JPH06248903A - Waterdrop removing device for steam turbine - Google Patents

Waterdrop removing device for steam turbine

Info

Publication number
JPH06248903A
JPH06248903A JP3578393A JP3578393A JPH06248903A JP H06248903 A JPH06248903 A JP H06248903A JP 3578393 A JP3578393 A JP 3578393A JP 3578393 A JP3578393 A JP 3578393A JP H06248903 A JPH06248903 A JP H06248903A
Authority
JP
Japan
Prior art keywords
nozzle
outer ring
steam
water
water film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3578393A
Other languages
Japanese (ja)
Inventor
Taro Sakamoto
本 太 郎 坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3578393A priority Critical patent/JPH06248903A/en
Publication of JPH06248903A publication Critical patent/JPH06248903A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To provide a waterdrop removing device for a steam turbine, which is capable of sufficiently removing waterdrops running on the surface of a nozzle and the inner surface of a nozzle outer ring without causing perfamance drop of the turbine. CONSTITUTION:A hollow nozzle 1 is composed of a stationary member 1a and a movable member 1b, and a hollow, nozzle outer ring 6 is composed of a stationary member 6a and a movable member 6b. Further, a blade outlet guide ring 18 is fixed to the movable member 6b on the nozzle outer ring 6 side. The movable member 1b on the nozzle 1 side, the movable member 6b on the nozzle outer ring 6 side, and the blade outlet guide ring 18 are formed integrally to be driven through a driving rod 19 by a drive device 20 in the axis-direction R. The drive device 20 is driven-controlled by a control device 21. A humidity sensor 22 arranged in front of the nozzle 1 is connected to the control device 21, and the detected results of the humidity sensor 22 are inputted into the control device as electric signals.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は蒸気タービンの水滴除去
装置に係り、特に水滴除去の効率を高める技術に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water drop removing device for a steam turbine, and more particularly to a technique for improving the efficiency of water drop removal.

【0002】[0002]

【従来の技術】一般に、低圧となる火力タービンの最終
段付近や飽和蒸気を使用する原子力タービンの大部分の
段落は、多量の水滴を含んだ湿り蒸気中で作動してい
る。そのため、周速度の大きい動翼の入口縁に水滴が衝
突することによるエロージョンの発生や、湿り損失によ
る翼効率の低下等の問題が生じていた。特に近年、湿り
度の大きい原子力タービンが増加すると共に、蒸気ター
ビン全般が大容量化により最終段動翼が長大なものにな
り、上述した問題への効果的な対策が強く求められるよ
うになってきた。
2. Description of the Related Art In general, the vicinity of the final stage of a low pressure thermal turbine and most of the paragraphs of a nuclear turbine using saturated steam operate in wet steam containing a large amount of water droplets. Therefore, there have been problems such as erosion caused by water droplets colliding with the inlet edge of a moving blade having a high peripheral velocity, and reduction in blade efficiency due to wetness loss. Particularly in recent years, as the number of nuclear turbines with a high degree of wetness has increased, the overall capacity of steam turbines has also increased the size of the final stage rotor blades, and there is a strong demand for effective countermeasures to the above problems. It was

【0003】従来の蒸気タービンの段落中の水滴除去装
置としては、例えば特公昭49-9522号公報に記載された
ようなものが知られている。この装置では、図8,図9
(図8中のA−A断面図)に示したように、ノズル1の
腹面2と背面3とにスリット状の水滴吸込口4,5がそ
れぞれ穿設されると共に、ノズル外輪6の内面7にもス
リット状の水滴吸込口8が穿設されている。ノズル1
と、ノズル1を保持するノズル外輪6およびノズル内輪
9はすべて中空であり、それぞれの中空部10,11,
12は互いに連通している。また、ノズル外輪6側の中
空部11は、図示しない復水器等の低圧源に連通してお
り、水滴吸込口4,5,8から吸引が行われる。
As a water drop removing device in a conventional steam turbine, for example, a device described in Japanese Patent Publication No. Sho 49-9522 is known. In this device, as shown in FIG.
As shown in (AA cross-sectional view in FIG. 8), slit-shaped water droplet suction ports 4 and 5 are formed in the abdominal surface 2 and the back surface 3 of the nozzle 1, respectively, and the inner surface 7 of the nozzle outer ring 6 is formed. Also, a slit-shaped water droplet suction port 8 is formed. Nozzle 1
And the nozzle outer ring 6 and the nozzle inner ring 9 that hold the nozzle 1 are all hollow, and the hollow portions 10, 11,
12 communicate with each other. Further, the hollow portion 11 on the nozzle outer ring 6 side communicates with a low pressure source such as a condenser (not shown), and suction is performed from the water droplet suction ports 4, 5, 8.

【0004】ノズル1の腹面2を伝わった水滴は水滴吸
込口4から、またノズル1の背面3を伝わった水滴は水
滴吸込口5から、それぞれ中空部10に吸込され、更に
ノズル外輪側6の中空部12から復水器に流入する。ま
た、ノズル外輪6の内面7を伝わった水滴は水滴吸込口
8から中空部11に吸引され、これも同様に復水器に流
入する。このようにして、ノズル1とノズル外輪6の表
面を伝う水滴が除去されるため、ノズル1の後縁13で
の粗大水滴の発生が減少し、動翼のエロージョンが低減
されるのである。
The water droplets transmitted along the ventral surface 2 of the nozzle 1 are sucked into the hollow portion 10 through the water droplet suction port 4, and the water droplets transmitted through the back surface 3 of the nozzle 1 through the water droplet suction port 5, respectively, and further on the nozzle outer ring side 6. It flows into the condenser from the hollow portion 12. Further, the water droplets that have propagated on the inner surface 7 of the nozzle outer ring 6 are sucked into the hollow portion 11 from the water droplet suction port 8 and also flow into the condenser. In this way, the water droplets traveling on the surfaces of the nozzle 1 and the nozzle outer ring 6 are removed, so that the generation of coarse water droplets on the trailing edge 13 of the nozzle 1 is reduced, and the erosion of the moving blade is reduced.

【0005】[0005]

【発明が解決しようとする課題】ところで、上述した従
来の水滴除去装置を採用しても、実際には水滴を十分に
除去できず、動翼のエロージョンや湿り損失を大きく低
減させることができなかった。その理由を、以下に詳し
く説明する。
Even if the above-mentioned conventional water drop removing device is adopted, the water drops cannot be actually sufficiently removed, and the erosion of the moving blade and the wet loss cannot be greatly reduced. It was The reason will be described in detail below.

【0006】図10には、一般の事業用火力発電所にお
ける蒸気タービンの膨脹曲線を示してある。図中、点D
は最終段前段落(以下、L−1と称する)のノズル入口
の蒸気状態を示し、同様に点EはL−1のノズル出口の
蒸気状態を示し、点FはL−1の動翼出口の蒸気状態を
示し、点Gは最終段段落(以下、L−0と称する)のノ
ズル出口の蒸気状態を示し、点HはL−0の動翼出口の
蒸気状態を示している。
FIG. 10 shows an expansion curve of a steam turbine in a general commercial thermal power plant. Point D in the figure
Indicates the steam state at the nozzle inlet in the preceding paragraph of the final stage (hereinafter referred to as L-1), similarly point E indicates the steam state at the nozzle outlet of L-1, and point F indicates the blade outlet of L-1. Point G shows the steam state at the nozzle exit of the final stage paragraph (hereinafter referred to as L-0), and point H shows the steam state at the rotor blade exit at L-0.

【0007】図10からわかるように、L−1のノズル
内で蒸気は乾き蒸気から湿り蒸気となり、L−0の動翼
出口では湿り度が10%近くに達する。しかしながら、
蒸気はその膨脹により理論上の湿り域に達しても、直ち
には凝縮を開始せずに湿り度が3〜5%程度になるまで
非平衡状態で膨張し、その後に初めて水滴が発生する。
この場合、発生する水滴の直径は0.1〜1μm程度で
あり、蒸気の膨張に伴って水滴は少しずつ成長する。そ
の際、一部の水滴はノズルや動翼の表面に衝突し、付着
するが、粒径が小さいため、この段階では動翼のエロー
ジョンはほとんど生じない。
As can be seen from FIG. 10, the steam changes from dry steam to wet steam in the nozzle of L-1, and the wetness reaches about 10% at the moving blade outlet of L-0. However,
Even if the vapor reaches the theoretical wet region due to the expansion, it does not immediately start to condense and expands in a non-equilibrium state until the wetness reaches about 3 to 5%, and then water droplets are generated for the first time.
In this case, the diameter of the generated water droplets is about 0.1 to 1 μm, and the water droplets gradually grow as the steam expands. At this time, some water droplets collide with and adhere to the surfaces of the nozzle and the moving blade, but since the particle size is small, erosion of the moving blade hardly occurs at this stage.

【0008】ところが、L−1の動翼内では、遠心力、
コリオリ力、および蒸気力による外周方向への運動が支
配的となり、水滴はL−0のノズル外輪内面およびノズ
ル翼面の外周部近傍に付着することになる。図11に
は、破線KでL−0段落Jにおける蒸気流線を、実線L
で同水滴流線を示すが、この図から分かるように、水滴
はL−1(図中、Iで示す)の動翼14内で発生し、水
滴流線Lに示されるように、L−0(図中、Jで示す)
のノズル外輪6の内面7やノズル1の外周部近傍に付着
して水膜Mを形成する。水膜Mは発達しながらL−0の
ノズル後縁13に達した後、蒸気力により吹きちぎられ
て蒸気中に混入し、さらに水滴状に噴霧される。
However, in the L-1 rotor blade, centrifugal force,
The movement in the outer peripheral direction due to the Coriolis force and the steam force becomes dominant, and the water droplets adhere to the inner surface of the nozzle outer ring of L-0 and the outer peripheral portion of the nozzle blade surface. In FIG. 11, a vapor stream line in the L-0 paragraph J is indicated by a solid line L by a broken line K.
The water droplet streamline is shown in Fig. 1, but as can be seen from this figure, water droplets are generated in the rotor blade 14 of L-1 (indicated by I in the figure), and as shown by the water droplet streamline L, L- 0 (indicated by J in the figure)
The water film M is formed by adhering to the inner surface 7 of the nozzle outer ring 6 and the outer peripheral portion of the nozzle 1. The water film M reaches the trailing edge 13 of the nozzle L-0 while developing, is blown off by the steam force, is mixed in the steam, and is further sprayed in the form of water droplets.

【0009】このとき形成される水滴径は、100〜5
00μmにも達し、自然発生した水滴と比べて遥かに巨
大なものとなる。そして、この巨大な水滴が蒸気力によ
って十分加速されないまま、L−0の動翼15に衝突
し、動翼15のエロージョンを引き起こす原因となる。
図12にはL−0のノズル内の湿り度を示したが、この
図ではノズル1の外周部で急激に湿り度が高くなってお
り、水滴がノズル1の外周部に偏在していることがよく
分る。
The water droplet diameter formed at this time is 100 to 5
It reaches as much as 00 μm, which is much larger than naturally occurring water droplets. Then, this huge water droplet collides with the moving blade 15 of L-0 without being sufficiently accelerated by the steam force, and causes erosion of the moving blade 15.
FIG. 12 shows the degree of wetness in the nozzle of L-0. In this figure, the degree of wetness is rapidly increased in the outer peripheral portion of the nozzle 1, and water droplets are unevenly distributed in the outer peripheral portion of the nozzle 1. Understand well.

【0010】ノズル1内の湿り蒸気の水滴の大半は上述
したように、ノズル1の外周部に偏在しているが、水膜
Mについても同様のことが言える。すなわち、ノズル1
の外周部近傍やノズル外輪6の内面7に直径が0.5〜
1μm程度の水滴が多数付着し、これら水滴が表面を下
流方向へ蒸気力によって流されることにより集合し、水
膜Mとなって発達していく。
Most of the water droplets of the wet steam in the nozzle 1 are unevenly distributed on the outer peripheral portion of the nozzle 1 as described above, but the same can be said for the water film M. That is, the nozzle 1
Around the outer periphery of the nozzle and the inner surface 7 of the nozzle outer ring 6 have a diameter of 0.5 to
A large number of water droplets of about 1 μm are attached, and these water droplets are aggregated by flowing on the surface in the downstream direction by steam force, and develop into a water film M.

【0011】図13に示したように、ノズル外輪6の内
面7の近傍を伝わる水膜Mの挙動を蒸気の流出方向から
見ると、ノズル1の背面3を伝わる水膜M1(図中に実
線の矢印で示す)のうち、吸込開口5に掛かる水膜M2
は吸込開口5より吸込まれてノズル後縁13に達しな
い。ところが、吸込開口5に掛からない水膜M3は吸込
まれることなく後縁13に到達し、蒸気力により吹きち
ぎられて巨大な水滴となり、蒸気中に混入して動翼のエ
ロージョンの原因となる。このことは、ノズル腹面につ
いても同様である。
As shown in FIG. 13, when the behavior of the water film M propagating in the vicinity of the inner surface 7 of the nozzle outer ring 6 is seen from the outflow direction of the steam, the water film M1 propagating in the back surface 3 of the nozzle 1 (solid line in the figure). (Indicated by the arrow), the water film M2 hanging on the suction opening 5
Is sucked through the suction opening 5 and does not reach the nozzle trailing edge 13. However, the water film M3 that does not cover the suction opening 5 reaches the trailing edge 13 without being sucked, is blown off by the steam force and becomes a huge water droplet, and is mixed into the steam to cause erosion of the moving blade. . This also applies to the nozzle belly surface.

【0012】一方、ノズル外輪6の内面7を伝わる水膜
M4(図中破線の矢印で示す)のうち、吸込開口5に掛
かる水膜M5は吸込開口5より吸込まれてノズル後縁1
cに達しない。ところが、吸込開口5に掛からない水膜
M6は吸込まれず、ノズル1の間を通過するに従ってノ
ズル1の背面3に引き上げられる。このことについても
う少し詳しく説明する。
On the other hand, of the water film M4 (indicated by the broken line arrow in the figure) transmitted along the inner surface 7 of the outer ring 6 of the nozzle, the water film M5 which is applied to the suction opening 5 is sucked from the suction opening 5 and is drawn into the nozzle rear edge 1
It does not reach c. However, the water film M6 that does not reach the suction opening 5 is not sucked in and is pulled up to the back surface 3 of the nozzle 1 as it passes between the nozzles 1. I will explain this in a little more detail.

【0013】ノズル1の翼面圧力は、図14に示したよ
うに、腹面2で高く、背面3で低い。このため、ノズル
1間の蒸気通路部では腹面2から背面3へ向かう力が発
生する。そして、ノズル外輪6の内面7上では蒸気の粘
性により蒸気主流方向の流速が遅いため、上述したノズ
ル1の腹面2から背面3へ向かう力の影響が大きい。し
たがって、ノズル外輪6の内面7では、図15に示した
ように、ノズル1の腹面2から背面3へ向かう力Nによ
り、いわゆる二次流れと呼ばれる渦流れOが発生する。
その結果、図13において、ノズル外輪6の内面7を伝
わる水膜M4のうち吸込開口8に掛からない水膜M5
は、二次流れによってノズル1の背面3に引き上げられ
て後縁13に到達した後、ノズル後縁13から吹きちぎ
られて蒸気中に混入して動翼のエロージョンの原因とな
るのである。
The pressure on the blade surface of the nozzle 1 is high on the ventral surface 2 and low on the back surface 3, as shown in FIG. Therefore, in the steam passage portion between the nozzles 1, a force from the abdominal surface 2 to the back surface 3 is generated. On the inner surface 7 of the nozzle outer ring 6, the flow velocity in the main steam flow direction is slow due to the viscosity of the steam, so that the above-described force from the belly surface 2 to the back surface 3 of the nozzle 1 has a great influence. Therefore, on the inner surface 7 of the nozzle outer ring 6, as shown in FIG. 15, a vortex flow O called a secondary flow is generated by the force N from the abdominal surface 2 of the nozzle 1 to the back surface 3.
As a result, in FIG. 13, of the water film M4 transmitted on the inner surface 7 of the nozzle outer ring 6, the water film M5 that does not reach the suction opening 8
After being pulled up to the back surface 3 of the nozzle 1 by the secondary flow and reaching the trailing edge 13, it is blown off from the nozzle trailing edge 13 and mixed in the steam, causing erosion of the moving blade.

【0014】水膜Mがこのように挙動するため、動翼の
エロージョンの低減を図るには、ノズル1の表面からノ
ズル外輪6の内面7にかけての水膜M1,M4を洩れな
く除去する必要がある。ところが、図8、図9,図13
に示した例では、ノズル1側の吸込開口4,5とノズル
外輪6側の吸込開口8とに掛かる水膜M2,M5は吸い
込まれるが、吸込開口4,5,8に掛からない水膜M
3,M6は除去されずにノズル1の後縁13に達し、蒸
気力により吹きちぎられて巨大な水滴となり、蒸気中に
混入して動翼のエロージョンの原因となる。
Since the water film M behaves in this manner, it is necessary to remove the water films M1 and M4 from the surface of the nozzle 1 to the inner surface 7 of the nozzle outer ring 6 without leakage in order to reduce the erosion of the moving blade. is there. However, as shown in FIGS.
In the example shown in FIG. 3, the water films M2 and M5 that are hung on the suction openings 4 and 5 on the nozzle 1 side and the suction opening 8 on the nozzle outer ring 6 side are sucked, but the water films M that are not hung on the suction openings 4, 5, and 8.
3, M6 reach the trailing edge 13 of the nozzle 1 without being removed, and are blown off by the steam force to form huge water droplets, which are mixed in the steam and cause erosion of the moving blade.

【0015】続いて、第二の理由について説明する。Next, the second reason will be described.

【0016】前述の如く中空なノズル1の腹面2や背面
3、および中空なノズル外輪6の内面7にスリット状の
吸込開口4,5,8を穿設し、ノズル1の表面およびノ
ズル外輪6の内面7を伝わる水膜Mを吸込む場合、水膜
Mと同時に蒸気も随伴されて吸込まれることが一般に知
られている。この随伴された蒸気(以下、随伴蒸気と称
する)は、本来は作動流体として仕事をし得るものであ
り、吸込開口4,5,8より吸込まれると以後の段落で
は仕事をしないことになり、性能の低下を引き起こす。
このため、吸込開口4,5,8を穿設して水膜Mを吸込
む場合、可能な限り随伴蒸気の量を減少させることが必
要となる。
As described above, slit-like suction openings 4, 5 and 8 are formed in the abdominal surface 2 and the back surface 3 of the hollow nozzle 1 and the inner surface 7 of the hollow nozzle outer ring 6, and the surface of the nozzle 1 and the nozzle outer ring 6 are formed. It is generally known that when sucking the water film M transmitted through the inner surface 7 of, the steam is also sucked together with the water film M. This entrained steam (hereinafter referred to as entrained steam) is originally capable of working as a working fluid, and if sucked through the suction openings 4, 5, 8 it will not work in the subsequent paragraphs. , Causes performance degradation.
Therefore, when the water film M is sucked through the suction openings 4, 5, 8 it is necessary to reduce the amount of associated steam as much as possible.

【0017】図16に示したように、吸込開口4,5,
8の幅Pが適切に設定されれば、水膜Mのほとんどが吸
込開口4,5,8より吸込まれる一方、作動流体である
蒸気16はほとんど吸込まれない。しかし、昼夜間、平
日休日、季節等による電力需要の変動に応じた経済的な
発電プラントの運転が要求されている近年、蒸気タービ
ンでも従来の定圧運転に代えて変圧運転のものが採用さ
れることが多くなっている。そして、変圧運転により蒸
気条件が変化した場合、以下に述べるような問題が生じ
る。
As shown in FIG. 16, the suction openings 4, 5,
If the width P of 8 is set appropriately, most of the water film M is sucked through the suction openings 4, 5, 8 while the vapor 16 that is the working fluid is hardly sucked. However, in recent years, there is a demand for economical power plant operation that responds to fluctuations in power demand due to day and night, weekday holidays, seasons, etc. In recent years, steam turbines that use variable pressure operation have been adopted instead of conventional constant pressure operation. Is increasing. Then, when the steam condition changes due to the variable pressure operation, the following problems occur.

【0018】図17は、縦軸にエンタルピ、横軸にエン
トロピをとり、ノズル1間の蒸気通路部の蒸気条件を示
したものであり、点E1、点E2、点E3がタービンの
負荷を変化させた場合の蒸気通路部の蒸気条件を表わし
ている。ここで、図16に示した水膜Mの吸込状態を図
17に示した点E1の蒸気条件とし、この場合の蒸気通
路部の湿り度をX1とする。すると、タービンの負荷が
小さくなるに従い、図17に示したように、蒸気通路部
の蒸気条件が点E2に移行し、蒸気通路部の湿り度がX
2と小さくなる。すなわち、水膜Mの量が減少するので
ある。この時、水膜Mの厚さが小さくなるため、吸込開
口7と水膜Mとの間に大きな間隙が生じ、図18に示し
たように、作動流体である蒸気16の一部が随伴蒸気1
7となって吸込まれタービンの性能が低下する。
FIG. 17 shows the steam conditions in the steam passage between the nozzles 1 with the enthalpy on the vertical axis and the entropy on the horizontal axis. The points E1, E2, and E3 change the turbine load. It shows the steam condition of the steam passage part when it is allowed. Here, the suction condition of the water film M shown in FIG. 16 is the steam condition at the point E1 shown in FIG. 17, and the wetness of the steam passage portion in this case is X1. Then, as the turbine load decreases, as shown in FIG. 17, the steam condition of the steam passage portion shifts to point E2, and the degree of wetness of the steam passage portion becomes X.
It becomes as small as 2. That is, the amount of the water film M is reduced. At this time, since the thickness of the water film M becomes small, a large gap is created between the suction opening 7 and the water film M, and as shown in FIG. 1
7 is sucked and the performance of the turbine deteriorates.

【0019】一方、タービンの負荷が大きくなると、図
17に示したように、ノズルの蒸気通路部の蒸気条件は
点E3に移行し、ノズルの蒸気通路部の湿り度がX3と
大きくなる。すなわち、水膜Mの量は増加するのであ
る。この時には、吸込開口4,5,8と水膜Mとの間に
間隙が生じないため、図19に示したように、随伴蒸気
は吸込まれない。ところが、水膜Mの厚みが大きいた
め、その一部は吸込開口2より吸込まれるこくなくノズ
ル後縁13に達する。そして、後縁13で溜った水膜M
はそこから粗大水滴となって吹きちぎられ、動翼に衝突
してエロージョンの原因となるとともに、動翼の回転を
防げてタービンの性能が低下する。
On the other hand, when the load on the turbine increases, as shown in FIG. 17, the steam condition of the steam passage portion of the nozzle shifts to point E3, and the wetness of the steam passage portion of the nozzle increases to X3. That is, the amount of the water film M increases. At this time, since no gap is created between the suction openings 4, 5, 8 and the water film M, the associated steam is not sucked in, as shown in FIG. However, since the water film M has a large thickness, a part of it reaches the nozzle trailing edge 13 without being sucked through the suction opening 2. The water film M collected at the trailing edge 13
From there, it is blown off as coarse water droplets and collides with the rotor blades, causing erosion, and also prevents the rotor blades from rotating and reduces turbine performance.

【0020】そこで、本発明の目的は、上記従来技術が
有する問題点を解消し、タービンの性能低下を招くこと
なく、ノズル表面およびノズル外輪の内面を伝わる水滴
を十分に除去できる蒸気タービンの水滴除去装置を提供
することにある。
Therefore, an object of the present invention is to solve the problems of the above-mentioned prior art, and to sufficiently remove the water droplets transmitted on the nozzle surface and the inner surface of the nozzle outer ring without deteriorating the performance of the turbine. It is to provide a removal device.

【0021】[0021]

【課題を解決するための手段】上記目的を達成するため
に、本発明の蒸気タービンの水滴除去装置は、ノズル内
輪とノズル外輪との中空部に連通する中空部がその内部
に形成されたノズルを有する蒸気タービンにおいて、前
記ノズルおよびノズル外輪をそれぞれ固定部材と移動部
材とに分割し、前記移動部材とを駆動装置により軸方向
に相対移動させることにより、前記固定部材との間に前
記ノズルから前記ノズル外輪にかけて連続したスリット
状の吸込開口を形成させるようにしたことを特徴とする
ものである。
In order to achieve the above object, a water droplet removing apparatus for a steam turbine according to the present invention is a nozzle in which a hollow portion communicating with a hollow portion between a nozzle inner ring and a nozzle outer ring is formed. In the steam turbine having, each of the nozzle and the nozzle outer ring is divided into a fixed member and a moving member, and the moving member is relatively moved in the axial direction by a driving device, so that the nozzle is separated from the fixed member. It is characterized in that a continuous slit-shaped suction opening is formed over the outer ring of the nozzle.

【0022】[0022]

【作用】本発明によれば、吸込開口がノズルからノズル
外輪に連続して形成されるため、ノズルの表面からノズ
ル外輪の内面にかけての水膜が洩れなく除去できる。ま
た、移動部材を駆動することにより、吸込開口の幅が変
わり、随伴蒸気の吸込や水膜の吸込み洩れを防止するこ
とができる。
According to the present invention, since the suction opening is formed continuously from the nozzle to the outer ring of the nozzle, the water film from the surface of the nozzle to the inner surface of the outer ring of the nozzle can be removed without leakage. Further, by driving the moving member, the width of the suction opening is changed, and it is possible to prevent suction of the associated steam and suction leakage of the water film.

【0023】[0023]

【実施例】以下、本発明による水滴除去装置の一実施例
について添付の図面を参照して説明する。尚、前述した
従来装置と同一の部材には同一符号を付す。図1に示し
たように、本実施例においては、中空のノズル1が静止
部材1aと移動部材1bとで構成され、中空のノズル外
輪6が静止部材6aと移動部材6bとで構成されてい
る。また羽根出口ガイドリング18は、ノズル外輪6側
の移動部材6bに固設されている。ノズル1側の移動部
材1bとノズル外輪6側の移動部材6bと羽根出口ガイ
ドリング18は一体となり、駆動ロッド19を介して駆
動装置20により軸方向Rに駆動されるようになってい
る(移動した状態を一点鎖線で示す)。駆動装置20は
制御装置21により駆動制御される。制御装置21に
は、ノズル1の前方に配置された湿り度センサ22が接
続されており、湿り度センサ22の検出結果が電気信号
として入力する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the water drop removing device according to the present invention will be described below with reference to the accompanying drawings. The same members as those of the conventional device described above are designated by the same reference numerals. As shown in FIG. 1, in this embodiment, the hollow nozzle 1 is composed of a stationary member 1a and a moving member 1b, and the hollow nozzle outer ring 6 is composed of a stationary member 6a and a moving member 6b. . The blade outlet guide ring 18 is fixed to the moving member 6b on the nozzle outer ring 6 side. The moving member 1b on the nozzle 1 side, the moving member 6b on the nozzle outer ring 6 side, and the blade outlet guide ring 18 are integrated, and are driven in the axial direction R by a drive device 20 via a drive rod 19 (movement). This is indicated by the one-dot chain line). The drive unit 20 is drive-controlled by the control unit 21. A wetness sensor 22 arranged in front of the nozzle 1 is connected to the control device 21, and the detection result of the wetness sensor 22 is input as an electric signal.

【0024】図2(図1中のB−B断面図)に示したよ
うに、ノズル1側の静止部材1aと移動部材1bとの間
隙により、腹面2のスリット状の吸込開口4と背面3の
スリット状の吸込開口5とが構成される。また、ノズル
外輪6側の静止部材6aと移動部材6bとの間隙によ
り、ノズル外輪6の内面7にもスリット状の吸込開口8
が構成される。前述したように、ノズル1側の移動部材
1bとノズル外輪6側の移動部材6bは、駆動装置20
によって一体となって軸方向Rに移動することができ
る。両移動部材1b,6bが軸方向Rに移動すると,両
静止部材1a,6aとの間隙が変化するため、各吸込開
口4,5,8の幅P1,P2,P3が変化する。
As shown in FIG. 2 (a sectional view taken along line BB in FIG. 1), a slit-like suction opening 4 on the abdominal surface 2 and the back surface 3 are formed by the gap between the stationary member 1a on the nozzle 1 side and the moving member 1b. And a slit-shaped suction opening 5 are formed. Further, due to the gap between the stationary member 6 a and the moving member 6 b on the nozzle outer ring 6 side, the slit-shaped suction opening 8 is also formed on the inner surface 7 of the nozzle outer ring 6.
Is configured. As described above, the moving member 1b on the nozzle 1 side and the moving member 6b on the nozzle outer ring 6 side are connected to the drive device 20.
Can move integrally in the axial direction R. When both the moving members 1b and 6b move in the axial direction R, the gaps between the two stationary members 1a and 6a change, so that the widths P1, P2 and P3 of the suction openings 4, 5 and 8 change.

【0025】図3に示したように、ノズル1側の移動部
材1bとノズル外輪6側の移動部材6bとは一体となっ
ているので、背面3側の吸込開口5とノズル外輪6側の
吸込開口8とは連続している。また、腹面2側の吸込開
口4とノズル外輪6側の吸込開口8についても同様に連
続している。
As shown in FIG. 3, since the moving member 1b on the nozzle 1 side and the moving member 6b on the nozzle outer ring 6 side are integrated, the suction opening 5 on the rear surface 3 side and the suction member on the nozzle outer ring 6 side are sucked. It is continuous with the opening 8. Similarly, the suction opening 4 on the abdominal surface 2 side and the suction opening 8 on the nozzle outer ring 6 side are also continuous.

【0026】以下、本実施例の作用を説明する。図4に
示したように、本実施例においては、背面3を伝わる水
膜M1(図中実線の矢印で示す)は、背面3の吸込開口
2bより吸込まれ、ノズル外輪6の内面7を伝わる水膜
M4(図中破線の矢印で示す)はノズル外輪6側の吸込
開口8より吸込まれる。また、前述したように、ノズル
1の腹面2側および背面3側の吸込開口4,5とノズル
外輪6側の吸込開口8とが連続しているので、いずれの
吸込開口4,5,8にも掛からない水膜Mは存在しな
い。
The operation of this embodiment will be described below. As shown in FIG. 4, in this embodiment, the water film M1 (shown by the solid arrow in the figure) transmitted to the back surface 3 is sucked from the suction opening 2b of the back surface 3 and transmitted to the inner surface 7 of the nozzle outer ring 6. The water film M4 (indicated by a dashed arrow in the figure) is sucked through the suction opening 8 on the nozzle outer ring 6 side. Further, as described above, since the suction openings 4, 5 on the abdominal surface 2 side and the back surface 3 side of the nozzle 1 and the suction opening 8 on the nozzle outer ring 6 side are continuous, any of the suction openings 4, 5, 8 can be used. There is no water film M that does not hang.

【0027】図5は移動部材1b,6bの軸方向位置S
を決定する制御フローチャートであり、先ずステップS
1で湿り度センサ22によりノズル蒸気通路部の湿り度
Xが計測される。次に、ステップS2で、制御装置21
により計測した湿り度Xから、移動部材1b,6bの軸
方向位置Sを演算・決定する。最後にステップS3で、
軸方向位置Sに応じた電気信号を駆動装置20に送り、
移動部材1b,6bを軸方向に移動させる。尚、この制
御は所定のインターバルで繰り返し行われ、移動部材1
b,6bの位置が吸込開口4,5,8の幅の常に最適の
値になるように変動する。
FIG. 5 shows the axial position S of the moving members 1b and 6b.
Is a control flowchart for determining the
At 1, the wetness sensor 22 measures the wetness X of the nozzle vapor passage portion. Next, in step S2, the control device 21
The axial position S of the moving members 1b and 6b is calculated and determined from the wetness X measured by. Finally in step S3,
An electric signal corresponding to the axial position S is sent to the drive device 20,
The moving members 1b and 6b are moved in the axial direction. It should be noted that this control is repeatedly performed at predetermined intervals, and the moving member 1
The positions of b and 6b are changed so that the widths of the suction openings 4, 5, and 8 are always the optimum values.

【0028】図6は、制御装置21で用いる湿り度Xか
ら移動部材1b,6bの軸方向位置Sを決定する演算曲
線の例を示したものであり、図7は、移動部材1b,6
bの軸方向位置Sと吸込開口4,5,8の幅Pとの関係
を示したものである。これらの図に示したように、湿り
度Xが大きければ、移動部材1b,6bの軸方向位置S
が後方にずれ、吸込開口4,5,8の幅Pも大きくな
る。したがって、ノズル1の表面やノズル外輪6の内面
7を伝わる水膜Mの厚みが湿り度Xに応じて大きくなっ
ても、吸込開口4,5,8の面積も水膜Mを吸込むのに
十分な値に維持され、動翼のエロージョンが防止され
る。さらに、吸込開口4,5,8と水膜Mとの間に間隙
が生じることもないため、随伴蒸気はほとんど吸込まれ
なくなり、タービンの性能の低下も防止することができ
る。
FIG. 6 shows an example of a calculation curve for determining the axial position S of the moving members 1b, 6b from the wetness X used in the control device 21, and FIG. 7 shows the moving members 1b, 6b.
It shows the relationship between the axial position S of b and the width P of the suction openings 4, 5, 8. As shown in these figures, if the wetness degree X is large, the axial position S of the moving members 1b and 6b is S.
Shifts rearward, and the width P of the suction openings 4, 5, 8 also increases. Therefore, even if the thickness of the water film M transmitted on the surface of the nozzle 1 or the inner surface 7 of the nozzle outer ring 6 increases in accordance with the degree of wetness X, the areas of the suction openings 4, 5, 8 are sufficient to suck the water film M. It is maintained at a proper value and prevents blade erosion. Further, since no gap is created between the suction openings 4, 5, 8 and the water film M, the produced steam is hardly sucked in, and deterioration of the turbine performance can be prevented.

【0029】[0029]

【発明の効果】以上の説明から明らかなよう、本発明に
よれば、静止部材と移動部材の間隙によりノズルからノ
ズル外輪にかけて連続したスリット状の吸込開口が形成
されるため、ノズルの表面からノズル外輪の内面にかけ
ての水膜が洩れなく除去できるようになり、水滴の衝突
による動翼のエロージョンが防止される。また、移動部
材を駆動することにより、水膜の厚み等に応じて吸込開
口の幅を変えることができるようになり、随伴蒸気の吸
込や水膜の吸込み洩れに起因するタービンの性能低下や
動翼のエロージョンを防止することができる。
As is apparent from the above description, according to the present invention, a continuous slit-shaped suction opening is formed from the nozzle to the outer ring of the nozzle due to the gap between the stationary member and the moving member. The water film on the inner surface of the outer ring can be removed without leakage, and the erosion of the moving blade due to the collision of water droplets can be prevented. In addition, by driving the moving member, the width of the suction opening can be changed according to the thickness of the water film, etc. Wing erosion can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による蒸気タービンの水滴除去装置を一
実施例を示した縦断面図。
FIG. 1 is a vertical cross-sectional view showing an embodiment of a water droplet removing device for a steam turbine according to the present invention.

【図2】図1中のB−B断面図。FIG. 2 is a sectional view taken along line BB in FIG.

【図3】実施例の蒸気タービンのノズル外輪近傍を示し
た斜視図。
FIG. 3 is a perspective view showing the vicinity of the outer ring of the nozzle of the steam turbine of the embodiment.

【図4】実施例の蒸気タービンにおける水膜の吸込み状
態を示した斜視図。
FIG. 4 is a perspective view showing a suction state of a water film in the steam turbine of the embodiment.

【図5】実施例における駆動装置の制御フローチャー
ト。
FIG. 5 is a control flowchart of the driving device in the embodiment.

【図6】移動部材の軸方向位置を決定するための演算曲
線を示したグラフ。
FIG. 6 is a graph showing a calculation curve for determining the axial position of the moving member.

【図7】移動部材の軸方向位置と吸込開口の幅との関係
を示したグラフ。
FIG. 7 is a graph showing the relationship between the axial position of the moving member and the width of the suction opening.

【図8】従来の蒸気タービンのノズルを示した側面図。FIG. 8 is a side view showing a nozzle of a conventional steam turbine.

【図9】図8中のA−A断面図。9 is a cross-sectional view taken along the line AA in FIG.

【図10】蒸気タービンの膨脹曲線を示したグラフ。FIG. 10 is a graph showing an expansion curve of a steam turbine.

【図11】最終段前および最終段段落における蒸気流線
と水滴流線とを示した説明図。
FIG. 11 is an explanatory diagram showing vapor streamlines and water droplet streamlines before and after the final stage.

【図12】最終段段落におけるノズル内の湿り度を示し
たグラフ。
FIG. 12 is a graph showing the degree of wetness in the nozzle in the final paragraph.

【図13】従来の蒸気タービンにおける水膜の吸込み状
態を示した斜視図。
FIG. 13 is a perspective view showing a suction state of a water film in a conventional steam turbine.

【図14】ノズルの翼面圧力を示したグラフ。FIG. 14 is a graph showing a pressure on a blade surface of a nozzle.

【図15】ノズル1の腹面から背面への二次流れを示し
た斜視図。
FIG. 15 is a perspective view showing a secondary flow from the abdominal surface to the back surface of the nozzle 1.

【図16】水膜が吸込開口より吸込まれる状態を示した
説明図。
FIG. 16 is an explanatory diagram showing a state in which a water film is sucked in through a suction opening.

【図17】ノズル間の蒸気通路部の蒸気条件を示したグ
ラフ。
FIG. 17 is a graph showing steam conditions in a steam passage between nozzles.

【図18】水膜と随伴蒸気とが吸込開口より吸込まれる
状態を示した説明図。
FIG. 18 is an explanatory diagram showing a state in which a water film and associated steam are sucked in through a suction opening.

【図19】水膜の一部が吸込まれずにノズル表面を流れ
る状態を示した説明図。
FIG. 19 is an explanatory diagram showing a state in which a part of a water film flows on the nozzle surface without being sucked.

【符号の説明】[Explanation of symbols]

1 ノズル 1a ノズル側の固定部材 1b ノズル側の移動部材 2 ノズルの腹面 3 ノズルの背面 4 吸込開口 5 吸込開口 6 ノズル外輪 6a ノズル外輪側の固定部材 6b ノズル外輪側の移動部材 7 ノズル外輪の表面 8 吸込開口 9 ノズル内輪 10,11,12 中空部 15 動翼 19 駆動ロッド 20 駆動装置 21 制御装置 22 湿り度センサ M 水膜 P 吸込開口の幅 1 Nozzle 1a Nozzle-side fixed member 1b Nozzle-side moving member 2 Nozzle belly face 3 Nozzle back face 4 Suction opening 5 Suction opening 6 Nozzle outer ring 6a Nozzle outer ring side fixed member 6b Nozzle outer ring side moving member 7 Nozzle outer ring surface 8 Suction opening 9 Nozzle inner ring 10, 11, 12 Hollow part 15 Moving blade 19 Drive rod 20 Drive device 21 Control device 22 Wetness sensor M Water film P Width of suction opening

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ノズル内輪とノズル外輪との中空部に連通
する中空部がその内部に形成されたノズルを有する蒸気
タービンにおいて、前記ノズルおよびノズル外輪をそれ
ぞれ固定部材と移動部材とに分割し、前記移動部材とを
駆動装置により軸方向に相対移動させることにより、前
記固定部材との間に前記ノズルから前記ノズル外輪にか
けて連続したスリット状の吸込開口を形成させるように
したことを特徴とする蒸気タービンの水滴除去装置。
1. A steam turbine having a nozzle in which a hollow portion communicating with a hollow portion of an inner ring of a nozzle and a hollow portion of an outer ring of the nozzle is formed, and the nozzle and the outer ring of the nozzle are divided into a fixed member and a moving member, respectively. Steam is characterized in that a continuous slit-like suction opening is formed between the fixed member and the moving member by moving the moving member in the axial direction relative to the fixed member. Turbine water drop removal device.
【請求項2】前記ノズル間の蒸気通路部の湿り度を検出
する湿り度センサと、この湿り度センサの検出結果に基
づき前記移動部材の位置を決定して前記駆動装置を制御
する制御装置とを備えたことを特徴とする請求項1記載
の蒸気タービンの水滴除去装置。
2. A wetness sensor for detecting the wetness of a vapor passage between the nozzles, and a controller for controlling the drive unit by determining the position of the moving member based on the detection result of the wetness sensor. The water droplet removing device for a steam turbine according to claim 1, further comprising:
JP3578393A 1993-02-24 1993-02-24 Waterdrop removing device for steam turbine Pending JPH06248903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3578393A JPH06248903A (en) 1993-02-24 1993-02-24 Waterdrop removing device for steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3578393A JPH06248903A (en) 1993-02-24 1993-02-24 Waterdrop removing device for steam turbine

Publications (1)

Publication Number Publication Date
JPH06248903A true JPH06248903A (en) 1994-09-06

Family

ID=12451505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3578393A Pending JPH06248903A (en) 1993-02-24 1993-02-24 Waterdrop removing device for steam turbine

Country Status (1)

Country Link
JP (1) JPH06248903A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19715966A1 (en) * 1997-04-17 1998-10-29 Carsten Binder Guide vane for steam turbines
JP2014055577A (en) * 2012-09-14 2014-03-27 Hitachi Ltd Steam turbine stator blade and steam turbine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19715966A1 (en) * 1997-04-17 1998-10-29 Carsten Binder Guide vane for steam turbines
JP2014055577A (en) * 2012-09-14 2014-03-27 Hitachi Ltd Steam turbine stator blade and steam turbine
US9598964B2 (en) 2012-09-14 2017-03-21 Mitsubishi Hitachi Power Systems, Ltd. Steam turbine stationary blade and steam turbine

Similar Documents

Publication Publication Date Title
US3846038A (en) Fixed blading of axial compressors
Smith et al. Flow phenomena in compressor casing treatment
EP0497574B1 (en) Fan case treatment
US6244817B1 (en) Method and apparatus for a fan noise controller
EP1961937A2 (en) Wet compression system for a gas turbine engine
EP2282013A2 (en) Moisture removal provisions for steam turbine
US11203941B2 (en) Steam turbine
JP2017020443A (en) Steam turbine nozzle and steam turbine with the nozzle
JPH06248903A (en) Waterdrop removing device for steam turbine
JPH0326802A (en) Stationary blade apparatus of steam turbine
JP4184565B2 (en) Steam turbine nozzle and steam turbine using the steam turbine nozzle
JPS57110800A (en) Axial-flow type blower
JP2723334B2 (en) Steam turbine nozzle water droplet removal equipment
JP3630740B2 (en) Drain discharge device for steam turbine
JPH0925803A (en) Drain removal device for steam turbine
JPH0738641Y2 (en) Multi-stage axial turbine
JPH08121390A (en) Compressor vane shape for high speed fluid
JPH06173607A (en) Corrosion preventive device for steam turbine blade
JPH04140401A (en) Nozzle of steam turbine
JPH09264296A (en) Impeller for eccentric fluid machinery
JPH08159097A (en) Fan and casing of compressor
JPH062503A (en) Moisture separation structure for steam turbine stationary blade
JPH04194302A (en) Steam turbine structure
JPH08200007A (en) Moisture removing device of steam turbine
JPH0861006A (en) Steam turbine