けた3個以上の突出部を有する多葉断面
形状の紡糸口(吐出口)より紡出させることを特徴とす
る上記した異形断面複合繊維の製造方法を包含する。
The above-mentioned modified cross-section conjugate fiber of the present invention can be produced by various methods. Among them, in the case of the following production method, the conjugate fiber of the present invention having good characteristics can be easily processed. , Can be manufactured smoothly. That is, the present invention relates to the central part flow of the thermoplastic polymer (A) forming the central part having a heat shrinkage stress of 0.3 g / denier or more and a heat shrinkage rate of 15% or more,
Three or more streams of the thermoplastic polymer (B) having a heat shrinkage smaller than that of the thermoplastic polymer (A) are separated from each other by surrounding the central flow before reaching a spinning hole (counterbore) provided in the spinneret plate. Three or more protrusions provided on the die plate by introducing the composite flow from the position in the right-angle direction or the substantially right-angle direction to form a composite flow composed of the thermoplastic polymer (A) and the thermoplastic polymer (B). The method for producing a composite fiber having a modified cross section as described above, characterized in that the composite fiber is spun from a spinning port (discharging port) having a multi-lobed cross section.
【0010】更に、本発明は、上記の製造方法を行うの
に適した紡糸口金装置をも包含するものであり、この紡
糸口金装置は、中心導孔および3個以上の側導孔を有す
る分配板であって且つ該3個以上の側導孔は中心導孔を
取り囲んで互いに分離して位置すると共に各々が中心導
孔に対して直角方向またはほぼ直角方向に連通している
分配板を、3個以上の突出部を有する多葉断面形状の紡
糸口を有する口金板の上流側に、該口金板に当接して設
けた構造を有している。そして、本発明は、上記の異形
断面複合繊維を用いて製造した布帛をも包含する。
Furthermore, the present invention also includes a spinneret device suitable for carrying out the above-mentioned manufacturing method, and the spinneret device has a distribution hole having a central guide hole and three or more side guide holes. A distribution plate which is a plate, and wherein the three or more side guiding holes surround the central guiding hole and are separated from each other, and each of which is in communication with the central guiding hole in a direction perpendicular or substantially perpendicular to the central guiding hole; It has a structure which is provided in contact with the spinneret plate on the upstream side of the spinneret plate having a spinneret with a multi-lobed cross-section having three or more protrusions. The present invention also includes a fabric manufactured by using the above-mentioned modified cross-section conjugate fiber.
【0011】限定されるものではないが、本発明の内容
の理解を容易にするために、本発明の異形断面複合繊維
の断面(本明細書では繊維の横断面を断面という)の例
を示す図1を参照して、本発明について説明する。本発
明の異形断面複合繊維は、例えば図1の(イ)〜(チ)
に見るように、繊維軸方向に伸びる熱可塑性ポリマー
(A)よりなる中心部1と、該中心部1を取り囲んで中
心部に連結して設けた繊維軸方向に伸びる3個以上の突
出部2とからなる多葉断面形状を有する複合繊維であ
る。
Although not limited thereto, in order to facilitate understanding of the content of the present invention, an example of a cross section of the modified cross section composite fiber of the present invention (the cross section of the fiber is referred to as a cross section in the present specification) is shown. The present invention will be described with reference to FIG. The modified cross-section conjugate fiber of the present invention has, for example, (a) to (h) of FIG.
As shown in FIG. 3, a central portion 1 made of a thermoplastic polymer (A) extending in the fiber axis direction, and three or more protrusions 2 surrounding the central portion 1 and connected to the central portion and extending in the fiber axis direction. It is a composite fiber having a multi-leaf cross-sectional shape consisting of
【0012】図1の(イ)〜(チ)では突出部2の数は
3〜5個となっているが、突出部の数は3個以上であれ
ばよく、図1のものに限定されない。複合繊維の製造の
しやすさ、複合繊維から得られる布帛の風合などの点か
ら突出部の数を3〜8個程度にするのが好ましい。ま
た、隣り合う突出部間の角度は等角度であっても異角度
であってもよく、更に突出部の長さは全て同じであって
も異なっていてもよく、特に限定されない。突出部の形
状は特に限定されず、例えば先端部が根元部よりも細く
なっていても、先端部が根元部よりも太くなっていて
も、先端が平坦であっても、先端が丸くなっていてもよ
い。更に、繊維断面の形状は幾何学的または力学的に対
称であっても非対称でもよい。
Although the number of the projecting portions 2 is 3 to 5 in FIGS. 1A to 1H, the number of the projecting portions is not limited to that shown in FIG. 1 as long as it is 3 or more. . It is preferable that the number of protrusions is about 3 to 8 from the viewpoints of the ease of manufacturing the composite fiber and the feel of the fabric obtained from the composite fiber. Further, the angles between the adjacent protrusions may be equal or different, and the lengths of the protrusions may be the same or different, and are not particularly limited. The shape of the protrusion is not particularly limited, and for example, the tip is thinner than the root, the tip is thicker than the root, the tip is flat, or the tip is round. May be. Furthermore, the shape of the fiber cross section may be geometrically or mechanically symmetrical or asymmetrical.
【0013】そして、本発明の異形断面複合繊維では、
その中心部が熱可塑性ポリマー(A)からなっており、
突出部の少なくとも一部が熱可塑性ポリマー(B)から
なっていることが必要である。この場合に「突出部の少
なくとも一部が熱可塑性ポリマー(B)からなってい
る」とは、図1の(ホ)〜(ト)に見るように突出部2
の全体が熱可塑性ポリマー(B)からなっている場合、
または図1の(イ)〜(ニ)に見るように突出部2の一部の
みが熱可塑性ポリマー(B)からなっている場合を包含
する。
And, in the modified cross section composite fiber of the present invention,
The central part is made of thermoplastic polymer (A),
It is necessary that at least a part of the protruding portion is made of the thermoplastic polymer (B). In this case, "at least a part of the protruding portion is made of the thermoplastic polymer (B)" means that the protruding portion 2 is formed as shown in (e) to (g) of FIG.
When the whole of consists of a thermoplastic polymer (B),
Alternatively, as shown in FIGS. 1A to 1D, the case where only a part of the protrusion 2 is made of the thermoplastic polymer (B) is included.
【0014】突出部2の一部のみが熱可塑性ポリマー
(B)からなる場合は、突出部2のそれ以外の部分[例
えば図1の(イ)〜(ニ)のものでは中心部1と先端部
との連結部3]は、熱可塑性ポリマー(A)により中心
部1と一体に形成するのが好ましい。突出部2の中間部
分のみを熱可塑性ポリマー(B)から形成したり、突出
部2において熱可塑性ポリマー(A)と熱可塑性ポリマ
ー(B)とを入り組んだ(入り交じった)状態で複合さ
せることもできるが、突出部2の先端部分、先端部分と
根元部分との間の任意の位置または根元部分において熱
可塑性ポリマー(A)と熱可塑性ポリマー(B)との境
界が明確に形成されるようにして突出部2を熱可塑性ポ
リマー(B)から形成して複合化するのがよく、特に突
出部2の少なくとも先端部分が熱可塑性ポリマー(B)
から構成されているようにするのが、繊維におけるねじ
れ発生が良好になり好ましい。また、突出部2の断面積
の30%以上を熱可塑性ポリマー(B)から構成するの
が、やはりねじれ発生の容易さの点から好ましい。更
に、本発明の複合繊維では、熱可塑性ポリマー(B)の
熱収縮率が熱可塑性ポリマー(A)の熱収縮率よりも小
さい限りは、各々の突出部2に設ける熱可塑性ポリマー
(B)部分は、同じポリマーであってもまたは異なるポ
リマーであってもよい。
When only a part of the projecting portion 2 is made of the thermoplastic polymer (B), the other part of the projecting portion 2 [for example, in the case of (a) to (d) of FIG. The connecting portion 3 with the portion] is preferably formed integrally with the central portion 1 by the thermoplastic polymer (A). Forming only the intermediate portion of the protrusion 2 from the thermoplastic polymer (B), or compounding the thermoplastic polymer (A) and the thermoplastic polymer (B) in the protrusion 2 in a complicated (complex) state However, the boundary between the thermoplastic polymer (A) and the thermoplastic polymer (B) is clearly formed at the tip portion of the protruding portion 2, at any position between the tip portion and the root portion, or at the root portion. It is preferable to form the protrusions 2 from the thermoplastic polymer (B) to form a composite, and in particular, at least the tip portion of the protrusions 2 is formed from the thermoplastic polymer (B).
It is preferable that the fiber is made of a resin, because twisting in the fiber is good. It is also preferable that 30% or more of the cross-sectional area of the protrusion 2 is made of the thermoplastic polymer (B) from the viewpoint of easy occurrence of twist. Further, in the conjugate fiber of the present invention, as long as the heat shrinkage of the thermoplastic polymer (B) is smaller than the heat shrinkage of the thermoplastic polymer (A), the thermoplastic polymer (B) portion provided in each protrusion 2 May be the same polymer or different polymers.
【0015】そして、本発明では上記した異形断面複合
繊維の中心部1が、熱収縮応力が0.3g/デニール以
上および熱収縮率が15%以上である熱可塑性ポリマー
(A)より構成され、且つ各突出部の少なくとも一部が
熱可塑性ポリマー(A)よりも熱収縮率の小さい熱可塑性
ポリマー(B)より構成されていることが必要である。こ
こでいう「熱可塑性ポリマー(A)の熱収縮応力」と
は、熱可塑性ポリマー(A)を単独で用いて、本発明の
異形断面複合繊維を製造する場合と同じ装置を用いて同
じ条件下で同じ断面形状を有する異形断面繊維を製造
し、それによって得られた熱可塑性ポリマー(A)の異
形断面繊維の単繊度(デニール)当たりの熱収縮応力を
意味し、具体的には下記の実施例において記載した方法
により測定したときの値をいう。
In the present invention, the central portion 1 of the above-mentioned modified cross-section composite fiber is composed of a thermoplastic polymer (A) having a heat shrinkage stress of 0.3 g / denier or more and a heat shrinkage rate of 15% or more, Moreover, it is necessary that at least a part of each protrusion is made of a thermoplastic polymer (B) having a smaller heat shrinkage than that of the thermoplastic polymer (A). The term "heat shrinkage stress of the thermoplastic polymer (A)" as used herein means that the thermoplastic polymer (A) is used alone and the same apparatus is used under the same conditions as those for producing the modified cross-section composite fiber of the present invention. In this case, it means a heat-shrinkage stress per unit fineness (denier) of a modified cross-section fiber of a thermoplastic polymer (A) obtained by producing a modified cross-section fiber having the same cross-sectional shape. The value when measured by the method described in the examples.
【0016】また、本発明における「熱可塑性ポリマー
(A)または熱可塑性ポリマー(B)の熱収縮率」とは、熱
可塑性ポリマー(A)および熱可塑性ポリマー(B)の
一方のみを単独で用いて、本発明の異形断面複合繊維を
製造する場合と同じ装置を用いて同じ条件下で同じ断面
形状を有する異形断面繊維を製造し、それによって得ら
れた熱可塑性ポリマー(A)の異形断面繊維または熱可
塑性ポリマー(B)の異形断面繊維の熱収縮率を意味
し、具体的には下記の実施例において記載した方法によ
り測定したときの値をいう。
Further, in the present invention, "thermoplastic polymer"
The term "heat shrinkage rate of (A) or thermoplastic polymer (B)" means that the modified cross-section conjugate fiber of the present invention is produced by using only one of the thermoplastic polymer (A) and the thermoplastic polymer (B). A modified cross-section fiber of the thermoplastic polymer (A) or a modified cross-section fiber of the thermoplastic polymer (B) obtained by producing a modified cross-section fiber having the same cross-sectional shape under the same conditions using the same apparatus as the case It means a heat shrinkage ratio, specifically, a value measured by the method described in the following examples.
【0017】熱可塑性ポリマー(A)の熱収縮応力が
0.3g/デニール未満であると、得られる布帛のふく
らみが少なくなり、風合が低下する。また熱可塑性ポリ
マー(A)の熱収縮率が15%未満であると、得られる
布帛が硬くなり、着心地の良い衣服がえられない。熱可
塑性ポリマー(A)としては、熱収縮応力が0.4g/
デニール以上で、熱収縮率が20%以上のものを用いる
のが好ましい。熱可塑性ポリマー(A)の熱収縮応力お
よび熱収縮率の上限値は特に限定されないが、風合が硬
くなるのを防止する点から、熱収縮応力が0.7g/デ
ニール以下で、熱収縮率が50%以下であるのが好まし
い。
When the heat shrinkage stress of the thermoplastic polymer (A) is less than 0.3 g / denier, the resulting fabric has less bulge and lowers the feel. When the thermal shrinkage of the thermoplastic polymer (A) is less than 15%, the obtained cloth becomes hard and comfortable clothes cannot be obtained. The thermoplastic polymer (A) has a heat shrinkage stress of 0.4 g /
It is preferable to use one having a denier or more and a thermal shrinkage of 20% or more. The upper limits of the heat shrinkage stress and the heat shrinkage rate of the thermoplastic polymer (A) are not particularly limited, but from the viewpoint of preventing the texture from becoming hard, the heat shrinkage stress is 0.7 g / denier or less and the heat shrinkage rate is Is preferably 50% or less.
【0018】熱可塑性ポリマー(A)としては、熱収縮
応力が0.3g/デニール以上で熱収縮率が15%以上
である繊維形成性の熱可塑性ポリマーのいずれもが使用
でき、特に熱収縮応力が0.3g/デニール以上で熱収
縮率が15%以上のポリエステルが好ましい。そのよう
なポリエステルとしては、例えばテレフタル酸、イソフ
タル酸などの芳香族ジカルボン酸、アゼライン酸、セバ
シン酸などの脂肪族ジカルボン酸などから選択された一
種以上のジカルボン酸成分と、エチレングリコール、
1,4−ブタンジオールなどの脂肪族ジオール、ビスフ
ェノールAまたはビスフェノールSのエチレンオキサイ
ド付加ジオールなどの芳香族ジオール、シクロヘキサン
ジメタノールなどの脂環族ジオールなどのジオール成
分、必要に応じてp−ヒドロキシ安息香酸などのヒドロ
キシカルボン酸成分を用いて形成されたポリエステルを
挙げることができ、特に繰り返し単位の80モル%以上
がエチレンテレフタレートであるポリエステルを用いる
のが好ましい。同じポリエステルであっても、固有粘
度、共重合成分の種類や割合などを調節することによっ
て、その熱収縮応力や熱収縮率を増減させることができ
る。
As the thermoplastic polymer (A), any fiber-forming thermoplastic polymer having a heat shrinkage stress of 0.3 g / denier or more and a heat shrinkage rate of 15% or more can be used. Is preferably 0.3 g / denier or more and the heat shrinkage is 15% or more. Examples of such polyesters include one or more dicarboxylic acid components selected from aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid, azelaic acid, and aliphatic dicarboxylic acids such as sebacic acid, and ethylene glycol.
Aliphatic diol such as 1,4-butanediol, aromatic diol such as ethylene oxide addition diol of bisphenol A or bisphenol S, diol component such as alicyclic diol such as cyclohexanedimethanol, and p-hydroxybenzoate as required. A polyester formed using a hydroxycarboxylic acid component such as an acid can be mentioned, and it is particularly preferable to use a polyester in which 80 mol% or more of repeating units are ethylene terephthalate. Even with the same polyester, the heat shrinkage stress and the heat shrinkage can be increased or decreased by adjusting the intrinsic viscosity, the type and ratio of the copolymerization component, and the like.
【0019】また、熱可塑性ポリマー(B)としては、
熱収縮率が熱可塑性ポリマー(A)よりも小さい繊維形成
性の熱可塑性ポリマーであればいずれも使用でき、例え
ば熱可塑性ポリマー(A)よりも熱収縮率の小さい、ナ
イロン6、ナイロン66、ナイロン610、ナイロン1
1、ナイロン12、ナイロン13などのポリアミド;ポ
リエチレンテレフタレート、ポリブチレンテレフタレー
ト、ポリプロピレンテレフタレート、またはそれらの5
−ナトリウムスルホイソフタル酸を共重合させたものか
らなるポリエステルなどを挙げることができる。熱可塑
性ポリマー(B)は、熱可塑性ポリマー(A)よりも熱
収縮率が小さければ、その熱収縮応力は熱可塑性ポリマ
ー(A)と同じであっても、または熱可塑性ポリマー
(A)よりも大きくてもよい。そして、熱可塑性ポリマ
ー(A)と熱可塑性ポリマー(B)とは、同種のポリマ
ーであっても、異種のポリマーであってもよい。
Further, as the thermoplastic polymer (B),
Any fiber-forming thermoplastic polymer having a heat shrinkage smaller than that of the thermoplastic polymer (A) can be used. For example, nylon 6, nylon 66, nylon having a heat shrinkage smaller than that of the thermoplastic polymer (A). 610, nylon 1
1, polyamide such as nylon 12, nylon 13; polyethylene terephthalate, polybutylene terephthalate, polypropylene terephthalate, or 5 thereof
Examples thereof include polyesters made by copolymerizing sodium sulfoisophthalic acid. The thermoplastic polymer (B) may have the same heat shrinkage stress as that of the thermoplastic polymer (A) as long as it has a smaller heat shrinkage rate than that of the thermoplastic polymer (A), or may have a smaller heat shrinkage stress than that of the thermoplastic polymer (A). May be large. The thermoplastic polymer (A) and the thermoplastic polymer (B) may be the same kind of polymer or different kinds of polymers.
【0020】熱可塑性ポリマー(A)および熱可塑性ポ
リマー(B)は、紡糸、延伸、後加工、製布工程などの
工程時に、両成分が剥離せず複合形態を維持し得るよう
に、相溶性、貼り合せ接合性などの特性が良好なものを
選択して組み合わせることが必要である。特に、得られ
る複合繊維にウール様の適度な伸縮性および弾性回復性
を付与するためには、両成分の熱収縮率の差が5〜20
%の範囲にあるのが好ましく、10〜20%の範囲内で
あるのが特に好ましい。両ポリマーの熱収縮率の差が5
%未満の場合には、繊維におけるねじれの発現が小さく
なり、得られる布帛の伸縮性が不充分になり易い。一
方、両ポリマーの熱収縮率の差が20%を超えると、ね
じれは発現するものの複合繊維自体の熱収縮率も大きく
なって、布帛に加工する段階での加工収縮率が大きくな
り過ぎて、得られる布帛の風合が硬くなり易い。
The thermoplastic polymer (A) and the thermoplastic polymer (B) are compatible with each other so that the two components can be maintained in a composite form without peeling during the processes such as spinning, drawing, post-processing, and fabric making. It is necessary to select and combine those having good characteristics such as bonding bondability. In particular, in order to impart wool-like appropriate stretchability and elastic recovery to the obtained composite fiber, the difference in heat shrinkage between both components is 5 to 20.
% Is preferable, and 10 to 20% is particularly preferable. The difference in heat shrinkage between both polymers is 5
When it is less than%, the twist of the fiber is less likely to develop, and the resulting fabric tends to have insufficient stretchability. On the other hand, when the difference between the heat shrinkage ratios of both polymers exceeds 20%, the twist shrinkage occurs, but the heat shrinkage ratio of the composite fiber itself also increases, and the work shrinkage ratio at the stage of processing into a fabric becomes too large. The texture of the obtained fabric tends to be hard.
【0021】また、本発明の異形断面複合繊維では、熱
可塑性ポリマー(A)と熱可塑性ポリマー(B)との複
合割合は、重量で20/80〜80/20、特に30/
70〜70/30であるのが、複合繊維にねじれを発現
させる上で好ましい。熱可塑性ポリマー(A)と熱可塑
性ポリマー(B)のいずれか一方が極端に少ない場合に
は、複合繊維のねじれが発現しにくくなる。
In the modified cross-section composite fiber of the present invention, the composite ratio of the thermoplastic polymer (A) and the thermoplastic polymer (B) is 20/80 to 80/20 by weight, particularly 30 /.
It is preferably 70 to 70/30 in order to develop twist in the composite fiber. When either one of the thermoplastic polymer (A) and the thermoplastic polymer (B) is extremely small, twisting of the composite fiber is less likely to occur.
【0022】さらに、本発明の多葉断面複合繊維におけ
る中心部と突出部の太さは特に限定されないが、布帛に
した場合に柔軟で良好な感触の布帛を得ることができる
点で、中心部と突出部がほぼ同じ繊度を有するか、また
は中心部が突出部よりも大きな繊度を有するようにする
のが好ましく、特に中心部と突出部とをほぼ同じ繊度に
するのがより好ましい。複合繊維自体としては、通常約
50デニール/36フィラメント〜150デニール/4
8フィラメント程度にするのが好ましい。
Further, the thickness of the central portion and the protruding portion in the multi-leaf cross-section composite fiber of the present invention is not particularly limited, but when a fabric is formed, the fabric is soft and has a good feel. And the protrusion have substantially the same fineness, or the central portion has a larger fineness than the protrusion, and it is particularly preferable that the central portion and the protrusion have substantially the same fineness. The composite fiber itself is usually about 50 denier / 36 filament to 150 denier / 4.
It is preferably about 8 filaments.
【0023】また、本発明の異形断面複合繊維は、必要
に応じて繊維に通常使用されている添加剤、例えば紫外
線吸収剤や酸化防止剤などの安定剤、蛍光増白剤、染顔
料、無機充填剤、難燃剤などを含有していてもよい。
In addition, the modified cross-section composite fiber of the present invention contains, if necessary, additives usually used for the fiber, for example, stabilizers such as ultraviolet absorbers and antioxidants, optical brighteners, dyes and pigments, and inorganics. It may contain a filler, a flame retardant and the like.
【0024】本発明の異形断面複合繊維は、繊維製造工
程中の熱履歴または布帛加工中の熱処理により、ねじれ
が間歇的に反転しているねじれ構造を発現させることが
できる。縮み状態時には、本発明の異形断面複合繊維
は、熱収縮率の大きい熱可塑性ポリマー(A)を芯部と
して、熱収縮率の小さい熱可塑性ポリマー(B)が該芯
部の回りで間歇的に反転しながらねじれている構造とな
っている。ねじれが間歇的反転状態となるのは、繊維
(糸)がねじれ状態をとることによる回転歪みを吸収
し、糸全体としてのトルクを減じるために生ずる現象で
ある。その結果、本発明の繊維(糸)は、伸縮によって
も強いトルクを生じないという優れた特徴を有してい
る。
The modified cross-section conjugate fiber of the present invention can exhibit a twist structure in which the twist is intermittently reversed by heat history during the fiber manufacturing process or heat treatment during fabric processing. In the contracted state, the modified cross-section conjugate fiber of the present invention has a thermoplastic polymer (A) having a large heat shrinkage as a core and a thermoplastic polymer (B) having a small heat shrinkage intermittently around the core. The structure is twisted while being inverted. The twist is in the intermittent reversal state, which is a phenomenon that occurs because the fiber (thread) absorbs the rotational strain due to the twisted state and the torque of the thread as a whole is reduced. As a result, the fiber (yarn) of the present invention has an excellent feature that it does not generate a strong torque even when expanded and contracted.
【0025】上記のようなねじれ構造を有する本発明の
異形断面複合繊維は、繊維(糸)全体として、後述する
測定法による伸縮率が10〜70%、特に25〜60%
の範囲となり、かかる範囲の伸縮率を有する繊維を用い
て布帛を製造すると、得られる布帛の伸縮率は5〜25
%程度となり、天然繊維、特にウールから得られる布帛
の伸縮率に極めて近似した値となる。
The modified cross-section composite fiber of the present invention having the above-mentioned twisted structure has an expansion / contraction ratio of 10 to 70%, especially 25 to 60%, as a whole of the fiber (yarn) by the measuring method described later.
When a fabric is manufactured using fibers having an expansion / contraction ratio within this range, the expansion / contraction ratio of the obtained fabric is 5 to 25.
%, Which is a value very close to the expansion and contraction rate of a fabric obtained from natural fibers, especially wool.
【0026】衣料を作製する場合、通常、服地の仕立て
映えは布帛のヨコ伸びが重要な因子になると考えられて
おり、ヨコ伸びの小さいを布帛を用いると仕立て映えが
しなくなる。本発明の異形断面複合繊維は、上記したよ
うにウールに類似した適度な伸縮性および弾性回復性を
有しているので、本発明の複合繊維から作製された布
帛、少なくとも本発明の複合繊維をヨコ糸として用いて
作製された織物は、適度な伸縮性(ヨコ伸び)を有し、仕
立て映えのよいものとなる。
In the case of producing clothing, it is generally considered that the lateral stretch of the cloth is an important factor for the tailored appearance of the garment, and if a cloth having a small lateral stretch is used, the tailored appearance will not be obtained. Since the modified cross-section conjugate fiber of the present invention has appropriate stretchability and elastic recovery similar to wool as described above, a fabric made from the conjugate fiber of the present invention, at least the conjugate fiber of the present invention, The woven fabric produced by using the weft thread has appropriate stretchability (horizontal elongation) and has good tailoring and appearance.
【0027】本発明の異形断面複合繊維は、多葉断面を
有する紡糸口(紡出口)を有する紡糸口金装置を用い
て、熱可塑性ポリマー(A)と熱可塑性ポリマー(B)
を常法により溶融複合紡糸した後、好ましくは延伸、熱
処理することにより製造することができる。その場合
に、多葉横断面複合繊維の溶融複合紡糸に際して、特
に、中心部を形成する上記した熱収縮応力および熱収縮
率を有する熱可塑性ポリマー(A)の中心部流れに対し
て、熱可塑性ポリマー(A)よりも熱収縮率の小さい上
記した熱可塑性ポリマー(B)の3個以上の流れを、口
金板に設けた紡糸孔(カウンターボア)に至る手前で該
中心流れを取り囲んで互いに分離した位置から各々直角
方向またはほぼ直角方向に導入して、熱可塑性ポリマー
(A)と熱可塑性ポリマー(B)からなる複合流れを形
成させ、該複合流れを口金板に設けた3個以上の突出部
を有する多葉断面形状の紡糸口(吐出口)より紡出させ
る方法を採用すると、熱可塑性ポリマー(B)が計量性
良く供給されて、デニール斑がなく、異形断面繊維の突
出部の先端部分、先端部分と根元部分との間の所定位置
または根元部分において熱可塑性ポリマー(A)と熱可
塑性ポリマー(B)との境界が明確になった状態で両方
ポリマーが接合複合化され、しかも突出部の形状や寸法
の崩れなどが生じず、輪郭のくっきりした良好な多葉断
面を有する複合繊維を得ることができる。
The modified cross-section conjugate fiber of the present invention is produced by using a spinneret device having a spinneret (spin-off port) having a multi-lobed cross section, and using the thermoplastic polymer (A) and the thermoplastic polymer (B).
Can be produced by melt-composite spinning by a conventional method, followed by stretching and heat treatment. In that case, during melt-composite spinning of the multi-leaf cross-section composite fiber, the thermoplastic polymer (A) having the above-mentioned heat shrinkage stress and heat shrinkage ratio forming the center part is particularly thermoplastic to the center part flow. Three or more streams of the above-mentioned thermoplastic polymer (B) having a smaller heat shrinkage ratio than the polymer (A) are separated from each other by surrounding the central flow before reaching the spinning hole (counterbore) provided in the spinneret plate. At a right angle or almost at right angles to each other to form a composite flow composed of the thermoplastic polymer (A) and the thermoplastic polymer (B), and the composite flow is provided on a die plate to form three or more protrusions. When a method of spinning from a spinneret (discharging port) having a multi-lobed cross-section shape having a portion is adopted, the thermoplastic polymer (B) is supplied with good metering property, and there is no denier unevenness, and the tip of the protruding portion of the modified cross-section fiber In the state where the boundary between the thermoplastic polymer (A) and the thermoplastic polymer (B) becomes clear at a predetermined position between the tip portion and the root portion or at the root portion, both polymers are bonded and complexed, and the protrusion It is possible to obtain a conjugate fiber having a good multi-lobed cross section with a clear contour without causing the shape or size of the part to be broken.
【0028】そして、上記の方法は、図3に示したよう
な口金装置を使用すると極めて円滑に実施することがで
きる。図3は、口金装置の一部(口金板とその上に設け
る分配板)を示した図であり、(イ)はその縦断面図、
(ロ)〜(ニ)は図3の(イ)の切断線L−L部分にお
ける平面図である。
The above method can be carried out very smoothly by using the mouthpiece device as shown in FIG. FIG. 3 is a view showing a part of the mouthpiece device (a mouthpiece plate and a distribution plate provided on the mouthpiece plate), and (a) is a longitudinal sectional view thereof.
(B) to (D) are plan views in the section taken along the line LL in (A) of FIG. 3.
【0029】図3の口金装置においては、口金板4に3
個以上の突出部を有する多葉断面形状の紡糸口(吐出
口)5が形成されてあり、口金板4の上流側に、口金板
4に接して、分配板6を設けてある。分配板6は中心導
孔7および3個以上の側導孔8を有しており、該3個以
上の側導孔8は中心導孔7を取り囲んで互いに分離して
位置すると共に、各々が中心導孔7に対して直角方向ま
たはほぼ直角方向に連通している。分配板6の中心導孔
7から熱可塑性ポリマー(A)の流れを供給して中心部
流れを形成し、側導孔8から熱可塑性ポリマー(B)の
流れを供給し、熱可塑性ポリマー(A)の流れと熱可塑
性ポリマー(B)の流れとの合流位置で両方のポリマー
を複合させて複合ポリマー流れを形成させ、その複合ポ
リマー流れを口金板4の背面に設けたカウンターボア9
にそのまま供給して、中心部が熱可塑性ポリマー(A)
により構成され、多葉断面の突出部の少なくとも一部、
特に突出部の先端部を含む少なくとも一部が熱可塑性ポ
リマー(B)により構成されている多葉断面を有する複
合繊維を紡糸口5から紡出させる。
In the mouthpiece device shown in FIG.
A spinneret (discharging port) 5 having a multi-lobed cross-section having at least one projecting portion is formed, and a distribution plate 6 is provided on the upstream side of the spinneret plate 4 in contact with the spinneret plate 4. The distribution plate 6 has a central guide hole 7 and three or more side guide holes 8. The three or more side guide holes 8 surround the central guide hole 7 and are located separately from each other. It communicates with the central guide hole 7 at a right angle or a substantially right angle. The flow of the thermoplastic polymer (A) is supplied from the central guide hole 7 of the distribution plate 6 to form the central portion flow, and the flow of the thermoplastic polymer (B) is supplied from the side guide hole 8 to supply the thermoplastic polymer (A). 2) and the flow of the thermoplastic polymer (B) at the confluence of both polymers to form a composite polymer stream, and the composite polymer stream is formed in the counterbore 9 provided on the back surface of the die plate 4.
As it is, the central part is thermoplastic polymer (A)
At least a part of the protruding portion of the multi-lobed cross section,
In particular, a composite fiber having a multi-lobed cross section in which at least a part including the tip of the protruding portion is composed of the thermoplastic polymer (B) is spun from the spinneret 5.
【0030】図3において、(ロ)は3個の突出部を有
する多葉断面複合繊維を形成させるための分配板を示す
図であり、(ハ)および(ニ)はそれぞれ4個および5
個の突出部を有する多葉断面複合繊維を形成するための
分配板を示す図である。そして、図3に示すような分配
板を備えた口金装置を用いた場合には、熱可塑性ポリマ
ー(B)の熱収縮率が中心導孔7に供給される熱可塑性
ポリマー(A)の熱収縮率よりも小さい限りは、該3個
以上の側導孔(8)には同じ熱可塑性ポリマー(B)の
流れを供給しても、または異なる種類の熱可塑性ポリマ
ー(B)の流れを供給してもよく、熱可塑性ポリマー
(A)と熱可塑性ポリマー(B)の選択、組み合わせに
よって極めて多様な複合繊維を得ることができる。ま
た、図3のような口金装置は、熱可塑性ポリマー(A)
と熱可塑性ポリマー(B)との粘度差が大きい場合に有
効であり、特に中心導孔7に供給される熱可塑性ポリマ
ー(A)の流れが高粘度であり、側導孔8に供給される
熱可塑性ポリマー(B)の流れが低粘度である場合によ
り効果が発揮されて、工程性よく所望の多葉断面を有す
る複合繊維を正確に製造することができる。
In FIG. 3, (b) is a diagram showing a distribution plate for forming a multileaf cross-section composite fiber having three protrusions, and (c) and (d) are four and five, respectively.
It is a figure which shows the distribution plate for forming the multileaf cross-section composite fiber which has an individual protrusion part. Then, in the case of using a mouthpiece device having a distribution plate as shown in FIG. 3, the heat shrinkage rate of the thermoplastic polymer (B) is the heat shrinkage of the thermoplastic polymer (A) supplied to the central guide hole 7. The three or more side guide holes (8) may be supplied with the same stream of thermoplastic polymer (B) or with different types of thermoplastic polymer (B) as long as the ratio is smaller than the above. However, a very wide variety of conjugate fibers can be obtained by selecting and combining the thermoplastic polymer (A) and the thermoplastic polymer (B). Further, the base device as shown in FIG. 3 has a thermoplastic polymer (A).
Is effective when there is a large difference in viscosity between the thermoplastic polymer (B) and the thermoplastic polymer (B). Particularly, the flow of the thermoplastic polymer (A) supplied to the central guide hole 7 has a high viscosity and is supplied to the side guide hole 8. The effect is exerted more when the flow of the thermoplastic polymer (B) has a low viscosity, and the conjugate fiber having a desired multilobe cross section can be accurately manufactured with good processability.
【0031】そして、図3のような口金装置において、
側導孔8は中心導孔7に対して必ずしも正確に直角(9
0°)になっていなくてもよい。更に、図3の口金装置
において、分配板6における側導孔8の位置および数
を、口金板4に設けた紡糸口5における突出部の位置お
よび数と一致させることによって、多葉断面複合繊維に
おいて、その突出部の少なくとも先端部分を含めた位置
に熱可塑性ポリマー(B)を一層きちんと正確に配置さ
せることができる。そして、本発明の紡糸口金装置は、
上記した構造からなる分配板および口金板を有している
限りはいずれでもよく、それ以外の部分の形状、構造、
サイズなどは特に限定されない。なお、かかる口金紡糸
装置は、本発明の多葉断面を有する複合繊維のみなら
ず、複雑な形状を有し且つ2成分以上のポリマーからな
る複合繊維の製造にも有用である。
Then, in the mouthpiece device as shown in FIG.
The side guide hole 8 is not always exactly at right angle (9
It does not have to be 0 °). Further, in the spinneret device of FIG. 3, the position and the number of the side guide holes 8 in the distribution plate 6 are made to coincide with the position and the number of the protrusions in the spinneret 5 provided in the spinneret plate 4, so that the multi-leaf cross-section composite fiber is obtained. In the above, the thermoplastic polymer (B) can be more properly and accurately arranged at a position including at least the tip portion of the protruding portion. And the spinneret device of the present invention,
It may be any as long as it has a distributor plate and a base plate having the above-mentioned structure, the shape and structure of the other parts,
The size is not particularly limited. The spinneret spinning device is useful not only for producing the conjugate fiber having a multileaf cross section of the present invention but also for producing a conjugate fiber having a complicated shape and made of a polymer of two or more components.
【0032】上記した図3に示すような本発明の紡糸口
金装置に代えて、例えば図4に示すような従来の分配板
を備えた口金装置を使用した場合[図4の(イ)は口金
装置の縦断面図、(ロ)は図4の(イ)の切断線L−L
における平面図である]、すなわち分配板6の熱可塑性
ポリマー(A)の流れを供給する中心導孔7の周囲全体
に、熱可塑性ポリマー(B)の流れを環状状態で供給す
る環状供給路10を有する分配板6を備えた口金装置を
使用した場合には、得られる多葉断面複合繊維におい
て、(1)中心部にも熱可塑性ポリマー(B)が混入す
る、(2)突出部において熱可塑性ポリマー(A)と熱
可塑性ポリマー(B)とが入り交じって突出部における
熱可塑性ポリマー(A)と熱可塑性ポリマー(B)との
境界が不明瞭になる、(3)突出部における熱可塑性ポ
リマー(A)と熱可塑性ポリマー(B)の複合割合や複
合状態が不揃いになる、(4)突出部の輪郭が丸くなっ
てシャープさに欠けたりサイズが変動する、などの種々
のトラブルが発生し易くなり、その結果口金板の吐出面
におけるニーイングやポリマーの吐出斑、単糸切れなど
が発生して、紡糸時の工程性の不良、延伸時の毛羽の巻
き付き、延伸斑、張力異常、製品の収縮斑、染色斑、す
じ斑などを招き易い。特に、熱可塑性ポリマー(A)と
熱可塑性ポリマー(B)との粘度差が大きい場合には、
そのようなトラブルが一層生じ易い。
When the spinneret device of the present invention as shown in FIG. 3 is replaced by a spinneret device having a conventional distributor plate as shown in FIG. 4, for example, [(a) in FIG. A longitudinal sectional view of the apparatus, (b) is a cutting line LL of (a) in FIG.
2], that is, the annular supply passage 10 for supplying the flow of the thermoplastic polymer (B) in an annular state to the entire periphery of the central guide hole 7 for supplying the flow of the thermoplastic polymer (A) of the distribution plate 6. When the spinneret device having the distribution plate 6 having the above is used, in the obtained multileaf cross-section composite fiber, (1) the thermoplastic polymer (B) is mixed in the central part, and (2) heat is generated at the protruding part. The thermoplastic polymer (A) and the thermoplastic polymer (B) are mixed with each other to make the boundary between the thermoplastic polymer (A) and the thermoplastic polymer (B) in the protruding portion unclear, (3) Thermoplasticity in the protruding portion Various problems occur, such as the composite ratio and composite state of the polymer (A) and the thermoplastic polymer (B) become uneven, and (4) the contour of the protruding part is rounded and lacks sharpness or changes in size. Shi As a result, kneeling on the discharge surface of the die plate, polymer discharge unevenness, single yarn breakage, etc. occur, resulting in poor processability during spinning, fluff winding during drawing, drawing unevenness, abnormal tension, and It is easy to cause shrinkage spots, stain spots, and streaks. In particular, when the difference in viscosity between the thermoplastic polymer (A) and the thermoplastic polymer (B) is large,
Such troubles are more likely to occur.
【0033】上記したように、本発明の異形断面複合繊
維は、溶融複合紡糸した後、好ましくは延伸(延伸・熱
固定)および熱処理を施して製造されるが、その場合
に、例えば1000〜4000m/分のような通常の紡
糸速度で紡糸し、冷却後、必要に応じて給油しながら巻
取った後、適正な温度で延伸、熱処理を行う方法を採用
しても、高速紡糸法を採用して紡糸と同時に延伸された
繊維を製造してそれに熱処理を施す方法を採用しても、
または紡糸した後そのまま直接延伸、熱処理を施す紡糸
直結延伸法を採用してもよい。いずれの場合も、熱可塑
性ポリマー(A)と熱可塑性ポリマー(B)との溶融粘
度の差が極端に大きいと、紡糸口金でニーイングが生じ
易くなり紡糸工程性が低下するが、上記の紡糸口金装置
を用いるとそのようなトラブルが生じず良好に紡糸でき
る。用途に応じて適当な粘度差を有する両方のポリマー
を選択することは言うまでもない。
As described above, the modified cross-section conjugate fiber of the present invention is preferably produced by melt-composite spinning, followed by drawing (drawing / heat setting) and heat treatment. In that case, for example, 1000 to 4000 m. Even if a method is adopted in which spinning is carried out at a normal spinning speed such as / min, cooling, winding is carried out while supplying oil if necessary, and then stretching and heat treatment are carried out at an appropriate temperature, the high-speed spinning method is adopted. Even if a method is adopted in which fibers that have been drawn at the same time as spinning are produced and heat treated,
Alternatively, a spinning direct-coupling stretching method may be employed in which, after spinning, direct stretching and heat treatment are performed as they are. In any case, when the difference in melt viscosity between the thermoplastic polymer (A) and the thermoplastic polymer (B) is extremely large, kneeling is likely to occur in the spinneret and the spinning processability deteriorates. When the device is used, such trouble does not occur and good spinning is possible. It goes without saying that both polymers having appropriate viscosity differences are selected according to the application.
【0034】また、複合繊維の延伸工程(延伸・熱固
定)において採用する延伸温度および熱固定温度は、複
合繊維およびそれから得られる布帛の収縮性、伸縮性、
ふくらみ、柔軟性などに直接影響を及ぼすことの多い因
子であるので、延伸処理を施すに際しては延伸温度およ
び熱固定温度について充分に注意を払うことが必要であ
る。特に、複合繊維を構成する熱可塑性ポリマー(A)
および熱可塑性ポリマー(B)のうち、ガラス転移点
(Tg)の高いポリマーのTg以上の温度で延伸を行う
のが、工程性や製品のふくらみ、仕立て映えの点から好
ましい。例えば熱可塑性ポリマー(A)および熱可塑性
ポリマー(B)が共にポリエステル系のポリマーである
場合は、延伸温度を75℃以上とし、熱固定温度を90
〜160℃とするのが好ましい。延伸温度が75℃より
も低いと毛羽の巻き付きや張力変動により延伸斑を生じ
て品質の低下を招き易くなる。また、熱固定温度が90
℃よりも低いと収縮率を大きく保つことができるものの
膠着気味の硬い風合となり、一方熱固定温度が160℃
よりも高いと複合繊維の収縮率が低くなり、ふくらみの
ない偏平な感じの低品質の布帛になり易い。さらに、延
伸時にかける張力は、複合繊維におけるねじれ構造の発
現性を良好にするために低い方が好ましい。
The stretching temperature and heat setting temperature used in the drawing step (drawing / heat setting) of the composite fiber are such that the composite fiber and the cloth obtained therefrom have
Since it is a factor that often directly affects bulge, flexibility, etc., it is necessary to pay sufficient attention to the stretching temperature and the heat setting temperature when performing the stretching treatment. In particular, the thermoplastic polymer (A) that constitutes the composite fiber
Further, it is preferable to perform stretching at a temperature not lower than Tg of a polymer having a high glass transition point (Tg) among the thermoplastic polymers (B) from the viewpoint of processability, product swelling, and tailored appearance. For example, when both the thermoplastic polymer (A) and the thermoplastic polymer (B) are polyester polymers, the stretching temperature is 75 ° C. or higher and the heat setting temperature is 90 ° C.
It is preferably set to 160 ° C. If the drawing temperature is lower than 75 ° C., the unevenness of the drawing may occur due to the winding of fluff or the fluctuation of tension, and the quality may be deteriorated. Also, the heat setting temperature is 90
If the temperature is lower than ℃, the shrinkage ratio can be kept large, but the texture will be sticky and hard, while the heat setting temperature will be 160 ℃.
If it is higher than that, the shrinkage ratio of the composite fiber becomes low, and a low-quality fabric having a flat feeling without bulging is likely to be obtained. Furthermore, the tension applied during drawing is preferably low in order to improve the developability of the twisted structure in the composite fiber.
【0035】また、延伸(延伸・熱固定)後に行う熱処
理は、延伸処理と連続して行ってもまたは延伸工程とは
切り離して独立させた工程として行ってもよい。そし
て、熱処理は繊維または糸の状態で実施しても、布帛の
作製工程時、または布帛の作製後(例えば精錬処理工
程、プリセット工程、染色工程など)に実施してもよ
い。熱処理温度は、複合繊維の製造に用いる熱可塑性ポ
リマー(A)および熱可塑性ポリマー(B)の種類や結
晶化温度などに応じて適宜選択することができるが、例
えば熱可塑性ポリマー(A)および熱可塑性ポリマー
(B)が共にポリエステル系のポリマーである場合は、
90〜160℃の範囲の温度を採用するのが、得られる
製品の伸縮性、ふくらみ、柔軟性、仕立て映えなどの点
から好ましい。
The heat treatment carried out after stretching (stretching / heat setting) may be carried out continuously with the stretching process or as a process independent of the stretching process. The heat treatment may be carried out in the state of fibers or yarns, or during the fabric manufacturing process, or after the fabric manufacturing (for example, refining treatment process, preset process, dyeing process, etc.). The heat treatment temperature can be appropriately selected depending on the types of the thermoplastic polymer (A) and the thermoplastic polymer (B) used for producing the conjugate fiber, the crystallization temperature, and the like. For example, the thermoplastic polymer (A) and the thermopolymer When the plastic polymer (B) is a polyester-based polymer,
It is preferable to use a temperature in the range of 90 to 160 ° C. from the viewpoint of stretchability, swelling, flexibility and tailoring of the obtained product.
【0036】そして、上記のようにして得られた本発明
の異形断面複合繊維は、必要に応じて、単独でまたは他
の繊維と組み合わせて、流体などによる絡合処理;仮撚
加工、流体加工、ギヤ捲縮加工などによる捲縮処理;タ
スラン加工などを更に施してもよい。本発明の複合繊維
は、単独でまたは他の合成繊維や天然繊維などと混紡、
混繊して布帛にすることができ、特に織物では少なくと
もヨコ糸も本発明の複合繊維からなる糸を用いると、伸
縮性およびふくらみ感に富んだ、仕立て映えのする良好
な布帛を得ることができる。
The modified cross-section composite fiber of the present invention obtained as described above is entangled by a fluid or the like, either alone or in combination with other fibers, if necessary; false twisting, fluid processing. Further, crimping treatment such as gear crimping treatment; Taslan treatment may be further performed. The conjugate fiber of the present invention, alone or mixed with other synthetic fibers or natural fibers,
It is possible to mix fibers to form a fabric, and particularly in the case of a woven fabric, when at least the weft yarn is formed of the composite fiber of the present invention, it is possible to obtain a fabric that is rich in elasticity and swelling and has a good tailored appearance. it can.
【0037】以下に本発明を実施例などにより具体的に
説明するが、本発明はそれにより限定されない。なお、
以下の実施例等において、ポリマーの固有粘度[η]、
熱可塑性ポリマー(A)の熱収縮応力、熱可塑性ポリマ
ー(A)および熱可塑性ポリマー(B)の熱収縮率、紡
糸時の工程性、延伸時の工程性、得られる複合繊維の熱
収縮率、ねじれ数および断面形状、得られる布帛の伸縮
性および仕立て映えの測定または評価は次のようにして
行った。
The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. In addition,
In the following examples, etc., the intrinsic viscosity [η] of the polymer,
Heat shrinkage stress of the thermoplastic polymer (A), heat shrinkage of the thermoplastic polymer (A) and thermoplastic polymer (B), processability during spinning, processability during drawing, heat shrinkage of the resulting conjugate fiber, The number of twists and the cross-sectional shape, the stretchability of the obtained fabric, and the tailored appearance were measured or evaluated as follows.
【0038】ポリマーの固有粘度[η] フェノール/テトラクロロエタン(重量比1:1)の混
合溶媒中にポリマーを溶解して30℃で測定したときの
値である。
[0038]Intrinsic viscosity of polymer [η]  Mixture of phenol / tetrachloroethane (weight ratio 1: 1)
When the polymer was dissolved in a mixed solvent and measured at 30 ° C
It is a value.
【0039】熱可塑性ポリマー(A)の熱収縮応力 熱可塑性ポリマー(A)を単独で用いて、各実施例また
は比較例における複合繊維の製造と同じ装置を用いて同
じ条件下で、同じ断面形状、寸法および太さを有する異
形断面繊維を紡糸・延伸し、得られた延伸糸を10cm
採取し、両端を結んでループ状にする。これをオートグ
ラフ(島津製作所製「AG−2000A型」)を用い
て、0.5g/デニールの荷重下に室温から1℃/分の
速度で昇温させながら乾熱処理して、その時の最大収縮
応力(g)を読み取り、糸の総繊度(総デニール数)で
除して、単繊度当たりの熱収縮応力(g/デニール)を
求める。
Heat Shrinkage Stress of Thermoplastic Polymer (A) Using the thermoplastic polymer (A) alone, the same apparatus and the same cross-sectional shape under the same conditions as in the production of the conjugate fiber in each Example or Comparative Example. , A modified cross-section fiber having dimensions and thickness is spun and drawn, and the obtained drawn yarn is 10 cm.
Collect and make a loop by connecting both ends. Using an autograph (“AG-2000A type” manufactured by Shimadzu Corporation), dry heat treatment is performed while increasing the temperature from room temperature at a rate of 1 ° C./min under a load of 0.5 g / denier, and the maximum shrinkage at that time. The stress (g) is read and divided by the total fineness (total denier) of the yarn to obtain the heat shrinkage stress per single fineness (g / denier).
【0040】熱可塑性ポリマー(A)および熱可塑性ポリ
マー(B)の熱収縮率 熱可塑性ポリマー(A)または熱可塑性ポリマー(B)
を単独で用いて、各実施例または比較例における複合繊
維の製造と同じ装置を用いて同じ条件下で、同じ断面形
状、寸法および太さを有する異形断面繊維を紡糸・延伸
し、得られた延伸糸を50cm採取する。採取した延伸
糸の一端に100mg/デニールの荷重を負荷してその
時の延伸糸の長さ(L0)(cm)を測定する。次い
で、その延伸糸への負荷荷重を1mg/デニールに変え
て、これを沸騰水中に20分間浸漬した後、取出して風
乾させる。延伸糸への負荷荷重を100mg/デニール
に取り替えて、その時の延伸糸の長さ(L1)(cm)
を測定し、下記の数式1により熱収縮率(%)を求め
る。
Thermoplastic polymer (A) and thermoplastic poly
Thermal shrinkage rate of mer (B) Thermoplastic polymer (A) or thermoplastic polymer (B)
Obtained by spinning and drawing a modified cross-section fiber having the same cross-sectional shape, size and thickness under the same conditions using the same apparatus as the production of the composite fiber in each Example or Comparative Example. 50 cm of drawn yarn is collected. A load of 100 mg / denier is applied to one end of the drawn drawn yarn, and the length (L 0 ) (cm) of the drawn yarn at that time is measured. Then, the load applied to the drawn yarn is changed to 1 mg / denier, and the drawn yarn is immersed in boiling water for 20 minutes, then taken out and air dried. The load applied to the drawn yarn was changed to 100 mg / denier, and the length of the drawn yarn at that time (L 1 ) (cm)
Is measured, and the heat shrinkage rate (%) is calculated by the following formula 1.
【0041】[0041]
【数1】 熱収縮率(%)={(L0−L1)/L0}×100## EQU00001 ## Thermal contraction rate (%) = {(L 0 −L 1 ) / L 0 } × 100
【0042】紡糸時の工程性 下記の表1に示した4段階の評価基準により紡糸時の工
程性を評価する。
[0042]Processability during spinning  According to the four-level evaluation criteria shown in Table 1 below, the spinning process
Evaluate moderation.
【0043】[0043]
【表1】 紡糸時の工程性 ◎:非常に良好 ○:良好、ニーイングが少し見られるが、断糸もなく紡糸できる △:やや不良、ニーイングが見られ、時々単糸切れが発生する ×:不良、ニーイングが大きく、単糸切れが多発する [Table 1] Processability during spinning ⊚: Very good ◯: Good, some kneeing is observed, but spinning is possible without breakage Δ: Slightly poor, kneeling is observed, and sometimes single yarn breakage occurs ×: Poor, large kneeing, single yarn breakage Often occurs
【0044】延伸時の工程性 下記の表2に示した4段階の評価基準により延伸時の工
程性を評価する。
Processability During Stretching Processability during stretching is evaluated according to the four-step evaluation criteria shown in Table 2 below.
【0045】[0045]
【表2】 延伸時の工程性 ◎:非常に良好 ○:良好、毛羽巻付きが見られないが、◎に比べやや劣る △:やや不良、時々毛羽巻付きがあり、品質に斑が生ずる ×:不良、毛羽巻付き、断糸が多発する [Table 2] Processability during stretching ◎: Very good ○: Good, no fluffing is seen, but slightly inferior to ◎ △: Slightly defective, sometimes fluffing occurs and uneven quality occurs ×: Poor, fluffing, broken yarn Often occurs
【0046】複合繊維の熱収縮率 各実施例または比較例で得られた複合繊維の延伸糸を採
取する。この延伸糸を用いて、熱可塑性ポリマー(A)
または熱可塑性ポリマー(B)の熱収縮率を測定する場
合と同様にして、100mg/デニールの荷重を負荷し
た時の延伸糸の長さ(L0)(cm)、延伸糸への負荷荷重
を1mg/デニールに変えて、これを沸騰水中に20分
間浸漬した後、取出して風乾させ、次いで延伸糸への負
荷荷重を100mg/デニールに取り替えた時の延伸糸
の長さ(L1)(cm)を測定し、上記の数式1により熱収
縮率(%)を求める。
Heat Shrinkage of Composite Fiber The drawn yarn of the composite fiber obtained in each Example or Comparative Example is collected. Using this drawn yarn, the thermoplastic polymer (A)
Alternatively, in the same manner as in the case of measuring the heat shrinkage rate of the thermoplastic polymer (B), the length (L 0 ) (cm) of the drawn yarn when a load of 100 mg / denier is applied, and the load applied to the drawn yarn are The length (L 1 ) (cm) of the drawn yarn when the load was changed to 1 mg / denier, immersed in boiling water for 20 minutes, taken out and air-dried, and then the load applied to the drawn yarn was changed to 100 mg / denier ) Is measured, and the heat shrinkage rate (%) is calculated by the above-mentioned numerical formula 1.
【0047】複合繊維のねじれ数 各実施例または比較例で得られた複合繊維の延伸糸の束
を綛状で沸騰水中に30分間浸漬して熱処理し、風乾
後、その単糸(単繊維)の捲縮状態がほぼそのまま保た
れるようにして長さ方向に1本ずつスライドグラスに貼
る付け、長さ1インチ間のねじれ数を肉眼で数える。そ
の際に、ねじれ数は、図5に示すように、繊維の長さ方
向に沿って、その左右への突出部が交錯している点を1
個として数える。
Number of twists of composite fiber The bundle of drawn yarns of the composite fiber obtained in each of the examples or comparative examples is dipped into boiling water for 30 minutes for heat treatment, air-dried, and then the single yarn (single fiber) The crimped state is kept almost as it is, and it is attached to a slide glass one by one in the length direction, and the number of twists within a length of 1 inch is visually counted. At that time, the number of twists is 1 as shown in FIG. 5 when the protrusions to the left and right are crossed along the length direction of the fiber.
Count as an individual.
【0048】複合繊維の断面形状 下記の表3に示した4段階の評価基準により得られた複
合繊維の断面形状の良否を評価する。
[0048] To evaluate the quality of the cross-sectional shape of the composite fiber obtained by the evaluation criteria four levels shown in Table 3 of the cross-sectional shape following the composite fibers.
【0049】[0049]
【表3】 複合繊維の断面形状 ◎:形が良く、複合状態および形状に斑がなく、非常に良好 ○:複合状態および形状にやや斑があるが、問題はなく良好 △:形状がやや悪く、ややバラツキを生じ、やや不良 ×:形状が悪く、複合状態およびデニール(繊度)に斑が大きく不良 [Table 3] Cross-sectional shape of composite fiber ⊚: Good shape, no unevenness in composite state and shape, and very good ◯: Some unevenness in composite state and shape, no problem is good Δ: Somewhat poor shape, slight variation, slightly bad × : Poor shape, large unevenness in composite state and denier (fineness)
【0050】布帛の伸縮性 20cm幅の布帛試料を用いて、風合測定機[カトーテ
ック(株)製「KESシステム」]を使用して引張り試
験を行い、500g/cmの力でヨコ方向に引っ張った
時の伸びをEmaxとしてその値を布帛の伸縮性(%)と
する。
Stretchability of fabric Using a fabric sample having a width of 20 cm, a tensile test was conducted using a texture measuring device ["KES system" manufactured by Kato Tech Co., Ltd.), and a force of 500 g / cm was applied in the horizontal direction. The elongation when pulled is Emax, and the value is the stretchability (%) of the fabric.
【0051】布帛の仕立て映え 実施例または比較例で得られた各布帛を男性用スーツに
仕立て、その外観を下記の表4に示した4段階の評価基
準により官能評価する。
Tailoring of Fabric Each of the fabrics obtained in Examples and Comparative Examples is tailored into a suit for men, and the appearance thereof is sensory-evaluated according to the four-level evaluation criteria shown in Table 4 below.
【0052】[0052]
【表4】 仕立て映えの評価基準 ◎:ソフトでふくらみがあり、且つ適度の張りおよび腰があり極めて良好 ○:ややソフトでふくらみがややあり、適度の張りおよび腰もややあり良好 △:ソフト感、ふくらみに欠け、やや硬くやや不良 ×:ソフト感、ふくらみがなく、粗硬で、不良 [Table 4] Evaluation criteria for tailoring ◎: Soft and swelling with moderate tension and waist, extremely good ○: Slightly soft and slightly bulging, moderate tension and waist slightly △: Soft feeling, lacking swelling, slightly hard and slightly poor ×: Soft feeling, no bulge, coarse and hard, poor
【0053】《実施例 1》熱可塑性ポリマー(A)と
して[η]が1.1dl/gで、熱収縮応力が0.35
g/デニールおよび熱収縮率が20%のポリブチレンテ
レフタレートを用い、また熱可塑性ポリマー(B)とし
て[η]が0.68で、熱収縮率が7%のポリエチレン
テレフタレートを用いて、図3の(ロ)の分配板を有す
る口金装置を備えた紡糸装置に、熱可塑性ポリマー
(A):熱可塑性ポリマー(B)=1:1の重量割合で供給
して紡出し、1000m/分の引き取り速度で巻取っ
て、200デニール/36フィラメントの複合繊維(紡
糸原糸)を得た。上記で得た紡糸原糸を温度78℃の加
熱ローラー、温度120℃のプレートを用いて延伸(延
伸・熱固定)して、75デニール/36フィラメントの
延伸糸を製造した。この延伸糸をスピンドル仮撚加工機
を使用して、仮撚数3500回/m、仮撚加工温度20
0℃で撚をかけ、次いで2/2の綾織物を製織した。得
られた織物を糊抜き、精錬、乾燥した後、温度170℃
で乾熱処理してふくらみを出させ、プリセット後、20
重量%の減量処理、染色、仕上げセット工程を順次施し
た。この実施例1における紡糸時の工程性、延伸時の工
程性、得られた複合繊維の熱収縮率、ねじれ数および断
面形状、得られた布帛の伸縮性および仕立て映えを上記
した方法により測定または評価したところ、そのいずれ
もが下記の表5に示すように極めて良好であった。
Example 1 As the thermoplastic polymer (A), [η] was 1.1 dl / g and the heat shrinkage stress was 0.35.
Using polybutylene terephthalate having g / denier and a heat shrinkage of 20%, and using polyethylene terephthalate having a heat shrinkage of 7% as [η] of 0.68 as the thermoplastic polymer (B). The thermoplastic polymer is added to the spinning device equipped with the spinneret device having the distribution plate (b).
(A): Thermoplastic polymer (B) = 1: 1 by weight, spun out, and wound at a take-up speed of 1000 m / min to obtain a 200 denier / 36 filament composite fiber (spun raw yarn). It was The spun raw yarn obtained above was drawn (drawn and heat set) using a heating roller at a temperature of 78 ° C. and a plate at a temperature of 120 ° C. to produce a drawn yarn of 75 denier / 36 filaments. Using the spindle false twisting machine, this drawn yarn was subjected to false twisting of 3500 times / m at false twisting temperature of 20.
Twist was applied at 0 ° C. and then a 2/2 twill fabric was woven. After desizing, refining and drying the resulting fabric, the temperature is 170 ° C.
Dry heat-treat with to make it bulge, and after presetting, 20
The weight-reduction treatment, dyeing, and finishing setting process were sequentially performed. In this Example 1, the processability during spinning, the processability during drawing, the heat shrinkage rate of the obtained composite fiber, the number of twists and the cross-sectional shape, the stretchability and tailoring of the obtained fabric were measured by the methods described above or When evaluated, all of them were extremely good as shown in Table 5 below.
【0054】《比較例 1》口金装置における分配板を
図4で示される構造のものに代えた以外は実施例1と同
様にして、複合繊維の製造、延伸、製織、後処理を行っ
た。その結果を表5に示す。
Comparative Example 1 A composite fiber was produced, stretched, woven and post-treated in the same manner as in Example 1 except that the distribution plate in the spinneret device was changed to the one shown in FIG. The results are shown in Table 5.
【0055】《実施例 2》熱可塑性ポリマー(A)と
して[η]が0.76で、熱収縮応力が0.35および
熱収縮率が18%のイソフタル酸を8モル%共重合した
ポリエチレンテレフタレートを使用した以外は実施例1
と同様にして複合繊維の製造、延伸、製織、後処理を行
った。その結果を表5に示す。
Example 2 Polyethylene terephthalate obtained by copolymerizing 8 mol% of isophthalic acid having a [η] of 0.76, a heat shrinkage stress of 0.35 and a heat shrinkage of 18% as a thermoplastic polymer (A). Example 1 except that
In the same manner as above, the composite fiber was manufactured, stretched, weaved, and post-treated. The results are shown in Table 5.
【0056】《比較例 2》口金装置における分配板を
図4で示される構造のものに代えた以外は実施例2と同
様にして、複合繊維の製造、延伸、製織、後処理を行っ
た。その結果を表5に示す。
Comparative Example 2 The production, drawing, weaving, and post-treatment of the composite fiber were carried out in the same manner as in Example 2 except that the distribution plate in the spinneret device was changed to the structure shown in FIG. The results are shown in Table 5.
【0057】《実施例 3》熱可塑性ポリマー(A)と
して[η]が0.70で、熱収縮応力が0.40および
熱収縮率が26%のビスフェノールSのエチレンオキサ
イド2モル付加ジオールを8モル%共重合したポリエチ
レンテレフタレートを使用した以外は実施例1と同様に
して複合繊維の製造、延伸、製織、後処理を行った。そ
の結果を表5に示す。
Example 3 As the thermoplastic polymer (A), [η] was 0.70, the heat shrinkage stress was 0.40, and the ethylene oxide 2 mol addition diol of bisphenol S having a heat shrinkage ratio of 26% was 8%. The production, stretching, weaving, and post-treatment of the composite fiber were performed in the same manner as in Example 1 except that polyethylene terephthalate copolymerized by mol% was used. The results are shown in Table 5.
【0058】《比較例 3》口金装置における分配板を
図4で示される構造のものに代えた以外は実施例3と同
様にして、複合繊維の製造、延伸、製織、後処理を行っ
た。その結果を表5に示す。
Comparative Example 3 The production, drawing, weaving, and post-treatment of the composite fiber were carried out in the same manner as in Example 3 except that the distribution plate in the spinneret device was changed to the structure shown in FIG. The results are shown in Table 5.
【0059】《実施例 4》熱可塑性ポリマー(A)と
して[η]が0.82で、熱収縮応力が0.45および
熱収縮率が32%のイソフタル酸を12モル%共重合し
たポリエチレンテレフタレートを使用した以外は実施例
1と同様にして複合繊維の製造、延伸、製織、後処理を
行った。その結果を表5に示す。表5に示されているよ
うに、この実施例4の場合の熱可塑性ポリマー(A)の
熱収縮率がやや大きいために、紡糸時や延伸時の工程性
が実施例1に比べてやや低下し、複合繊維より得られた
布帛の伸縮性は実施例1に比べて多少大きかったが、得
られた布帛はウール調の服地として充分有効に使用し得
るものであった。
Example 4 Polyethylene terephthalate obtained by copolymerizing 12 mol% of isophthalic acid having a [η] of 0.82, a heat shrinkage stress of 0.45 and a heat shrinkage of 32% as a thermoplastic polymer (A). The production, drawing, weaving, and post-treatment of the composite fiber were carried out in the same manner as in Example 1 except that was used. The results are shown in Table 5. As shown in Table 5, since the thermoplastic polymer (A) in Example 4 had a slightly higher heat shrinkage, the processability during spinning and stretching was slightly lower than that in Example 1. The stretchability of the fabric obtained from the composite fiber was slightly higher than that of Example 1, but the obtained fabric was sufficiently effective for use as a woolen cloth.
【0060】《比較例 4》口金装置における分配板を
図4で示される構造のものに代えた以外は実施例4と同
様にして、複合繊維の製造、延伸、製織、後処理を行っ
た。その結果を表5に示す。
Comparative Example 4 The production, drawing, weaving, and post-treatment of the composite fiber were carried out in the same manner as in Example 4 except that the distribution plate in the spinneret device was changed to the structure shown in FIG. The results are shown in Table 5.
【0061】《実施例 5》 (1) 熱可塑性ポリマー(A)として[η]が0.7
5で、熱収縮応力が0.41および熱収縮率が27%の
ビスフェノールAのエチレンオキサイド2モル付加ジオ
ールを2モル%とイソフタル酸を8モル%共重合したポ
リエチレンテレフタレートを使用し、口金装置における
分配板を図3の(ハ)で示される構造のものに代えた以
外は実施例1と同様にして、図1の(ヘ)の断面形状を
有する複合繊維を紡出し、3700m/分の引き取り速
度で巻取って、100デニール/12フィラメントの複
合繊維を得た。この複合繊維の熱収縮率は17%であっ
た。
Example 5 (1) As the thermoplastic polymer (A), [η] is 0.7.
5, polyethylene terephthalate obtained by copolymerizing 2 mol% of ethylene oxide 2 mol addition diol of bisphenol A having a heat shrinkage stress of 0.41 and a heat shrinkage ratio of 27% and 8 mol% of isophthalic acid was used. In the same manner as in Example 1 except that the distribution plate was changed to the structure shown in FIG. 3C, the composite fiber having the cross-sectional shape shown in FIG. 1F was spun out and collected at 3700 m / min. It was wound at a speed to obtain a composite fiber of 100 denier / 12 filament. The heat shrinkage ratio of this composite fiber was 17%.
【0062】(2) 一方、[η]が0.68で熱収縮
率が7%のポリエチレンテレフタレートを用いて290
0m/分の引き取り速度で紡糸して100デニール/3
6フィラメントの繊維を得た。 (3) 上記(1)で得た複合繊維と(2)で得たポリ
エステル繊維とを引き揃えながら延伸仮撚してタスラン
加工を施して150デニール/48フィラメントの糸を
得た。 (4) 上記(3)で得られた糸をタテ糸およびヨコ糸
として使用して平織物を作製し、実施例1と同様にして
後加工を施した。 (5) その結果は、下記の表5に示すように、紡糸時
の工程性、延伸時の工程性および仮撚加工性はいずれも
良好であり、最終製品である織物はふくらみを有し、ソ
フトで且つウール織物と同程度の良好な伸縮性を有して
いた。
(2) On the other hand, using polyethylene terephthalate having a [η] of 0.68 and a thermal shrinkage of 7%, 290
100 denier / 3 by spinning at a take-up speed of 0 m / min
Fibers of 6 filaments were obtained. (3) The composite fiber obtained in (1) above and the polyester fiber obtained in (2) were drawn and false-twisted while being aligned, and subjected to Taslan processing to obtain a yarn of 150 denier / 48 filament. (4) A plain woven fabric was produced by using the yarn obtained in (3) above as warp yarns and weft yarns, and post-processing was performed in the same manner as in Example 1. (5) As a result, as shown in Table 5 below, the processability during spinning, the processability during stretching, and the false twisting processability are all good, and the woven fabric as the final product has a bulge, It was soft and had good stretchability comparable to that of wool fabric.
【0063】《比較例 5》口金装置における分配板を
図4で示される構造のものに代えた以外は実施例5と同
様にして、複合繊維の製造、延伸、製織、後処理を行っ
た。その結果を表5に示す。
Comparative Example 5 The production, drawing, weaving, and post-treatment of the composite fiber were carried out in the same manner as in Example 5 except that the distribution plate in the spinneret device was changed to the structure shown in FIG. The results are shown in Table 5.
【0064】《比較例 6》熱可塑性ポリマー(A)と
して[η]が0.70で、熱収縮応力が0.20g/デ
ニールおよび熱収縮率が8%のポリエチレンテレフタレ
ートを使用した以外は実施例1と同様にして複合繊維の
製造、延伸、製織、後処理を行った。その結果を表5に
示す。
Comparative Example 6 Example except that polyethylene terephthalate having [η] of 0.70, heat shrinkage stress of 0.20 g / denier and heat shrinkage of 8% was used as the thermoplastic polymer (A). In the same manner as in 1, composite fiber was manufactured, stretched, weaved, and post-treated. The results are shown in Table 5.
【0065】また、表5には参考のため、天然のウール
から得られた織物の伸縮性を表5に記載する。
For reference, Table 5 shows the stretchability of the woven fabric obtained from natural wool.
【0066】[0066]
【表5】 [Table 5]
【0067】上記表5の結果から、実施例1〜5では紡
糸時の工程性および延伸時の工程性が良好で、熱収縮率
およびねじれ数が大きく且つ断面形状の良好な複合繊維
が得られ、しかもその複合繊維から得られる布帛の伸縮
性がウールからなる布帛の伸縮性とほぼ同程度の良好な
値を有し、仕立て映えがすること、それに対して比較例
1〜6の場合は、紡糸時の工程性および延伸時の工程性
が悪く、しかも得られる複合繊維の断面形状が不良であ
り、仕立て映えのしない布帛になることがわかる。
From the results in Table 5 above, in Examples 1 to 5, conjugate fibers having good processability during spinning and drawability, a large heat shrinkage ratio and a large number of twists, and a good cross-sectional shape were obtained. Moreover, the stretchability of the cloth obtained from the composite fiber has a good value which is almost the same as the stretchability of the cloth made of wool, and the tailoring looks good. In contrast, in the cases of Comparative Examples 1 to 6, It can be seen that the processability during spinning and the processability during drawing are poor, and the cross-sectional shape of the obtained composite fiber is poor, resulting in a fabric that does not look well-tailored.
【0068】《実施例 6》実施例2において、延伸時
の加熱ローラーの温度およびプレートの温度を下記の表
6に示した値に設定して、実施例2と同様にして、紡
糸、延伸、製織、後加工を行って、綾織物を作製したと
ころ、表6に示す結果を得た。
Example 6 In Example 2, the temperature of the heating roller and the temperature of the plate at the time of stretching were set to the values shown in Table 6 below, and spinning and stretching were performed in the same manner as in Example 2. Weaving and post-processing were performed to produce a twill fabric, and the results shown in Table 6 were obtained.
【0069】[0069]
【表6】 [Table 6]
【0070】上記表6の結果から、延伸工程性、複合繊
維および布帛の特性を良好に保つには、複合繊維を延伸
・熱固定する際の延伸温度および熱固定温度をより適し
た範囲に設定するのが好ましいことがわかる。
From the results shown in Table 6 above, in order to maintain good drawing processability and composite fiber and fabric characteristics, the drawing temperature and heat setting temperature when drawing and heat setting the composite fiber are set in more suitable ranges. It turns out that it is preferable to do.
【0071】[0071]
【発明の効果】本発明の異形断面複合繊維は良好な伸縮
性および弾性回復性を有し、本発明の複合繊維からは天
然繊維、特にウールからなる布帛とほぼ同程度の、ふく
らみ、張り、腰、反発性などの極めて良好な特性を有す
る、高級感のある仕立て映えのする布帛を得ることがで
きる。
INDUSTRIAL APPLICABILITY The modified cross-section composite fiber of the present invention has good stretchability and elastic recovery, and the composite fiber of the present invention has a bulge, a tension, which is almost the same as a natural fiber, particularly a cloth made of wool, It is possible to obtain a high-quality tailored fabric having extremely good properties such as waist and resilience.
【0072】そして、上記した優れた特性を有する本発
明の複合繊維は、中心導孔および3個以上の側導孔を有
する分配板であって且つ該3個以上の側導孔が中心導孔
を取り囲んで互いに分離して位置すると共に各々が中心
導孔に対して直角方向またはほぼ直角方向に連通してい
る分配板を備えた紡糸口金装置を用いて、該中心導孔に
熱収縮応力が0.3g/デニール以上および熱収縮率が
15%以上である熱可塑性ポリマー(A)の流れを供給
し、それと同時に側導孔に熱可塑性ポリマー(A)より
も熱収縮率の小さい熱可塑性ポリマー(B)の流れを供
給することによって、極めて円滑に製造することができ
る。
The composite fiber of the present invention having the above-mentioned excellent characteristics is a distribution plate having a central conducting hole and three or more side conducting holes, and the three or more side conducting holes are the central conducting holes. Using a spinneret device provided with a distribution plate that surrounds each other and is separated from each other, and that is in communication with each other at a right angle or substantially a right angle to the central guide hole, a heat shrinkage stress is applied to the central guide hole. A thermoplastic polymer (A) having a flow rate of 0.3 g / denier or more and a heat shrinkage of 15% or more, and at the same time having a heat shrinkage smaller than that of the thermoplastic polymer (A) into the side guide hole. By supplying the flow of (B), it is possible to manufacture extremely smoothly.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の異形断面複合繊維の断面構造の例を示
す図であって、図1の(イ)〜(チ)はいずれもその一
態様である。
FIG. 1 is a diagram showing an example of a cross-sectional structure of a modified cross-section conjugate fiber of the present invention, and (A) to (H) of FIG.
【図2】従来の二葉型複合繊維の断面構造を示す図であ
る。
FIG. 2 is a view showing a cross-sectional structure of a conventional bileaflet conjugate fiber.
【図3】本発明の紡糸口金装置の一例を示す図であり、
図3において(イ)はその縦断面図および(ロ)〜
(ニ)は図3の(イ)の切断線L−L部分における平面
図である。
FIG. 3 is a view showing an example of a spinneret device of the present invention,
In FIG. 3, (a) is a longitudinal sectional view and (b)-
FIG. 4D is a plan view taken along a section line L-L in FIG.
【図4】従来の分配板を備えた紡糸口金装置の例を示す
図であり、図4において(イ)はその縦断面図および
(ロ)は図4の切断線L−L部分における平面図であ
る。
4A and 4B are views showing an example of a conventional spinneret device provided with a distribution plate, in which FIG. 4A is a vertical cross-sectional view thereof, and FIG. 4B is a plan view of a cutting line LL in FIG. Is.
【図5】複合繊維のねじれ数の測定法を示す図である。FIG. 5 is a diagram showing a method for measuring the twist number of a composite fiber.
【符号の説明】[Explanation of symbols]
A 熱可塑性ポリマー(A) B 熱可塑性ポリマー(B) C 高収縮性ポリマー D 低収縮性ポリマー 1 中心部 2 突出部 3 連結部 4 口金板 5 紡糸口(吐出口) 6 分配板 7 中心導孔 8 側導孔 9 カウンターボア 10 環状供給路 A thermoplastic polymer (A) B thermoplastic polymer (B) C high shrinkage polymer D low shrinkage polymer 1 central part 2 protruding part 3 connecting part 4 spinneret plate 5 spinning port (discharging port) 6 distribution plate 7 central guiding hole 8 Side guide hole 9 Counter bore 10 Annular supply path
───────────────────────────────────────────────────── フロントページの続き (72)発明者 徳永 勲 岡山県倉敷市酒津1621番地 株式会社クラ レ内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Isao Tokunaga 1621 Sakata, Kurashiki City, Okayama Prefecture Kuraray Co., Ltd.

Claims (4)

    【特許請求の範囲】[Claims]
  1. 【請求項1】 熱可塑性ポリマー(A)からなる繊維軸
    方向に伸びる中心部と、該中心部を取り囲んで中心部に
    連結して設けた繊維軸方向に伸びる3個以上の突出部と
    からなる多葉断面を有する異形断面繊維であって、該中
    心部は熱収縮応力が0.3g/デニール以上および熱収
    縮率が15%以上である熱可塑性ポリマー(A)より構
    成され、且つ各突出部の少なくとも一部は熱可塑性ポリ
    マー(A)よりも熱収縮率の小さい熱可塑性ポリマー
    (B)より構成されていることを特徴とする異形断面複
    合繊維。
    1. A center portion made of a thermoplastic polymer (A) extending in the fiber axis direction, and three or more projecting portions extending in the fiber axis direction provided around the center portion and connected to the center portion. A modified cross-section fiber having a multi-lobed cross section, the central part of which is composed of a thermoplastic polymer (A) having a heat shrinkage stress of 0.3 g / denier or more and a heat shrinkage rate of 15% or more, and each protruding portion. At least a part of the composite fiber is composed of a thermoplastic polymer (B) having a heat shrinkage smaller than that of the thermoplastic polymer (A).
  2. 【請求項2】 熱収縮応力が0.3g/デニール以上お
    よび熱収縮率が15%以上である中心部を形成する熱可
    塑性ポリマー(A)の中心部流れに対して、熱可塑性ポ
    リマー(A)よりも熱収縮率の小さい熱可塑性ポリマー
    (B)の3個以上の流れを、口金板に設けた紡糸孔に至
    る手前で、該中心流れを取り囲んで互いに分離した位置
    から各々直角方向またはほぼ直角の方向に導入して、熱
    可塑性ポリマー(A)と熱可塑性ポリマー(B)からな
    る複合流れを形成させ、該複合流れを口金板に設けた3
    個以上の突出部を有する多葉断面形状の紡糸口より紡出
    させることを特徴とする請求項1の異形断面複合繊維の
    製造方法。
    2. The thermoplastic polymer (A) against the central part flow of the thermoplastic polymer (A) forming the central part having a heat shrinkage stress of 0.3 g / denier or more and a heat shrinkage rate of 15% or more. Before the three or more streams of the thermoplastic polymer (B) having a smaller heat shrinkage than the spinning holes provided in the spinneret plate, they are orthogonal to each other or nearly at right angles from the positions separated from each other by surrounding the central stream. Was introduced in the direction of to form a composite flow composed of the thermoplastic polymer (A) and the thermoplastic polymer (B), and the composite flow was provided on the die plate.
    The method for producing a modified cross-section composite fiber according to claim 1, wherein the fiber is spun from a spinneret having a multi-lobed cross-section having at least one protrusion.
  3. 【請求項3】 中心導孔および3個以上の側導孔を有す
    る分配板であって且つ該3個以上の側導孔は中心導孔を
    取り囲んで互いに分離して位置すると共に各々が中心導
    孔に対して直角方向またはほぼ直角方向に連通している
    分配板を、3個以上の突出部を有する多葉断面形状の紡
    糸口を有する口金板の上流側に、該口金板に当接して設
    けたことを特徴とする紡糸口金装置。
    3. A distribution plate having a central conducting hole and three or more side conducting holes, wherein the three or more side conducting holes surround the central conducting hole and are located separately from each other, and each of them is a central conducting hole. A distribution plate communicating with the hole at a right angle or a substantially right angle is brought into contact with the spinneret plate on the upstream side of the spinneret plate having a spinneret having a multi-lobed cross section having three or more protrusions. A spinneret device characterized by being provided.
  4. 【請求項4】 請求項1の異形断面複合繊維を用いて製
    造した布帛。
    4. A fabric produced by using the modified cross-section composite fiber according to claim 1.
JP05312693A 1992-04-10 1993-02-19 Method for producing modified cross-section composite fiber and spinneret Expired - Fee Related JP3269874B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP11818392 1992-04-10
JP4-118183 1992-04-10
JP05312693A JP3269874B2 (en) 1992-04-10 1993-02-19 Method for producing modified cross-section composite fiber and spinneret

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05312693A JP3269874B2 (en) 1992-04-10 1993-02-19 Method for producing modified cross-section composite fiber and spinneret

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001344037A Division JP2002194621A (en) 1992-04-10 2001-11-09 Modified cross-section conjugate fiber

Publications (2)

Publication Number Publication Date
JPH0625919A true JPH0625919A (en) 1994-02-01
JP3269874B2 JP3269874B2 (en) 2002-04-02

Family

ID=26393833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05312693A Expired - Fee Related JP3269874B2 (en) 1992-04-10 1993-02-19 Method for producing modified cross-section composite fiber and spinneret

Country Status (1)

Country Link
JP (1) JP3269874B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002027083A1 (en) * 2000-09-29 2002-04-04 E. I. Du Pont De Nemours And Company Stretchable polymeric fibers and articles produced therefrom
WO2002027082A1 (en) * 2000-09-29 2002-04-04 E.I. Du Pont De Nemours And Company Stretchable fibers of polymers, spinnerets useful to form the fibers, and articles produced therefrom
US6548166B2 (en) 2000-09-29 2003-04-15 E. I. Du Pont De Nemours And Company Stretchable fibers of polymers, spinnerets useful to form the fibers, and articles produced therefrom
KR100421925B1 (en) * 2001-12-28 2004-03-11 주식회사 효성 Perspiration-absorbent and Quick-drying Nylon Fiber and Method for Manufacturing the Same
US6783853B2 (en) 2001-09-28 2004-08-31 Invista North America S.A.R.L. Hetero-composite yarn, fabrics thereof and methods of making
US7616968B2 (en) 2004-03-23 2009-11-10 Mine Radio Systems Inc. System and method to facilitate overcoming a degradation in transmission through a radiating transmission line communication system
WO2018199353A1 (en) * 2017-04-26 2018-11-01 주식회사 우리나노 Spinning tube for producing two-ingredient composite nanofibers, and method for producing two-ingredient composite nanofibers using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102657389A (en) * 2012-05-24 2012-09-12 太仓市金祥氨纶纤维有限公司 Method for producing thermoplastic elastic composite fiber underwear, swimwear or sock and legging

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002027083A1 (en) * 2000-09-29 2002-04-04 E. I. Du Pont De Nemours And Company Stretchable polymeric fibers and articles produced therefrom
WO2002027082A1 (en) * 2000-09-29 2002-04-04 E.I. Du Pont De Nemours And Company Stretchable fibers of polymers, spinnerets useful to form the fibers, and articles produced therefrom
US6548166B2 (en) 2000-09-29 2003-04-15 E. I. Du Pont De Nemours And Company Stretchable fibers of polymers, spinnerets useful to form the fibers, and articles produced therefrom
US6783853B2 (en) 2001-09-28 2004-08-31 Invista North America S.A.R.L. Hetero-composite yarn, fabrics thereof and methods of making
KR100421925B1 (en) * 2001-12-28 2004-03-11 주식회사 효성 Perspiration-absorbent and Quick-drying Nylon Fiber and Method for Manufacturing the Same
US7616968B2 (en) 2004-03-23 2009-11-10 Mine Radio Systems Inc. System and method to facilitate overcoming a degradation in transmission through a radiating transmission line communication system
WO2018199353A1 (en) * 2017-04-26 2018-11-01 주식회사 우리나노 Spinning tube for producing two-ingredient composite nanofibers, and method for producing two-ingredient composite nanofibers using same

Also Published As

Publication number Publication date
JP3269874B2 (en) 2002-04-02

Similar Documents

Publication Publication Date Title
US6803000B2 (en) Process of making yarn from two types of polyester
JP3859672B2 (en) Composite fiber and method for producing the same
TW577945B (en) Hetero-composite-composite yarn, fabrics thereof and methods of making
KR100635857B1 (en) A air jet textured yarn with different shrinkage and excellent melange effect, and a process of preparing for the same
JP2006214056A (en) Woven fabric
JPH0625919A (en) Conjugate fiber, its production and spinneret
JP2003113554A (en) Composite fabric and method for producing the same
JP2007308812A (en) Stretch woven fabric and method for producing the same
JPH0830287B2 (en) Polyester 3-component composite yarn
JP4380519B2 (en) Method for producing soft stretch yarn
JP4886368B2 (en) Long / short composite spun yarn and fabric using the same
JP2018053405A (en) Flat cross section polyhexamethylene adipamide fiber and fiber product
JP4687091B2 (en) Soft stretch yarn and fabric
JP2002194621A (en) Modified cross-section conjugate fiber
JP5116995B2 (en) Long / short composite spun yarn and fabric comprising the same
JP2885493B2 (en) Mixed fiber woven fabric and its manufacturing method
JP2925608B2 (en) False twisted composite yarn and method for producing the same
JP2020147865A (en) Combined filament additionally twisted yarn and woven knitted fabric
JP4395948B2 (en) Low shrinkage polyester yarn and polyester blended yarn comprising the same
JP3139557B2 (en) Composite entangled yarn and fabric using the yarn
JP2010196227A (en) Polyester combined filament yarn
JP4100486B2 (en) Stretch shirt
JP3972631B2 (en) Polyester composite false twisted yarn and method for producing the same
JP2006348431A (en) Composite false twist textured yarn
JP3719258B2 (en) Soft stretch yarn, production method and fabric

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees