JPH06252441A - Semiconductor optical device and manufacture thereof - Google Patents

Semiconductor optical device and manufacture thereof

Info

Publication number
JPH06252441A
JPH06252441A JP3963193A JP3963193A JPH06252441A JP H06252441 A JPH06252441 A JP H06252441A JP 3963193 A JP3963193 A JP 3963193A JP 3963193 A JP3963193 A JP 3963193A JP H06252441 A JPH06252441 A JP H06252441A
Authority
JP
Japan
Prior art keywords
layer
type
optical device
substrate
semiconductor optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3963193A
Other languages
Japanese (ja)
Inventor
Kiyokazu Nakagawa
清和 中川
Akio Nishida
彰男 西田
Juichi Shimada
寿一 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3963193A priority Critical patent/JPH06252441A/en
Priority to US08/189,865 priority patent/US5523592A/en
Publication of JPH06252441A publication Critical patent/JPH06252441A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize a semiconductor optical device of structure excellent in efficiency to effectively trap holes and electrons in a light emitting layer by a method wherein a diode structure possessed of a PN junction is formed, a voltage is applied in a forward direction, and a current is injected. CONSTITUTION:An N-type Si0.7Ge0.3 buffer layer 12 is grown on an N-type Si substrate 11 thicker than a critical thickness, and furthermore an Si0.7Ge0.3 buffer layer 13 not intentionally doped are made to grow thereon. An Si0.9Ge0.1 layer 14, an Si0.7Ge0.3 layer 15, an Si0.9Ge0.1 layer 16, an Si0.7Ge0.3 layer 17, an Si0.9Ge0.1 layer 18, a P-type Si0.9Ge0.1 layer 19, a hot CVD SiO2 film 20, an electrode 21, and an electrode 22 are formed thereon in a lattice matching manner to form a semiconductor optical device. Therefore, electrons are accumulated in the Si0.9Ge0.1 layers, and holes are accumulated in the Si0.7Ge0.3 layer, whereby a semiconductor optical device excellent in efficiency wherein no phonon exists at a room temperature can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は4族半導体のSi,Ge
を用いた半導体光素子及びその作製方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to Group 4 semiconductors Si and Ge.
The present invention relates to a semiconductor optical device and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来、4族半導体のSi,Geを用いた
発光、受光素子の作製方法に関しては、アプライド・フ
ィジックス・レターズ巻60、ナンバー14(1992
年)第1720頁から弟1722頁(Applied
Physics Letters, vol.60,N
umber 14(1992)pp1720−pp17
22)において論じられている。
2. Description of the Related Art Conventionally, regarding a method of manufacturing a light emitting element and a light receiving element using Si and Ge of a group 4 semiconductor, Applied Physics Letters Vol.
Year) Page 1720 to Brother 1722 (Applied
Physics Letters, vol. 60, N
number 14 (1992) pp1720-pp17
22).

【0003】上記従来技術では、Si/Si1-WGe
W(w=0.2)/Si構造のSi1-WGeW(w=0.
2)量子井戸に閉じ込められる電子と正孔の再結合によ
る発光現象を観測していた。しかしながら、伝導帯での
SiとSi1-WGeW(w=0.2)との間のバンド不連
続値が20meV程度と極めて小さく、室温では電子を
量子井戸に閉じ込めることができないために77K程度
以下の低温でのみ量子井戸からのフォトルミネッセンス
が観測可能であった。
In the above prior art, Si / Si 1-W Ge is used.
W (w = 0.2) / Si 1-W Ge W (w = 0.
2) The emission phenomenon due to the recombination of electrons and holes confined in the quantum well was observed. However, the band discontinuity between Si and Si 1-W Ge W (w = 0.2) in the conduction band is as small as about 20 meV, and electrons cannot be confined in the quantum well at room temperature. The photoluminescence from the quantum well was observable only at a low temperature of about below.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術の構造の
場合では、Si1-WGeWのw値を大きくすることでバン
ドギャップ(禁制帯幅)を小さくし、バンド不連続値を
大きくしようと考えられていた。しかしながらこの構造
では、バンドギャップの減少に伴い価電子帯のバンド不
連続値が増加するのみで伝導帯のバンド不連続値は増加
しないために、正孔はSi1-WGeW層に閉じ込められる
が電子は室温では閉じ込めることができず、室温での効
率の良い発光は報告されていない本発明は正孔のみなら
ず電子も発光層に有効に閉じ込めることができる構造を
提供することを目的としており、さらにこれにより効率
の良い半導体光素子、すなわち発光素子を提供すること
を目的とする。
In the case of the above prior art structure, the band gap (forbidden band width) is reduced and the band discontinuity value is increased by increasing the w value of Si 1-W Ge W. Was considered. However, in this structure, holes are confined in the Si 1-W Ge W layer because the band discontinuity value in the valence band only increases and the band discontinuity value in the conduction band does not increase as the band gap decreases. However, electrons cannot be confined at room temperature, and efficient light emission at room temperature has not been reported. The present invention aims to provide a structure capable of effectively confining not only holes but also electrons in the light emitting layer. The present invention further aims at providing an efficient semiconductor optical device, that is, a light emitting device.

【0005】[0005]

【課題を解決するための手段】本発明は、上記目的を達
成するために、従来のSi/Si1-WGeW(w=0.
2)/Si構造ではなくSi基板/Si1-XGeXバッフ
ァー層/Si1-YGeY/Si1-ZGeZ/Si1-YGeY
Si1-ZGeZ・・・・(繰返し)/Si1-YGeY層とい
う構造としたものである。
In order to achieve the above-mentioned object, the present invention provides a conventional Si / Si 1-W Ge W (w = 0.
2) / Si structure, not Si substrate / Si 1-X Ge X buffer layer / Si 1-Y Ge Y / Si 1-Z Ge Z / Si 1-Y Ge Y /
It has a structure of Si 1-Z Ge Z ... (Repeated) / Si 1-Y Ge Y layer.

【0006】さらに詳しく述べると、本発明は、p型S
i基板上(またはn型Si基板上)にp型Si1-XGeX
バッファー層(n型Si基板の場合はn型Si1-XGeX
バッファー層)(0<x<0.5)を臨界膜厚を越えて
成長し、その上にSi1-YGeY(0<y<0.5)およ
びSi1-ZGeZ(0<z<0.5)をy<x,zの条件
下でSi1-XGeXバッファー層に格子整合させて交互に
それぞれ5nmから10nmの厚さで多数層成長し、さ
らにn型Si1-YGeY層(n型Si基板の場合はp型S
1-YGeY層)を成長して、p型Si基板(またはn型
Si基板)/p型Si1-XGeXバッファー層(n型Si
基板の場合はn型Si1-XGeXバッファー層)/Si
1-YGeY/Si1-ZGeZ/Si1-YGeY/Si1-ZGeZ
・・・・(繰返し)/n型Si1-YGeY層(n型Si基
板の場合はp型Si1-YGeY層)というpn接合を有す
るダイオード構造を形成したものである。このダイオー
ド構造の順方向に電圧を加え電流を注入することでSi
1-YGeY/Si1-ZGeZ/Si1-YGeY/Si1-ZGeZ
・・・・(繰返し)という多層膜の内で正孔と電子が再
結合して発光する発光素子を得ることができる。またこ
れと同様の構造で受光素子を得ることもできる。
More specifically, the present invention provides a p-type S
p-type Si 1-X Ge x on i substrate (or n-type Si substrate)
Buffer layer (n - type Si 1-X Ge x for n-type Si substrate)
Buffer layer) (0 <x <0.5) is grown over the critical thickness, and Si 1-Y Ge Y (0 <y <0.5) and Si 1-Z Ge Z (0 < z a <0.5) y <x, Si 1-X Ge X by lattice-matched multiple layer grown to a thickness of 10nm from each alternately 5nm the buffer layer under the conditions of z, further n-type Si 1- Y Ge Y layer (p-type S for n-type Si substrate)
i 1-Y Ge Y layer) is grown to form a p-type Si substrate (or an n-type Si substrate) / p-type Si 1-X Ge X buffer layer (n - type Si substrate).
N-type Si 1-X Ge X buffer layer) / Si in case of substrate
1-Y Ge Y / Si 1-Z Ge Z / Si 1-Y Ge Y / Si 1-Z Ge Z
... (repetition) / n-type Si 1-Y Ge Y layer (p-type Si 1-Y Ge Y layer in the case of an n-type Si substrate), which is a diode structure having a pn junction. By applying voltage in the forward direction of this diode structure and injecting current, Si
1-Y Ge Y / Si 1-Z Ge Z / Si 1-Y Ge Y / Si 1-Z Ge Z
It is possible to obtain a light emitting device in which holes and electrons recombine in the multilayer film of ... (Repeated) to emit light. It is also possible to obtain a light receiving element with a structure similar to this.

【0007】[0007]

【作用】図1に示すように、臨界膜厚を越えて成長した
Si1-XGeXバッファー層では基板Siとの界面でミス
フィット転位が多数入る。このためSi1-XGeX混晶の
格子定数は、いわゆる格子整合した場合とは異なり、混
晶比Xで記述され Si1-XGeXの格子定数=Siの格子定数 x (1-X) +
Geの格子定数 x X と書くことができる。本発明では、このバッファ層上
に、Si1-YGeY/Si1-ZGeZ/Si1-YGeY/Si
1-ZGeZ・・・・(繰返し)の多層膜を格子整合させて
成長する。ここで混晶比Xを変えることによって、Si
層に面内の引っ張り応力を制御して与えることが可能と
なる。この場合多層膜のエネルギーバンドは図2のごと
くになり、室温においても電子はSi1-YGeY層に、正
孔はSi1-ZGeZ層に蓄積させることが可能となる。さ
らに、電子の蓄積されるSi1-YGeY層はSiとGeの
混晶であるために結晶の周期性がGe原子の存在で乱さ
れ擬似直接遷移型の半導体として振る舞うことになる。
ここでこの多層膜に電圧を印加し正孔と電子を注入する
ことにより図3に示すごとく室温で効率良く発光させる
ことができる。
As shown in FIG. 1, many misfit dislocations are introduced at the interface with the substrate Si in the Si 1-x Ge x buffer layer grown to exceed the critical film thickness. The lattice constant of this for Si 1-X Ge X mixed crystal, unlike the case of so-called lattice-matched, are written in the mixed crystal ratio X Si 1-X Ge lattice constant = Si of X x (1-X ) +
It can be written as the lattice constant of Ge x X. In the present invention, on this buffer layer, Si 1-Y Ge Y / Si 1-Z Ge Z / Si 1-Y Ge Y / Si
1-Z Ge Z ... (Repeated) multi-layer film is grown while being lattice-matched. Here, by changing the mixed crystal ratio X, Si
In-plane tensile stress can be controlled and applied to the layer. In this case, the energy band of the multilayer film is as shown in FIG. 2, and it becomes possible to accumulate electrons in the Si 1-Y Ge Y layer and holes in the Si 1-Z Ge Z layer even at room temperature. Furthermore, since the Si 1-Y Ge Y layer in which electrons are accumulated is a mixed crystal of Si and Ge, the periodicity of the crystal is disturbed by the presence of Ge atoms, and the semiconductor behaves as a pseudo direct transition type semiconductor.
Here, by applying a voltage to this multilayer film to inject holes and electrons, light can be efficiently emitted at room temperature as shown in FIG.

【0008】[0008]

【実施例】本発明の一実施例を図4を用いて説明する。
n型Si(100)基板11を化学処理を行い、さらに
分子線成長室内の超高真空下で800℃程度で加熱する
ことで表面清浄化を行った。この基板上に基板温度75
0℃程度でSiとGeおよびn型ドーパントのアンチモ
ンを同時に蒸着して1x1019個/cm3程度のアンチ
モンを含むn型Si0.7Ge0.3のバッファー層12を4
00nm成長した。このSi0.7Ge0.3上にドーパント
を意図的には添加していないSi0.7Ge0.3層13を基
板温度650℃で100nm成長した。このGe組成で
の転位が膜中に入らずに成長できる膜厚、すなわち臨海
膜厚は100nm以下であるので、Si基板とn型Si
0.7Ge0.3層の界面に多数のミスフィット転位が導入さ
れている。この上に基板温度650℃でドーパントを意
図的には添加しないSi0.9Ge0.1層14を5nm、S
0.7Ge0.3層15を5nm成長し、さらにSi0.9
0.1層16を5nm、その上にSi0.7Ge0.3層17
を5nm成長し、Si0.9Ge0.1層18を10nm成長
しさらにp型ドーパントのボロンをSi、Geと同時に
蒸着することで1x1019個/cm3程度のボロンを含
むp型Si0.9Ge0.1層19を40nm成長した。フォ
トリソグラフィーを用いて図4の(b)の形状にし、熱
CVD法によりSiO220を400℃で100nm堆
積し、フォトリソグラフィーを用いて図4の(c)の形
状とし、電流注入のためのアルミ電極21、22を蒸着
しフォトリソグラフィーを用いて図4の(d)のダイオ
ードを作製した。本構造により室温でフォノンを介在し
ない発光遷移による強い発光が観測された。
EXAMPLE One example of the present invention will be described with reference to FIG.
The n-type Si (100) substrate 11 was chemically treated and further heated at about 800 ° C. in an ultrahigh vacuum in a molecular beam growth chamber to clean the surface. Substrate temperature 75 on this substrate
Simultaneous deposition of Si, Ge, and antimony of n-type dopant at about 0 ° C. was performed to form a buffer layer 12 of n-type Si 0.7 Ge 0.3 containing about 1 × 10 19 pieces / cm 3 of antimony.
It was grown to 00 nm. On this Si 0.7 Ge 0.3 , a Si 0.7 Ge 0.3 layer 13 in which no dopant was intentionally added was grown to a thickness of 100 nm at a substrate temperature of 650 ° C. Since the film thickness capable of growing without dislocations in the Ge composition entering the film, that is, the critical film thickness is 100 nm or less, the Si substrate and the n-type Si
Many misfit dislocations are introduced at the interface of the 0.7 Ge 0.3 layer. On top of this, a Si 0.9 Ge 0.1 layer 14 having a substrate temperature of 650 ° C. and a dopant not intentionally added is set to 5 nm and S.
i 0.7 Ge 0.3 layer 15 is grown to a thickness of 5 nm, and further Si 0.9 G
e 0.1 layer 16 of 5 nm, and Si 0.7 Ge 0.3 layer 17 thereon
It was 5nm growth, Si 0.9 Ge 0.1 layer 18 p-type Si 0.9 Ge 0.1 layer 19 containing boron of about 1x10 19 atoms / cm 3 by a boron 10nm grown further p-type dopant Si, to Ge simultaneously deposited Was grown to 40 nm. 4B is formed by using photolithography, SiO 2 20 is deposited to 100 nm at 400 ° C. by a thermal CVD method, and the shape of FIG. 4C is formed by using photolithography. Aluminum electrodes 21 and 22 were vapor-deposited, and the diode shown in FIG. 4D was produced by using photolithography. With this structure, strong luminescence due to luminescence transition without phonon was observed at room temperature.

【0009】[0009]

【発明の効果】本発明によれば4族半導体のSi,Ge
を用いて発光素子を形成できるので、SiによりLSI
のみならず光素子もLSIチップ上に形成できるため、
従来のLSI間の配線の替わりに光を用いることが容易
となる。
According to the present invention, the group IV semiconductors Si and Ge are used.
Since a light emitting element can be formed by using
Not only can optical elements be formed on the LSI chip,
It becomes easy to use light in place of conventional wiring between LSIs.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の発光素子を構成する半導体多層膜の構
造を示す図。
FIG. 1 is a view showing a structure of a semiconductor multilayer film which constitutes a light emitting device of the present invention.

【図2】本発明の発光素子を構成する半導体多層膜の電
子帯構造を示す図。
FIG. 2 is a diagram showing an electron band structure of a semiconductor multilayer film which constitutes a light emitting device of the present invention.

【図3】本発明の発光素子の動作原理を示す電子帯構造
図。
FIG. 3 is an electron band structure diagram showing the operating principle of the light emitting device of the present invention.

【図4】本発明の発光素子の一実施例を説明する図。FIG. 4 is a diagram illustrating an embodiment of a light emitting device of the present invention.

【符号の説明】[Explanation of symbols]

11−n型Si(100)基板、12−n型Si0.7
0.3バッファー層、13−Si0.7Ge0.3バッファー
層、14−Si0.9Ge0.1層、15−Si0.7Ge
0.3層、16−Si0.9Ge0.1層、17−Si0.7Ge
0.3層、18−Si0.9Ge0.1層、19−p型Si0.9
0.1層、20−熱CVDSiO2膜、21−電極、22
−電極。
11-n type Si (100) substrate, 12-n type Si 0.7 G
e 0.3 buffer layer, 13-Si 0.7 Ge 0.3 buffer layer, 14-Si 0.9 Ge 0.1 layer, 15-Si 0.7 Ge
0.3 layer, 16-Si 0.9 Ge 0.1 layer, 17-Si 0.7 Ge
0.3 layer, 18-Si 0.9 Ge 0.1 layer, 19-p type Si 0.9 G
e 0.1 layer, 20-thermal CVD SiO 2 film, 21-electrode, 22
-Electrode.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】第1導電型Si基板と、上記第1導電型S
i基板上に形成した第1導電型Si1-XGeXバッファー
層と、上記第1導電型Si1-XGeXバッファー層上に格
子整合させて交互にSi1-YGeYおよびSi1-ZGeZ
層を繰り返し形成した多数層と、上記Si1-YGeYおよ
びSi1-ZGeZからなる多数層上に形成した第2導電型
Si1-YGeY層とを有することを特徴とする半導体光素
子。
1. A first conductivity type Si substrate and the first conductivity type S substrate.
The first conductivity type Si 1-X Ge X buffer layer formed on the i substrate and the first conductivity type Si 1-X Ge X buffer layer are alternately lattice-matched to Si 1-Y Ge Y and Si 1 -Z Ge Z having a plurality of layers repeatedly formed and a second conductivity type Si 1-Y Ge Y layer formed on the plurality of layers of Si 1-Y Ge Y and Si 1-Z Ge Z A semiconductor optical device characterized by the above.
【請求項2】上記各層の混晶比x,y,zは、0<x<
0.5、0<y<0.5、及び0<z<0.5であり、か
つy<x,zの条件を満たすことを特徴とする請求項1
に記載の半導体光素子。
2. The mixed crystal ratio x, y, z of each layer is 0 <x <
2. The conditions of 0.5, 0 <y <0.5, and 0 <z <0.5 and satisfying the conditions of y <x, z.
The semiconductor optical device according to 1.
【請求項3】上記Si1-YGeYおよびSi1-ZGeZから
なる多数層は、それぞれ5nm乃至10nmの厚さの層
であることを特徴とする請求項1又は2に記載の半導体
光素子。
3. The semiconductor according to claim 1, wherein the multiple layers of Si 1-Y Ge Y and Si 1-Z Ge Z are layers each having a thickness of 5 nm to 10 nm. Optical element.
【請求項4】第1導電型Si基板上に第1導電型Si
1-XGeXバッファー層を臨界膜厚を越えて成長し、上記
第1導電型Si1-XGeXバッファー層上にSi1-YGeY
およびSi1-ZGeZの層を上記第1導電型Si1-XGeX
バッファー層に格子整合させて交互に多数層成長し、上
記Si1-YGeYおよびSi1-ZGeZからなる多数層上に
第2導電型Si1-YGeY層を成長することを特徴とする
半導体光素子の作製方法。
4. A first conductivity type Si on a first conductivity type Si substrate
A 1-X Ge X buffer layer is grown to exceed the critical thickness, and Si 1-Y Ge Y is formed on the first conductivity type Si 1-X Ge X buffer layer.
And a layer of Si 1-Z Ge Z with the first conductivity type Si 1-X Ge X
A plurality of layers are alternately grown while being lattice-matched to the buffer layer, and a second conductivity type Si 1-Y Ge Y layer is grown on the plurality of layers of Si 1-Y Ge Y and Si 1-Z Ge Z. A method for manufacturing a characteristic semiconductor optical device.
【請求項5】上記各層の混晶比x,y,zは0<x<
0.5、0<y<0.5、及び0<z<0.5であり、か
つy<x,zの条件を満たすことを特徴とする請求項4
に記載の半導体光素子の作製方法。
5. The mixed crystal ratio x, y, z of each layer is 0 <x <
5. The conditions of 0.5, 0 <y <0.5 and 0 <z <0.5 and satisfying the conditions of y <x, z.
A method for manufacturing a semiconductor optical device according to item 1.
【請求項6】上記Si1-YGeYおよびSi1-ZGeZから
なる多数量は、それぞれ5nmから10nmの厚さの層
であることを特徴とする請求項4又は5に記載の半導体
光素子の作製方法。
6. The semiconductor according to claim 4, wherein the majority of Si 1-Y Ge Y and Si 1-Z Ge Z are layers each having a thickness of 5 nm to 10 nm. A method for manufacturing an optical element.
JP3963193A 1993-02-03 1993-03-01 Semiconductor optical device and manufacture thereof Pending JPH06252441A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3963193A JPH06252441A (en) 1993-03-01 1993-03-01 Semiconductor optical device and manufacture thereof
US08/189,865 US5523592A (en) 1993-02-03 1994-02-01 Semiconductor optical device, manufacturing method for the same, and opto-electronic integrated circuit using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3963193A JPH06252441A (en) 1993-03-01 1993-03-01 Semiconductor optical device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH06252441A true JPH06252441A (en) 1994-09-09

Family

ID=12558449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3963193A Pending JPH06252441A (en) 1993-02-03 1993-03-01 Semiconductor optical device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH06252441A (en)

Similar Documents

Publication Publication Date Title
US5523592A (en) Semiconductor optical device, manufacturing method for the same, and opto-electronic integrated circuit using the same
JP5450776B2 (en) Light emitting diode having a superlattice well layer and / or a superlattice barrier layer
US6987281B2 (en) Group III nitride contact structures for light emitting devices
JP3760997B2 (en) Semiconductor substrate
JP4913375B2 (en) Manufacturing method of semiconductor device
JP5912217B2 (en) Semiconductor light emitting device
Mi et al. Room‐temperature 1.3 μm electroluminescence from strained Si1− x Ge x/Si quantum wells
US20040227165A1 (en) Si/C superlattice useful for semiconductor devices
US20070227588A1 (en) Enhanced tunnel junction for improved performance in cascaded solar cells
JP4837012B2 (en) Light emitting element
JPH05243614A (en) Method of growing compound semiconductor, its light-emitting device, and the manufacture
Fukatsu et al. High‐temperature operation of strained Si0. 65Ge0. 35/Si (111) p‐type multiple‐quantum‐well light‐emitting diode grown by solid source Si molecular‐beam epitaxy
US7053418B2 (en) Nitride based semiconductor device
KR100495824B1 (en) Semiconductor LED device
JP3724213B2 (en) Gallium nitride compound semiconductor light emitting device
KR100289595B1 (en) Group III-nitride semiconductor light emitting device
JP2803791B2 (en) Method for manufacturing semiconductor device
WO2003017386A1 (en) Ii-vi compound semiconductor crystal and photo-electric conversion function element
JPH06252441A (en) Semiconductor optical device and manufacture thereof
JPH05243613A (en) Light-emitting device and its manufacture
JPH06232448A (en) Light emitting element and optoelectronic integrated circuit
US9768349B2 (en) Superlattice structure
JPH10215032A (en) Semiconductor quantum dot element and manufacturing method of the semiconductor quantum dot element
JP3562518B2 (en) Semiconductor light emitting device
JPH08250764A (en) Semiconductor light-emitting element