JPH06245140A - Exposure controller and image pickup device using the same - Google Patents

Exposure controller and image pickup device using the same

Info

Publication number
JPH06245140A
JPH06245140A JP5030383A JP3038393A JPH06245140A JP H06245140 A JPH06245140 A JP H06245140A JP 5030383 A JP5030383 A JP 5030383A JP 3038393 A JP3038393 A JP 3038393A JP H06245140 A JPH06245140 A JP H06245140A
Authority
JP
Japan
Prior art keywords
signal
exposure
image pickup
time
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5030383A
Other languages
Japanese (ja)
Other versions
JP3524117B2 (en
Inventor
Hideo Nakamura
秀夫 中村
Haruki Furuta
治樹 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kodak Digital Product Center Japan Ltd
Original Assignee
Kodak Digital Product Center Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kodak Digital Product Center Japan Ltd filed Critical Kodak Digital Product Center Japan Ltd
Priority to JP03038393A priority Critical patent/JP3524117B2/en
Publication of JPH06245140A publication Critical patent/JPH06245140A/en
Application granted granted Critical
Publication of JP3524117B2 publication Critical patent/JP3524117B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To suppress flicker by providing a photoelectric conversion element, a comparator means converting a signal from the element into a binarized signal, and a timing control means taking a predetermined period from a point of time when the binarized signal is changed to the controller. CONSTITUTION:A detection signal Sp outputted from a photoelectric conversion element 5 is received by a comparator circuit 6 via an amplifier circuit. The circuit 6 generates a binarized signal SHL being logical H when an amplitude of a detection signal Sp' is larger than a reference voltage and a binarized signal SHL being logical L when the amplitude of the detection signal Sp' is smaller than the reference voltage and gives the signal to a timing control circuit 4. The circuit 4 applies an exposure start control signal SaBN used to command start of exposure synchronously with inversion of the signal SHL changed from logical L into logical H, an exposure end control signal SEN commanding end of exposure at a point of time when a predetermined exposure period tau0 elapses from the point of that time, and a scanning read control signal Sc used to make scanning read from the point of time of the end of exposure to a CCD solid-state image pickup device 1. Thus, even when an irregular illuminance change is in existence, an object with an optimum luminous intensity is always picked up.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、撮像対象の明るさが一
定でなくとも鮮明に撮像を行うことを可能にする露光制
御装置及びそれを用いた撮像装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exposure control apparatus and an image pickup apparatus using the same, which makes it possible to take an image clearly even if the brightness of the image pickup object is not constant.

【0002】[0002]

【従来の技術】周知のように、ビデオカメラやファクシ
ミリその他の撮像機能を有する光学機器において、フリ
ッカ等を抑制することは、撮像対象を鮮明に撮像するた
めの最も重要な技術的課題の一つである。即ち、典型的
な場合としては、撮像対象を照明するための外部照明装
置の発光照度が商用電源の周波数変化に応じて周期的に
変化し、これに応じて光度が変化する撮像対象を撮像し
て、その撮像によって得られた映像信号に基づいて画像
再生を行うと、再生画像にフリッカ(ちらつき)が発生
し、鮮明な再生画像を得ることができない。
2. Description of the Related Art As is well known, in an optical device having an image pickup function such as a video camera, a facsimile or the like, suppressing flicker is one of the most important technical problems for clearly picking up an image pickup object. Is. That is, as a typical case, the light emission illuminance of the external lighting device for illuminating the imaging target changes periodically according to the frequency change of the commercial power supply, and the imaging target whose light intensity changes accordingly is imaged. When an image is reproduced based on the video signal obtained by the image pickup, flicker occurs in the reproduced image, and a clear reproduced image cannot be obtained.

【0003】従来は、このようなフリッカを抑制するた
めに次のような技術的手段が講じられていた。尚、CC
D等の固体撮像デバイスを適用した撮像装置における従
来技術を説明するものとする。
Conventionally, the following technical measures have been taken to suppress such flicker. Incidentally, CC
A conventional technique in an image pickup apparatus to which a solid-state image pickup device such as D is applied will be described.

【0004】第1の従来例としては、商用電源で作動す
る外部照明装置で撮像対象を照明する場合を予め想定
し、固体撮像デバイスの露光期間を商用電源の周波数に
同期した固定周期に設定するものである。従って、日本
国内では50Hz又は60Hzの商用電源が適用されて
いるので、固定周期の露光期間は、これらの周波数に同
期し且つフリッカの発生を抑制することができるタイミ
ングを狙って予め決められる。
As a first conventional example, it is assumed in advance that an image pickup object is illuminated by an external lighting device that operates with a commercial power source, and the exposure period of the solid-state image pickup device is set to a fixed cycle synchronized with the frequency of the commercial power source. It is a thing. Therefore, since the commercial power supply of 50 Hz or 60 Hz is applied in Japan, the fixed-period exposure period is predetermined with a timing synchronized with these frequencies and capable of suppressing the occurrence of flicker.

【0005】第2の従来例としては、露光期間を予め固
定化するのではなく、撮像対象の現実の光度の変化を逐
一測定し、且つ測定結果を統計的に処理することによっ
て、最適の露光期間を決定するものがある。具体的に
は、50Hz又は60Hzの商用電源で作動する外部照
明装置を用いる場合には、予め決められた露光期間TD
で固体撮像デバイスを露光すると共に、そのピクセルに
蓄積される映像信号(電荷信号)を露光期間TD 内にお
いて例えば20回サンプリングし、夫々サンプリングし
た映像信号の輝度レベルの分散値を統計的に算出する。
尚、露光期間TDは、50Hzの商用電源に対応して予
め10mS、60Hzの商用電源に対応して予め8.3
3mSの2種類の時間が設定されており、夫々の露光期
間TD について上記20回のサンプリングと夫々の分散
値を算出する。そして、これらの分散値に基づいてフリ
ッカ周期Tf が50Hzか60Hzか、又はそれ以外の
フリッカ周期かの判断を行う。
As a second conventional example, instead of fixing the exposure period in advance, the change in the actual light intensity of the object to be imaged is measured one by one, and the measurement result is statistically processed to obtain the optimum exposure. There is one that determines the period. Specifically, when using an external illumination device that operates with a commercial power supply of 50 Hz or 60 Hz, a predetermined exposure period T D
The solid-state imaging device is exposed with, and the video signal (charge signal) accumulated in the pixel is sampled, for example, 20 times within the exposure period T D , and the dispersion value of the luminance level of each sampled video signal is statistically calculated. To do.
The exposure period T D corresponds to a commercial power source of 50 Hz and is 10 mS in advance, and the commercial power source of 60 Hz is 8.3 in advance.
Two types of time of 3 mS are set, and the above 20 times of sampling and each dispersion value are calculated for each exposure period T D. Then, it is determined whether the flicker cycle T f is 50 Hz or 60 Hz or another flicker cycle based on these variance values.

【0006】次に、このようにして求めたフリッカ周期
f と露光期間TD 及びこれらの最小公倍数の時間T
LCM と、サンプリング回数n1 (=20)について、次
式(1)の関係式を満足する係数n2 を算出する。
Next, the flicker period T f and the exposure period T D thus obtained and the time T of the least common multiple of these
For LCM and the number of samplings n 1 (= 20), a coefficient n 2 that satisfies the relational expression of the following expression (1) is calculated.

【0007】 n1 ×Tf =n2 ×TD =TLCM … (1) 次に、ピクセルに蓄積される映像信号を、露光期間TD
内に時間TLCM の周期でn2 回サンプリングし、夫々サ
ンプリングした映像信号の輝度レベルの平均値を求め、
更に、かかる処理を例えば合計20回繰り返すことによ
って、20個の平均値X1 〜X20を算出し、更にこれら
20個の平均値X1 〜X20の平均値ATD =(X1 +X
2 +……+X19+X20)/20を算出する。
N 1 × T f = n 2 × T D = T LCM (1) Next, the video signal accumulated in the pixel is exposed to the exposure period T D.
Within the period of time T LCM , sampling is performed n 2 times, and the average value of the luminance level of each sampled video signal is obtained.
Further, by repeating this process, for example, 20 times in total, 20 average values X 1 to X 20 are calculated, and further, the average value AT D = (X 1 + X 20 of these 20 average values X 1 to X 20.
Calculate 2 + ... + X 19 + X 20 ) / 20.

【0008】次に、最小公倍数の時間TLCM を露光期間
とし、その時間TLCM 内にピクセルに蓄積される映像信
号をn2 回サンプリングすると共に、夫々サンプリング
した映像信号の輝度レベルが平均値ATD と等しくなる
様に最終的な露光期間TD ’を決定する。
Next, the least common multiple time T LCM is set as the exposure period, and the video signals accumulated in the pixels are sampled n 2 times within the time T LCM , and the brightness level of each sampled video signal is the average value AT. The final exposure period T D 'is determined so as to be equal to D.

【0009】このような統計的な処理を行うと、撮像対
象の光度が低い場合(即ち、外部照明装置の照度が低い
場合)には、決定される露光期間TD ’が長くなり、逆
に撮像対象の光度が高い場合(即ち、外部照明装置の照
度が高い場合)には、決定される露光期間TD ’が短く
なることから、現実の撮像対象の光度に応じて露光期間
D ’が可変調整され、フリッカが抑制されることとな
る。
When such a statistical process is performed, when the light intensity of the image pickup object is low (that is, when the illuminance of the external lighting device is low), the determined exposure period T D 'is long, and conversely. When the light intensity of the imaging target is high (that is, when the illuminance of the external lighting device is high), the determined exposure period T D 'is short, and therefore the exposure period T D ' depending on the actual light intensity of the imaging target. Is variably adjusted, and flicker is suppressed.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、このよ
うな従来技術にあっては次のような問題点があった。
However, such a conventional technique has the following problems.

【0011】(第1の従来例の問題点)この従来技術
は、フリッカ発生の原因を予め想定しておき、例えば5
0Hzや60Hzの商用電源で作動する外部照明装置を
用いる場合には、かかる商用電源の周波数に対応した固
定の露光期間が設定される。したがって、他の周波数で
周期的に照度が変動する外部照明装置を用いた場合に
は、フリッカを抑制することができないという問題があ
る。
(Problem of the first conventional example) In this conventional technique, the cause of flicker is assumed in advance, for example, 5
When using an external lighting device that operates with a commercial power source of 0 Hz or 60 Hz, a fixed exposure period is set corresponding to the frequency of the commercial power source. Therefore, there is a problem that flicker cannot be suppressed when an external lighting device in which the illuminance changes periodically at another frequency is used.

【0012】又、この従来技術は、露光期間をフリッカ
周期の1以上の整数倍に設定するものであって、フリッ
カ周期より短い露光期間を設定することができない。即
ち、フリッカ周期より短時間での高速露光を実現するこ
とができない。この結果、例えば、撮像素子の各ピクセ
ルに発生する映像信号(電荷信号)をある時には高速で
又ある時には低速で順次走査読出しする等の、順次走査
読出しを可変制御することができない。
Further, according to this conventional technique, the exposure period is set to an integral multiple of 1 or more of the flicker period, and the exposure period shorter than the flicker period cannot be set. That is, it is impossible to realize high-speed exposure in a shorter time than the flicker cycle. As a result, it is not possible to variably control the sequential scanning readout, for example, the sequential scanning readout of the video signal (charge signal) generated in each pixel of the image sensor is performed at high speed at some times and at low speed at other times.

【0013】又、カラー撮像を行う撮像装置に適用され
る場合には、赤(R)、青(B)及び緑(G)の全ての
ピクセルについての露光期間が一律に固定化されるの
で、赤(R)、青(B)及び緑(G)の夫々のピクセル
についての露光期間を独立に可変制御しつつ逐一ホワイ
トバランス調整を行うことができない。
When applied to an image pickup device for performing color image pickup, since the exposure period for all pixels of red (R), blue (B) and green (G) is fixed uniformly. It is not possible to perform white balance adjustment one by one while independently controlling the exposure period of each pixel of red (R), blue (B) and green (G).

【0014】(第2の従来例の問題点)この従来技術に
あっては、露光期間を可変調整することによりフリッカ
を抑制するものであるので、第1の従来例よりも汎用性
があると言える。しかし、これにも限界があり、上述し
たように、50Hzと60Hzの商用電源に対応し得る
程度の極めて狭い範囲で露光期間を調整してフリッカを
抑制することができるのに止まる。
(Problem of Second Prior Art) In this prior art, since flicker is suppressed by variably adjusting the exposure period, it is more versatile than the first prior art. I can say. However, there is a limit to this, and as described above, it is only possible to suppress the flicker by adjusting the exposure period within an extremely narrow range that can accommodate commercial power sources of 50 Hz and 60 Hz.

【0015】特に、統計的処理のアルゴリズムが複雑で
あるので、最適な露光期間TD ’を決定するのに長時間
を要する問題がある。例えば、露光期間とフリッカ周期
との最小公倍数の時間TLCM が比較的小さな値の場合に
は比較的問題がないが、しかし、露光期間の制御範囲が
全く任意である場合には時間TLCM が極めて大きくなる
可能性があることから統計的処理の計算量が膨大とな
り、高速露光を繰り返して行う等の技術に適用すること
ができないという問題を生じる。
In particular, since the statistical processing algorithm is complicated, it takes a long time to determine the optimum exposure period T D '. For example, when the time T LCM, which is the least common multiple of the exposure period and the flicker cycle, has a relatively small value, there is no problem, but when the control range of the exposure period is completely arbitrary, the time T LCM is Since it may be extremely large, the calculation amount of statistical processing becomes enormous, and there arises a problem that it cannot be applied to a technique such as repeated high-speed exposure.

【0016】又、このように撮像対象の光度の変化に応
じて露光期間を変化させる手段は、フリッカの抑制とい
う点に関しては効果的であるが、周知のように固体撮像
デバイスでは暗電流が発生するので、ピクセルに発生す
るピクセル信号(電荷信号)に対する暗電流の影響が、
露光期間の長短によって異なる。したがって、このよう
に露光期間を可変制御することは、画質の劣化を招来す
る問題がある。
Further, the means for changing the exposure period according to the change in the light intensity of the image pickup object is effective in terms of suppressing flicker, but as is well known, a dark current is generated in the solid-state image pickup device. Therefore, the influence of dark current on the pixel signal (charge signal) generated in the pixel is
It depends on the length of the exposure period. Therefore, variably controlling the exposure period in this manner causes a problem of deterioration of image quality.

【0017】[0017]

【課題を解決するための手段】このような目的を達成す
るために本発明は、撮像対象の明るさの変化を検出する
光電変換素子と、該光電変換素子の検出信号の振幅が予
め設定されたしきい値レベルより大きいときは第1の論
理レベル、該しきい値レベルより小さいときは第2の論
理レベルに2値化変換することにより2値化信号に変換
する比較手段と、該比較手段の2値化信号が変化する時
点から予め決められた期間を露光期間とするタイミング
制御手段とを具備する構成とした。
In order to achieve such an object, the present invention sets a photoelectric conversion element for detecting a change in brightness of an image pickup object and an amplitude of a detection signal of the photoelectric conversion element in advance. And a comparison means for converting to a first logic level when the threshold level is higher than the threshold level, and to a second logic level when the threshold level is lower than the threshold level, and a binary signal. The timing control means has an exposure period that is a predetermined period from the time when the binary signal of the means changes.

【0018】又、撮像対象を撮像する固体撮像デバイス
等の撮像素子と、該撮像対象の明るさの変化を検出する
光電変換素子と、該光電変換素子の検出信号の振幅が予
め設定されたしきい値レベルより大きいときは第1の論
理レベル、該しきい値レベルより小さいときは第2の論
理レベルに2値化変換することにより2値化信号に変換
する比較手段と、該比較手段の2値化信号が変化する時
点から予め決められた期間を、上記撮像素子の露光期間
とするタイミング制御手段とを具備する構成とした。
Further, an image pickup element such as a solid-state image pickup device for picking up an image pickup object, a photoelectric conversion element for detecting a change in brightness of the image pickup object, and an amplitude of a detection signal of the photoelectric conversion element are preset. When it is larger than the threshold level, it is converted to a first logic level, and when it is smaller than the threshold level, it is converted into a binary signal by converting it into a second logic level. A configuration is provided that includes timing control means for setting a predetermined period from the time when the binarized signal changes as the exposure period of the image pickup device.

【0019】[0019]

【作用】このような構成の露光制御装置及び撮像装置に
よれば、撮像対象の明るさの変化点を比較手段が検知
し、この変化点に同期して露光開始が行われ且つその露
光開始時点から一定の露光期間で露光が行われることと
なり、したがって、撮像対象の現実の明暗変化(フリッ
カ周期)に同期して露光が行われることとなるので、フ
リッカ等を抑制することができる。
According to the exposure control apparatus and the image pickup apparatus having such a configuration, the comparing means detects the change point of the brightness of the image pickup object, the exposure is started in synchronization with the change point, and the exposure start time point is reached. Therefore, the exposure is performed in a constant exposure period, and therefore, the exposure is performed in synchronization with the actual brightness change (flicker cycle) of the imaging target, so that the flicker can be suppressed.

【0020】[0020]

【実施例】以下本発明の一実施例を図1及び図2と共に
説明する。まず、図1に基づいて本発明による露光制御
装置を具備した撮像装置の構成を説明する。尚、この実
施例は、撮像素子として、複数のフォトダイオードで構
成されるピクセル群とこのピクセル群にトランスファゲ
ートを介して併設された電荷転送路を有し且つ露光によ
りピクセル群に蓄積される電荷信号を電荷転送路により
走査読出しすることによって映像信号を出力するCCD
固体撮像デバイス1が適用されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. First, the configuration of an image pickup apparatus equipped with an exposure control apparatus according to the present invention will be described with reference to FIG. In this embodiment, as an image pickup element, a pixel group composed of a plurality of photodiodes and a charge transfer path provided along this pixel group via a transfer gate are provided, and charges accumulated in the pixel group by exposure. A CCD that outputs a video signal by scanning and reading a signal through a charge transfer path
The solid-state imaging device 1 is applied.

【0021】CCD固体撮像デバイス1の前方には、撮
像対象2の像をピクセル群に結像するための光学系3が
配置されている。タイミング制御回路4は、CCD固体
撮像デバイス1の露光開始時点を指定制御する露光開始
制御信号SBNと露光終了時点を指定制御する露光終了制
御信号SENと、撮像によってピクセル群に蓄積された電
荷信号をトランスファゲートを介して電荷転送路へ転送
させると共に電荷転送路に電荷転送動作を行わせること
により各ピクセルに対応する映像信号(ピクセル信号)
Piを点順次に走査読出しさせる走査読出制御信号SC
等を発生する。尚、詳細は後述するが、タイミング制御
回路4は、一連の撮像動作を集中制御するためのマイク
ロプロセッサ等の主制御回路4aと、制御信号SBN,S
ENと走査読出制御信号SC とを形成するタイミングジェ
ネレータ4bを具備している。
In front of the CCD solid-state image pickup device 1, an optical system 3 for forming an image of the image pickup target 2 on a pixel group is arranged. The timing control circuit 4 includes an exposure start control signal S BN for designating and controlling the exposure start time of the CCD solid-state imaging device 1, an exposure end control signal S EN for designating and controlling the exposure end time, and charges accumulated in the pixel group by imaging. A video signal (pixel signal) corresponding to each pixel by transferring a signal to a charge transfer path via a transfer gate and performing a charge transfer operation on the charge transfer path.
Scan read control signal S C for scanning and reading Pi in a dot-sequential manner
And so on. As will be described in detail later, the timing control circuit 4 includes a main control circuit 4a such as a microprocessor for centrally controlling a series of image pickup operations, and control signals S BN and S BN .
It is provided with a timing generator 4b which forms EN and a scan read control signal S C.

【0022】フォトダイオード等の光電変換素子5は、
測定対象2の明るさを検出するために光学系3に隣接し
て設けられている。そして、光電変換素子5がその光電
変換機能によって出力する検出信号SP は増幅回路5で
増幅され、更に、増幅回路5から出力される増幅後の検
出信号SP ’が比較回路6の非反転入力接点に供給さ
れ、比較回路6の反転入力接点には任意の基準電圧VR
を設定することができる可変電圧回路7が接続されてい
る。即ち、比較回路6は、検出信号SP ’の振幅が基準
電圧VR より大きな場合には論理“H”、検出信号
P ’の振幅が基準電圧VR より小さな場合には論理
“L”となる2値化信号SHLを発生し、この2値化信号
HLはタイミング制御回路4に供給される。
The photoelectric conversion element 5 such as a photodiode is
It is provided adjacent to the optical system 3 in order to detect the brightness of the measurement target 2. The detection signal S P output by the photoelectric conversion element 5 by its photoelectric conversion function is amplified by the amplification circuit 5, and the amplified detection signal S P ′ output from the amplification circuit 5 is non-inverted by the comparison circuit 6. It is supplied to the input contacts, any of the inverting input contact of the comparator circuit 6 the reference voltage V R
Is connected to a variable voltage circuit 7 that can be set. That is, the comparison circuit 6, the detection signal S P 'logic when the amplitude is greater than the reference voltage V R is "H", the detection signal S P' logic when the amplitude of is less than the reference voltage V R is "L" A binary signal S HL is generated, and this binary signal S HL is supplied to the timing control circuit 4.

【0023】尚、タイミング制御回路4は、2値化信号
HLが論理“L”から“H”に反転するのに同期して露
光開始を指示する露光開始制御信号SBNと、その時点か
ら予め決められた露光期間τ0 の経過時点で露光終了を
指示する露光終了制御信号SENと、その露光完了時点か
ら走査読出しを行わせる走査読出制御信号SC をCCD
固体撮像デバイス1に供給する処理を繰り返す。
The timing control circuit 4 outputs an exposure start control signal S BN for instructing the start of exposure in synchronization with the inversion of the binary signal S HL from logic "L" to "H", and from that time point. The exposure end control signal S EN for instructing the end of exposure at the time when a predetermined exposure period τ 0 has elapsed and the scan read control signal S C for performing the scan read from the time when the exposure is completed
The process of supplying the solid-state imaging device 1 is repeated.

【0024】次に、かかる構成の実施例の動作を図2に
基づいて説明する。尚、動作を明確化するための典型例
として、図1に示すように、測定対象2は、50Hzや
60Hzの商用電源によって動作する蛍光灯等の外部照
明装置Aによって照明され、又、このような照明下で外
部照明装置Aと測定対象2の間に何等かの移動物Bがα
方向等に移動することによって照明が遮られたり、又
は、他の外部照明(図示せず)が点灯することによって
測定対象2の照度が上昇する等の要素により、測定対象
2の光度が変動した場合を前提に説明するものとする。
Next, the operation of the embodiment having such a configuration will be described with reference to FIG. As a typical example for clarifying the operation, as shown in FIG. 1, the measurement target 2 is illuminated by an external lighting device A such as a fluorescent lamp operated by a commercial power supply of 50 Hz or 60 Hz, and Under some lighting, some moving object B may be between the external lighting device A and the measuring object 2
The light intensity of the measurement target 2 fluctuates due to factors such as the illumination being blocked by moving in the direction or the like, or the illuminance of the measurement target 2 being increased by lighting of another external light (not shown). The explanation will be made assuming the case.

【0025】したがって、商用電源が安定した状態で特
定の外部照明装置Aのみで照明が行われている場合に
は、50Hzや60Hzの商用電源の周期的電圧変化に
従って外部照明装置Aの照度が周期的に変化するので、
光電変換素子5から出力される検出信号SP は、図2
(a)に示すように、50Hzや60Hzで周期的に振
幅変化する。又、例えば、ある期間τ1 において商用電
源に電圧降下が発生して外部照明装置Aの照度が低下し
たような場合には、同図(a)に示すように、検出信号
P の最大振幅が小さくなる。又、ある期間τ2 におい
て他の外部照明装置が点灯して測定対象2への照度が上
昇した場合には、同図(b)に示すように、検出信号S
P の振幅が全体的に上昇し、又、ある期間τ3 において
移動物Bが外部照明装置Aを遮光するような場合には、
同図(b)に示すように、検出信号SP の振幅が全体的
に下降する。このような現象が時系列的に発生したよう
な場合には、増幅回路5を介して出力される検出信号S
P ’は、同図(c)に示すようになる。
Therefore, when the illumination is performed only by the specific external illumination device A in a state where the commercial power source is stable, the illuminance of the external illumination device A changes periodically according to the periodic voltage change of the commercial power source of 50 Hz or 60 Hz. Change,
The detection signal S P output from the photoelectric conversion element 5 is as shown in FIG.
As shown in (a), the amplitude periodically changes at 50 Hz or 60 Hz. Further, for example, in the case illuminance of the commercial power supply external illumination device voltage drop is generated at A is as drops in a period of time tau 1, as shown in FIG. 6 (a), the maximum amplitude of the detection signal S P Becomes smaller. Further, when another external lighting device is turned on in a certain period τ 2 and the illuminance on the measurement target 2 is increased, as shown in FIG.
When the amplitude of P increases as a whole and the moving object B shields the external lighting device A during a certain period τ 3 ,
As shown in FIG. 7B, the amplitude of the detection signal S P is entirely lowered. When such a phenomenon occurs in time series, the detection signal S output via the amplifier circuit 5 is output.
P'is as shown in FIG.

【0026】同図(c)に示すような検出信号SP ’が
比較回路6に入力されるものとすると、比較回路6は可
変電圧回路7に予め設定された基準電圧VR と検出信号
P’の振幅を比較し、SP ’≧VR のときは論理
“H”、SP ’<VR のときは論理“L”となる2値化
信号SHLを発生する。即ち、2値化信号SHLは同図
(d)に示すように、期間τ1 ,τ2 ,τ3 を除く期間
では検出信号SP ’の周期に同期して論理が反転する矩
形波となり、期間τ1 ,τ2 ,τ3 では、検出信号
P’の振幅の大きさに応じて継続的に論理“H”又は
論理“L”となる。
Assuming that the detection signal S P 'as shown in FIG. 7C is input to the comparison circuit 6, the comparison circuit 6 outputs the reference voltage V R and the detection signal S preset in the variable voltage circuit 7. The amplitudes of P ′ are compared, and a binary signal S HL that produces a logic “H” when S P ′ ≧ V R and a logic “L” when S P ′ <V R is generated. That is, the binarized signal S HL becomes a rectangular wave whose logic is inverted in synchronization with the cycle of the detection signal S P 'in the period excluding the periods τ 1 , τ 2 and τ 3 , as shown in FIG. , In the periods τ 1 , τ 2 , and τ 3 , the logic signal becomes “H” or “L” continuously according to the magnitude of the amplitude of the detection signal S P ′.

【0027】タイミング制御回路4は、このような2値
化信号SHLが供給されると、同図(d)の一部分を時間
的に拡大して示す同図(e)〜(i)のように、2値化
信号SHLが論理“H”に反転する時点に同期して短時間
論理“H”の露光開始信号SBNを発生することにより、
CCD固体撮像装置1に露光を開始させ、更に、その露
光開始時点から一定時間τ0 が経過する時点で短時間論
理“H”となる露光終了信号SENを発生することにより
CCD固体撮像装置1に露光を停止させる。尚、この期
間τ0 に限定して露光させるには周知の電子シャッター
技術等が適用されている。更に、同図(h)に示すよう
に、露光終了信号SENが論理“H”から“L”に反転す
る時点から走査読出信号SC を発生して電荷転送路を駆
動させることにより、同図(i)に示すように、CCD
固体撮像装置1からは、ピクセル配列に順じた(即ち、
点順次)映像信号Piが出力される。
When such a binarized signal S HL is supplied, the timing control circuit 4 shows a part of FIG. 6 (d) enlarged in time as shown in (e) to (i) of FIG. In addition, by generating the exposure start signal S BN of logic “H” for a short time in synchronization with the time when the binarized signal S HL is inverted to logic “H”,
The CCD solid-state image pickup device 1 is caused to start exposure, and further, an exposure end signal S EN which becomes a logic "H" for a short time is generated when a certain time τ 0 elapses from the exposure start time point. Stop the exposure. Note that well-known electronic shutter technology or the like is applied to perform exposure only during this period τ 0 . Further, as shown in FIG. 3H, the scanning read signal S C is generated from the time when the exposure end signal S EN is inverted from the logic “H” to “L” to drive the charge transfer path. As shown in Figure (i), CCD
From the solid-state imaging device 1, the pixel array is followed (that is,
A dot-sequential) video signal Pi is output.

【0028】ここで、期間τ1 ,τ2 ,τ3 のように、
測定対象2の明るさが定常状態よりも極端に変動した場
合には、2値化信号SHLの論理が“H”又は“L”とな
って変化しないので、このような期間(例えば、
τOFF )では露光開始信号SBNと露光終了信号SEN及び
走査読出信号SC が発生されず、よってCCD固体撮像
装置1は撮像動作を行わない。
Here, like the periods τ 1 , τ 2 , τ 3 ,
When the brightness of the measurement object 2 changes more drastically than in the steady state, the logic of the binarized signal S HL becomes “H” or “L” and does not change.
τ OFF ), the exposure start signal S BN , the exposure end signal S EN, and the scanning read signal S C are not generated, so that the CCD solid-state imaging device 1 does not perform the imaging operation.

【0029】このようにこの実施例によれば、蛍光灯等
の外部照明装置によって測定対象を照明するような場合
でも、その照度の変化に同期して露光を行うので、フリ
ッカが完全に抑制される。特に、照度が増加する期間に
露光を行うように制御するので、鮮明な画像を得ること
ができると共に、露光期間を短縮化することができる。
更に、露光期間τ0 は予め固定化されるものであるけれ
ども、任意に変更することができるものであるのでフリ
ッカ周期とは関係なく設定することができ、例えば高速
露光と高速撮像等を行うことができる。又、撮像素子と
してカラー撮像素子を用いた場合、夫々の色のピクセル
について個々独立に露光期間を設定することができるの
で、露光期間に基づいてホワイトバランスを調整するこ
とが可能となる。
As described above, according to this embodiment, even when an object to be measured is illuminated by an external illumination device such as a fluorescent lamp, the exposure is performed in synchronization with the change in the illuminance, so that flicker is completely suppressed. It In particular, since the exposure is controlled to be performed during the period when the illuminance increases, a clear image can be obtained and the exposure period can be shortened.
Further, although the exposure period τ 0 is fixed in advance, it can be arbitrarily changed and can be set independently of the flicker cycle. For example, high-speed exposure and high-speed imaging can be performed. You can Further, when a color image pickup device is used as the image pickup device, the exposure period can be independently set for the pixels of each color, so that the white balance can be adjusted based on the exposure period.

【0030】又、外部照明の照度が極端に変動したり遮
光状態となるような不規則な照度変化状態が生じてもそ
れに追従して露光を停止させるので、鮮明な画像撮像の
みを実現することが可能である。
Further, even if the illuminance of the external illumination fluctuates extremely or an irregular illuminance change state occurs such that the light is shielded, the exposure is stopped following the irregular illuminance change state, so that only clear image pickup can be realized. Is possible.

【0031】このような優れた効果が発揮される結果、
外部照明によって照明された原稿等を光学的読取るイメ
ージリーダーやファクシミリ等に適用すると優れた効果
を得ることができ、又、常に一定照度で発光する特殊な
照明装置等を必要としないで、通常の照明環境内での高
品質の画像読取りが可能となる。
As a result of exhibiting such an excellent effect,
When applied to an image reader, a facsimile, or the like that optically reads a document illuminated by external illumination, excellent effects can be obtained, and a special illumination device that constantly emits light with a constant illuminance is not required. It enables high-quality image reading in a lighting environment.

【0032】尚、この実施例では比較手段6の立ち上が
りパルスに同期した場合について説明したが、当然なが
ら立ち下がりパルスを利用してもよい。またCCD固体
撮像デバイスを適用する場合を説明したが、MOS型固
体撮像デバイスその他の周知の撮像素子にも用いること
ができる。
In this embodiment, the case of synchronizing with the rising pulse of the comparing means 6 has been described, but the falling pulse may be used as a matter of course. Further, although the case where the CCD solid-state image pickup device is applied has been described, it can also be used for a MOS type solid-state image pickup device and other known image pickup elements.

【0033】[0033]

【発明の効果】以上に説明したように本発明によれば、
露光制御装置は、撮像対象の明るさの変化を検出する光
電変換素子と、該光電変換素子の検出信号の振幅が予め
設定されたしきい値レベルより大きいときは第1の論理
レベル、該しきい値レベルより小さいときは第2の論理
レベルに2値化変換することにより2値化信号に変換す
る比較手段と、該比較手段の2値化信号が変化する時点
から予め決められた期間を露光期間とするタイミング制
御手段とを具備する構成としたので、次のような効果が
得られる。
As described above, according to the present invention,
The exposure control device includes a photoelectric conversion element that detects a change in brightness of an imaging target, and a first logic level when the amplitude of a detection signal of the photoelectric conversion element is larger than a preset threshold level. When it is smaller than the threshold value level, a comparison means for converting it into a binary signal by performing a binary conversion to a second logic level, and a predetermined period from the time when the binary signal of the comparison means changes. Since the constitution is provided with the timing control means for setting the exposure period, the following effects can be obtained.

【0034】即ち、照明装置と撮像対象との間に何等か
の物体が介在する等して撮像対象に影が入るような不規
則な照度変化があっても、その影の写り込みを撮像せず
常に最適な光度の想定対象を撮像することができる。
又、照明装置の照度が周期的に変化するような場合でも
その周期に同期して露光期間が設定されるのでフリッカ
を抑制することができる。更に、かかる露光期間は任意
に設定する事ができるので、高速露光等の広範囲の応用
が可能である。露光期間を照明装置の照度が高く成る期
間に同期させることにより露光期間を短縮化することが
できる。又、本発明の露光制御装置から制御信号が出力
されない場合には照明装置の照度変化が無い状態である
と検知することができるという副次的効果が得られるの
で、この状態に基づいて蓄積期間とそのタイミングを自
由に制御することができるという応用も可能である。カ
ラー撮像素子を用いて撮像を行う場合、赤(R),緑
(g),青(B)の夫々のピクセルの露光期間を個々独
立に制御することができるので、露光期間を可変制御す
ることによってホワイトバランスを調整することが可能
である。
That is, even if there is an irregular change in illuminance such that a shadow is cast on the imaging target due to some object intervening between the illumination device and the imaging target, the image of the shadow is captured. Instead, it is possible to always capture an image of an assumed object with the optimum light intensity.
Further, even when the illuminance of the illumination device changes periodically, the exposure period is set in synchronization with the cycle, so that flicker can be suppressed. Furthermore, since the exposure period can be set arbitrarily, a wide range of applications such as high-speed exposure are possible. The exposure period can be shortened by synchronizing the exposure period with the period in which the illuminance of the illumination device is high. Further, when the control signal is not output from the exposure control apparatus of the present invention, there is a side effect that it can be detected that there is no change in illuminance of the illumination apparatus. The application is also possible in which the timing can be freely controlled. When an image is captured using a color image sensor, the exposure period of each pixel of red (R), green (g), and blue (B) can be independently controlled. Therefore, the exposure period can be variably controlled. It is possible to adjust the white balance by.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による一実施例の構成を示す構成説明図
である。
FIG. 1 is a configuration explanatory diagram showing a configuration of an embodiment according to the present invention.

【図2】一実施例の動作を説明するためのタイミングチ
ャートである。
FIG. 2 is a timing chart for explaining the operation of the embodiment.

【符号の説明】[Explanation of symbols]

A…外部照明装置、B…移動物体、1…CCD固体撮像
デバイス、2…撮像対象、3…光学系、4…タイミング
制御回路、4a…主制御回路、4b…タイミングジェネ
レータ、5…増幅回路、6…比較回路、7…可変電源回
路。
A ... External lighting device, B ... Moving object, 1 ... CCD solid-state imaging device, 2 ... Imaging target, 3 ... Optical system, 4 ... Timing control circuit, 4a ... Main control circuit, 4b ... Timing generator, 5 ... Amplification circuit, 6 ... Comparison circuit, 7 ... Variable power supply circuit.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 撮像対象の明るさの変化を検出する光電
変換素子と、 該光電変換素子の検出信号の振幅が予め設定されたしき
い値レベルより大きいときは第1の論理レベル、該しき
い値レベルより小さいときは第2の論理レベルに2値化
変換することにより2値化信号に変換する比較手段と、 該比較手段の2値化信号が変化する時点から予め決めら
れた期間を露光期間とするタイミング制御手段と、 を具備することを特徴とする露光制御装置。
1. A photoelectric conversion element for detecting a change in brightness of an image pickup target, and a first logic level when the amplitude of a detection signal of the photoelectric conversion element is larger than a preset threshold level. When it is smaller than the threshold level, comparison means for converting it into a binarized signal by binarizing it to a second logic level, and a predetermined period from the time when the binarized signal of the comparison means changes An exposure control apparatus comprising: a timing control unit for setting an exposure period.
【請求項2】 撮像対象を撮像する撮像素子と、 該撮像対象の明るさの変化を検出する光電変換素子と、 該光電変換素子の検出信号の振幅が予め設定されたしき
い値レベルより大きいときは第1の論理レベル、該しき
い値レベルより小さいときは第2の論理レベルに2値化
変換することにより2値化信号に変換する比較手段と、 該比較手段の2値化信号が変化する時点から予め決めら
れた期間を、上記撮像素子の露光期間とするタイミング
制御手段と、 を具備することを特徴とする撮像装置。
2. An image pickup device for picking up an image pickup target, a photoelectric conversion device for detecting a change in brightness of the image pickup target, and an amplitude of a detection signal of the photoelectric conversion device is larger than a preset threshold level. The comparison means converts the signal into a binarized signal by binarizing and converting it to a first logic level when it is lower than the threshold level and a second logic level when it is lower than the threshold level. An image pickup apparatus, comprising: a timing control unit that sets a predetermined period from a change time point as an exposure period of the image pickup device.
【請求項3】 前記撮像素子は、固体撮像デバイスであ
ることを特徴とする請求項2の撮像装置。
3. The image pickup apparatus according to claim 2, wherein the image pickup element is a solid-state image pickup device.
JP03038393A 1993-02-19 1993-02-19 Exposure control device and imaging device using the same Expired - Lifetime JP3524117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03038393A JP3524117B2 (en) 1993-02-19 1993-02-19 Exposure control device and imaging device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03038393A JP3524117B2 (en) 1993-02-19 1993-02-19 Exposure control device and imaging device using the same

Publications (2)

Publication Number Publication Date
JPH06245140A true JPH06245140A (en) 1994-09-02
JP3524117B2 JP3524117B2 (en) 2004-05-10

Family

ID=12302374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03038393A Expired - Lifetime JP3524117B2 (en) 1993-02-19 1993-02-19 Exposure control device and imaging device using the same

Country Status (1)

Country Link
JP (1) JP3524117B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012226003A (en) * 2011-04-15 2012-11-15 Nikon Corp Imaging apparatus
US20140240439A1 (en) * 2013-02-28 2014-08-28 Kyocera Document Solutions Inc. Laser light control device and image forming apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012226003A (en) * 2011-04-15 2012-11-15 Nikon Corp Imaging apparatus
US20140240439A1 (en) * 2013-02-28 2014-08-28 Kyocera Document Solutions Inc. Laser light control device and image forming apparatus
US9207560B2 (en) * 2013-02-28 2015-12-08 Kyocera Document Solutions Inc. Laser light control device and image forming apparatus

Also Published As

Publication number Publication date
JP3524117B2 (en) 2004-05-10

Similar Documents

Publication Publication Date Title
US7106368B2 (en) Method of reducing flicker noises of X-Y address type solid-state image pickup device
JP4948090B2 (en) Imaging apparatus and drive control method
JP7297850B2 (en) LED flicker mitigation for video
US7202897B2 (en) Solid-state image pickup exposure control system and method
JP3788483B2 (en) Imaging apparatus and imaging method
US5247169A (en) Method of and an apparatus for picking up an image of the surface of an object to be inspected
JP2010118721A (en) Image reader
JP3524117B2 (en) Exposure control device and imaging device using the same
US6275307B1 (en) Image read apparatus
US4687919A (en) A lighting control device in manuscript reproduction equipment
JP4192111B2 (en) Image input device
KR100248226B1 (en) Method and apparatus of brightness control for image scanner
JP3124124B2 (en) Image information reader
KR910007703B1 (en) Measuring method for blooming for a solid photographing element and the apparatus of the same
JPS62209979A (en) Automatic light quantity controller for tv camera
JPS60236569A (en) Picture reading correction method
KR100890153B1 (en) Removal method of flicker noise and CMOS image sensor with same method
JPH05316430A (en) Image pickup device and imaging device
KR960014832B1 (en) Fliker compensating device of a video camera
JPH01241280A (en) Solid-state image pickup device
CN117751572A (en) Image acquisition system and image acquisition method
JP2000184291A (en) Controller for solid-state electronic image pickup element and controlling method
JPH0220979A (en) Video signal processing circuit
KR100401172B1 (en) Intensity of Illumination Dynamic Range Photographing Device for CCD
JPH06261255A (en) Video camera

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040212

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

EXPY Cancellation because of completion of term
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371