JPH06222197A - Container for fabricating vitrified radioactive waste - Google Patents

Container for fabricating vitrified radioactive waste

Info

Publication number
JPH06222197A
JPH06222197A JP5009969A JP996993A JPH06222197A JP H06222197 A JPH06222197 A JP H06222197A JP 5009969 A JP5009969 A JP 5009969A JP 996993 A JP996993 A JP 996993A JP H06222197 A JPH06222197 A JP H06222197A
Authority
JP
Japan
Prior art keywords
container
vitrified
radioactive waste
vitrified body
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5009969A
Other languages
Japanese (ja)
Other versions
JP2846540B2 (en
Inventor
Yuzuru Yanagisawa
譲 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Engineering Corp
Original Assignee
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Engineering Corp filed Critical Toyo Engineering Corp
Priority to JP5009969A priority Critical patent/JP2846540B2/en
Publication of JPH06222197A publication Critical patent/JPH06222197A/en
Application granted granted Critical
Publication of JP2846540B2 publication Critical patent/JP2846540B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To readily take out materials that are vitrified inside a container composed partially of ceramics represented by a specific formula by lining the inside of the container. CONSTITUTION:A ceramic, represented by the formula (M is more than one element selected from Nb, Zr, Ni and the like, (a) and (b) are each an integer or a decimal and 0<=a/b<=1, and (c) and (d) ((x) and (y)) are each an integer value determined by the valency of M(W)), is preferably formed either by powder metallurgy or by forming a metal coating over the surface of a container made of cast iron or stainless steel, then converting the coating into ceramics, and using it as a ceramics coating for lining 4. A container main body 2 has an inlet portion equal to or greater than the other portions in width and is preferably cylindrical or rectangular. The relation between the bottom surface and height of the container is preferably such that the ratio of a value converted into the diameter at a circle to the height is 0.25 to 5. To take vitrified materials 1 out of the fabricating container 2, the vitrified materials are preferably heated to or below 200 deg.C and transferred into a storage container.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、放射性廃棄物の処理方
法に関する。特に、放射性廃棄物のガラス固化体を作製
するための容器(以下、ガラス固化体作製用容器と記
す。)に関する。
TECHNICAL FIELD The present invention relates to a method for treating radioactive waste. In particular, the present invention relates to a container for producing a vitrified body of radioactive waste (hereinafter referred to as a vitrified body producing container).

【0002】[0002]

【従来の技術】原子力発電所等から排出される高レベル
放射性廃棄物中に含まれる所謂超ウラン元素類は、ウラ
ンおよびプルトニウムを回収後、ガラス溶融体として容
器内へ注入され、該容器内でガラス固化され、容器ごと
放射性レベルが減衰するまで貯蔵保管される。そのた
め、放射性廃棄物を注入する容器は図1に示すように、
固化した後のガラス固化体を取り出すことを考慮されて
いない形状であった。
2. Description of the Related Art So-called transuranic elements contained in high-level radioactive waste discharged from nuclear power plants and the like are injected into a container as a glass melt after recovering uranium and plutonium, and in the container. It is vitrified and stored together with the container until the radioactivity level decays. Therefore, the container for injecting radioactive waste is
The shape was not considered to take out the vitrified body after solidification.

【0003】更に、長期保存の観点から該容器は、ステ
ンレススチールが主な材料として使用されている。この
ようなステンレス容器に、高温のガラス溶融体を注入
し、そのまま冷却固化させると、容器の内壁にガラス固
化体が強固に固着し、上記の容器形状とも相まって、ガ
ラス固化体を容器の外部へ取り出すことは殆ど不可能で
あった。
Further, from the viewpoint of long-term storage, stainless steel is mainly used for the container. When a high-temperature glass melt is poured into such a stainless steel container and cooled and solidified as it is, the vitrified body firmly adheres to the inner wall of the container, and in combination with the above-mentioned container shape, the vitrified body is exposed to the outside of the container. It was almost impossible to remove.

【0004】[0004]

【発明が解決しようとする課題】従って、上記従来技術
には、下記のような解決すべき問題がある。
Therefore, the above-mentioned prior art has the following problems to be solved.

【0005】(1)超ウラン元素類の半減期は概ね10
0万年のオーダーであり、100万年以上の使用に耐え
る保管容器を開発することは現時点では殆ど不可能であ
る。
(1) The half-life of transuranium elements is about 10
It is on the order of 0,000 years, and it is almost impossible at present to develop a storage container that can be used for more than 1 million years.

【0006】(2)長期保管中に、容器の腐食もしくは
破損等の欠陥が生じた場合、欠陥を生じた容器からガラ
ス固化体を取り出し、他の容器へ移し替えることは殆ど
不可能である。そのため、欠陥を生じた容器ごと新たな
容器へ移す方法等により処理することになり、より大が
かりな廃棄物処理設備が必要となる。
(2) When a defect such as corrosion or breakage of the container occurs during long-term storage, it is almost impossible to take out the vitrified body from the defective container and transfer it to another container. Therefore, the defective container is to be treated by a method such as transferring it to a new container, which requires a larger-scale waste treatment facility.

【0007】上記の問題点に鑑みて、容器の中で固化し
たガラス固化体を取り出し、他の容器へ移し替えること
の可能なガラス固化体作製用容器が待たれている。本発
明は、そのようなガラス固化体作製用容器を提供するこ
とを目的とするものである。
In view of the above problems, there is awaited a container for producing a vitrified body, which can take out the vitrified solidified in the container and transfer it to another container. An object of the present invention is to provide such a vitrified body producing container.

【0008】[0008]

【課題を解決するための手段】本発明者は、タングステ
ンワイヤーが灼熱されたガラスに接した際、ガラスに付
着しにくいこと、また、ガラスの温度が室温付近に下が
った場合でも容易にガラスから外れることに着目し鋭意
検討の結果、本発明に至った。
Means for Solving the Problems The present inventor has found that when a tungsten wire comes into contact with a glass which has been burned, it is difficult to adhere to the glass, and even when the temperature of the glass drops to around room temperature, the glass is easily removed from the glass. As a result of intensive studies focusing on the fact that it is off, the present invention has been achieved.

【0009】即ち、本発明は、一般式(1)That is, the present invention has the general formula (1)

【0010】[0010]

【化2】aMcd ・bWxy 一般式(1) [上式中、Wはタングステン元素を示し、Oは酸素元素
を示し、MはNb、Zr、Ni、Co、Cu、Mn、M
gからなる群より選ばれる1の元素、または2以上の元
素の組み合わせを示し、aおよびbは整数または小数
で、a/bは0以上1以下の範囲にあり、cおよびdは
主としてMのイオン価数によって定まる整数値であり、
xおよびyは主としてWのイオン価数によって定まる整
数値である。]で示されるセラミックスを構成要素とす
る放射性廃棄物ガラス固化体作製用容器である。
Embedded image aM c O d · bW x O y General formula (1) [In the above formula, W represents a tungsten element, O represents an oxygen element, and M represents Nb, Zr, Ni, Co, Cu, Mn. , M
1 is an element selected from the group consisting of g or a combination of 2 or more elements, a and b are integers or decimals, a / b is in the range of 0 or more and 1 or less, and c and d are mainly M It is an integer value determined by the ionic valence,
x and y are integer values mainly determined by the ionic valence number of W. ] It is a container for producing a radioactive waste vitrified body having the ceramics shown as a constituent element.

【0011】また、本発明は、前記一般式(1)で示さ
れるセラミックスが容器内側にライニングされてなる放
射性廃棄物ガラス固化体作製用容器を含むものである。
Further, the present invention includes a container for producing a radioactive waste vitrified body in which the ceramics represented by the general formula (1) is lined inside the container.

【0012】[0012]

【作用】以下、本発明を詳細に説明する。The present invention will be described in detail below.

【0013】本発明のガラス固化体作製用容器を構成す
るセラミックスは上記一般式(1)で示されるものであ
るが、上記一般式(1)においてa/bは特に0以上
0.5以下、更には0以上0.3以下であることがより
好ましい。
The ceramic constituting the container for producing a vitrified material of the present invention is represented by the above general formula (1). In the above general formula (1), a / b is particularly 0 or more and 0.5 or less, Further, it is more preferably 0 or more and 0.3 or less.

【0014】一般式(1)で示されるセラミックスは粉
末冶金により成形するか、または鋳鉄、ステンレス容器
の内面に鍍金、蒸着等の従来技術で金属皮膜を形成させ
た後、酸化、セラミックス化させてセラミックス皮膜と
してライニングすることが好ましい。ライニングされる
セラミックス皮膜の厚みは10μm以上であることが好
ましい。10μm未満ではセラミックス皮膜にピンホー
ルが発生する場合があるためである。
The ceramic represented by the general formula (1) is formed by powder metallurgy, or after a metal film is formed on the inner surface of a cast iron or stainless steel container by a conventional technique such as plating or vapor deposition, it is oxidized or made into a ceramic. It is preferable to line the ceramic film. The thickness of the ceramic coating to be lined is preferably 10 μm or more. This is because if the thickness is less than 10 μm, pinholes may occur in the ceramic film.

【0015】容器形状は、ガラス固化体の取り出し易さ
を考慮して、入口部が他の部分と同じもしくはそれ以上
の広さを持つことが好ましい。ガラス固化体の取扱い、
保管の点から円柱状、長方体、円錐型、角錘型等が好ま
しく、特に円柱状、長方体が好ましい。また、底面と高
さとの関係は、作業性を考慮すると、円の直径に喚算し
た値と高さとの比が0.25以上、5以下であることが
好ましい。容器の肉厚は、その大きさにより異なるが、
容器強度等の観点から2mm以上であることが好まし
い。本発明容器の1態様を図2に示す。図2は、円柱状
の容器の内側がライニングされたガラス固化体作製用容
器を示している。
The shape of the container is preferably such that the inlet has a width equal to or larger than that of the other portions in consideration of the ease of taking out the vitrified body. Handling of vitrified materials,
From the viewpoint of storage, a columnar shape, a rectangular shape, a conical shape, a pyramidal shape or the like is preferable, and a cylindrical shape or a rectangular shape is particularly preferable. Further, regarding the relationship between the bottom surface and the height, in consideration of workability, it is preferable that the ratio between the value calculated as the diameter of the circle and the height is 0.25 or more and 5 or less. The thickness of the container depends on its size,
From the viewpoint of container strength and the like, it is preferably 2 mm or more. One embodiment of the container of the present invention is shown in FIG. FIG. 2 shows a vitrified body producing container in which the inside of a cylindrical container is lined.

【0016】ガラス固化体作製用容器はガラス溶融体を
注入する前に、予熱しておくことが好ましい。ガラス固
化体に用いられるガラスは珪ほう酸ガラスである場合が
多く、その融点は珪酸の含有率によって異なるが、約1
000℃前後の高温であるため、できるだけ温度差を生
じないように、予熱温度は500℃以上、好ましくは5
00℃以上1000℃以下とすることが好ましい。
The glass-solidified body producing container is preferably preheated before injecting the glass melt. The glass used in the vitrified body is often silicoborate glass, and its melting point varies depending on the content of silicic acid, but is about 1
Since it is a high temperature of around 000 ° C, the preheating temperature is 500 ° C or higher, preferably 5 ° C or less, so as not to cause a temperature difference as much as possible.
It is preferable that the temperature is from 00 ° C to 1000 ° C.

【0017】ガラス固化体作製用容器にガラス溶融体を
注入するときの、容器と溶融体との温度差は、500℃
未満であることが好ましい。温度差が500℃以上の場
合は、ガラス溶融体を一度に容器に流し込まず、2回以
上に分けて流し込むことが好ましい。
When the glass melt is poured into the container for producing a vitrified body, the temperature difference between the container and the melt is 500 ° C.
It is preferably less than. When the temperature difference is 500 ° C. or more, it is preferable that the glass melt is not poured into the container at one time but divided into two or more times.

【0018】ガラス固化体作製用容器に注入された溶融
物は、自然空冷、強制空冷等により冷却され、ガラス固
化体となる。冷却手段は特に制限されるものではない。
The molten material poured into the vitrified body producing container is cooled by natural air cooling, forced air cooling or the like to become a vitrified material. The cooling means is not particularly limited.

【0019】ガラス固化体を作製容器から取り出す温度
は、ガラス固化体の温度が400℃未満であれば、取り
出し可能である。他の保管用容器へ移す場合の操作性、
移し替えた保管用容器の内壁へのガラス固化体の付着防
止の観点から、ガラス固化体を200℃以下に降温して
から取り出すことがより好ましい。
As for the temperature at which the vitrified body is taken out from the production container, the vitrified body can be taken out if the temperature of the vitrified body is less than 400.degree. Operability when transferring to another storage container,
From the viewpoint of preventing the vitrified body from adhering to the inner wall of the transferred storage container, it is more preferable to lower the temperature of the vitrified body to 200 ° C. or lower and then take it out.

【0020】ガラス固化体作製用容器から取り出したガ
ラス固化体を保管するための保管容器は、従来のステン
レス、鋳鉄等により固化体作製用容器と同一の形状に形
成すればよい。但し、操作性の観点から、得られるガラ
ス固化体の外形の寸法より1mm以上の余裕をもって製
作することが好ましい。
The storage container for storing the vitrified body taken out from the vitrified body producing container may be formed of conventional stainless steel, cast iron or the like in the same shape as the vitrified body producing container. However, from the viewpoint of operability, it is preferable to manufacture with a margin of 1 mm or more from the outer dimension of the obtained vitrified body.

【0021】[0021]

【実施例】以下、実施例により本発明を更に具体的に説
明する。
The present invention will be described in more detail with reference to the following examples.

【0022】実施例1 化学式WO3 で示される粉末材料を用いて粉末冶金法に
て肉厚3mm、1辺100mm、高さ100mmの正立
方体の上部が開放されたガラス固化体作製用容器1を用
意した。一方、ステンレスにて肉厚3mm、1辺102
mm、高さ102mmの蓋付き正立方体容器を用意し保
管用容器2とした。
Example 1 Using a powder material represented by the chemical formula WO 3 , a container 1 for producing a vitrified body having a thickness of 3 mm, a side of 100 mm, and a height of 100 mm was formed by a powder metallurgical method and the upper part of the cube was opened. I prepared. On the other hand, with stainless steel, the thickness is 3 mm and the side is 102
A cubic container with a lid having a size of mm and a height of 102 mm was prepared and used as a storage container 2.

【0023】放射性廃棄物を含む約1000℃のガラス
溶融体を500℃に保温されているガラス固化体作製用
容器1に流し込み、1昼夜放置して自然空冷した。空冷
後のガラス固化体の温度は200℃であった。これを保
管用容器2に移した際の作業性を表1に示した。
A glass melt containing radioactive waste at about 1000 ° C. was poured into a glass-solidified body producing container 1 which was kept at 500 ° C., and left to stand overnight for air cooling. The temperature of the vitrified body after air cooling was 200 ° C. Table 1 shows the workability when this was transferred to the storage container 2.

【0024】実施例2 肉厚3mm、直径100mm、高さ150mmの円柱の
上部が開放された鋳鉄円柱容器の内部を、Nb、Wを1
/10の比で鍍金し、鍍金皮膜を酸化して化学式0.1
Nb25 ・WO3 で示される材料とし100μmの厚
さにライニングしガラス固化体作製用容器3を製作し
た。一方、ステンレスにて肉厚3mm、直径102m
m、高さ150mmの蓋付き円柱容器を保管用容器4と
して製作した。
Example 2 The inside of a cast iron cylindrical container in which the upper part of a cylinder having a wall thickness of 3 mm, a diameter of 100 mm and a height of 150 mm was opened was set to 1 for Nb and W.
The chemical formula is 0.1 by plating at a ratio of / 10 and oxidizing the plating film.
A container 3 for producing a vitrified body was produced by lining a material of Nb 2 O 5 · WO 3 to a thickness of 100 μm. On the other hand, stainless steel wall thickness 3mm, diameter 102m
A cylindrical container with a lid having a height of m and a height of 150 mm was manufactured as the storage container 4.

【0025】放射性廃棄物を含む約1000℃のガラス
溶融体を500℃に保温されているガラス固化体作製用
容器3に流し込み、一昼夜放置して自然空冷した。空冷
後のガラス固化体の温度は200℃であった。これを保
管用容器4に移した際の作業性を表1に示した。
A glass melt at about 1000 ° C. containing radioactive waste was poured into a glass-solidified body producing container 3 kept at 500 ° C., and left to stand overnight for air cooling. The temperature of the vitrified body after air cooling was 200 ° C. Table 1 shows the workability when this was transferred to the storage container 4.

【0026】実施例3 実施例2のNbを、Zr、Ni、Co、Fe、Cu、M
n、Mgに各々替えた以外は、それぞれ実施例2と同様
の作業を行った。結果を表1に示した。
Example 3 Nb of Example 2 was mixed with Zr, Ni, Co, Fe, Cu and M.
The same operation as in Example 2 was performed except that n and Mg were respectively changed. The results are shown in Table 1.

【0027】比較例 実施例1で用いた容器1の材料をステンレスに替えて実
施例1と同様の作業を行ったときの作業性を表1に示し
た。
Comparative Example Table 1 shows the workability when the same work as in Example 1 was performed by replacing the material of the container 1 used in Example 1 with stainless steel.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【発明の効果】ガラスと親和性の無いタングステンを主
成分とする材料で、入口部を底部と同等もしくは広く構
成した容器をガラス固化体作製用容器として使用するこ
とにより該容器内で形成されたガラス固化体が該容器内
壁に固着せず、他の保管用容器に容易に移し替えが可能
となるため、本発明により次の利点が得られる。
EFFECTS OF THE INVENTION A container containing tungsten as a main component, which has no affinity for glass, and having an inlet portion equal to or wider than the bottom portion is used as a vitrified body producing container. Since the vitrified body does not stick to the inner wall of the container and can be easily transferred to another storage container, the present invention provides the following advantages.

【0030】(1)ガラス固化体の保管用容器が腐食、
破損した場合、いつでも取り替えが可能なため、保管用
容器からガラス固化体が散逸しないよう管理することが
容易になる。
(1) Corrosion of the vitrified storage container,
If it breaks, it can be replaced at any time, and it is easy to manage the vitrified material so that it will not escape from the storage container.

【0031】(2)大がかりな廃棄物処理設備を必要と
しない。
(2) No large-scale waste treatment facility is required.

【0032】(3)100万年のオーダーという途方も
ない年月に耐える保管用容器を開発せずとも、安全に放
射性廃棄物を処理できる。
(3) It is possible to safely dispose of radioactive waste without developing a storage container capable of withstanding the tremendous years of the order of one million years.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の放射性廃棄物ガラス固化体容器のイメー
ジ図である。
FIG. 1 is an image diagram of a conventional radioactive waste vitrified body container.

【図2】ライニングされた放射性廃棄物ガラス固化体容
器の1態様を示すイメージ図である。
FIG. 2 is an image view showing one embodiment of a lined radioactive waste vitrification container.

【符号の説明】[Explanation of symbols]

1 ガラス固化体 2 容器本体 3 フタ 4 ライニング材 1 Vitrified 2 Container body 3 Lid 4 Lining material

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一般式(1) 【化1】aMcd ・bWxy 一般式(1) [上式中、Wはタングステン元素を示し、Oは酸素元素
を示し、MはNb、Zr、Ni、Co、Cu、Mn、M
gからなる群より選ばれる1の元素、または2以上の元
素の組み合わせを示し、aおよびbは整数または小数
で、a/bは0以上1以下の範囲にあり、cおよびdは
主としてMのイオン価数によって定まる整数値であり、
xおよびyは主としてWのイオン価数によって定まる整
数値である。]で示されるセラミックスを構成要素とす
る放射性廃棄物ガラス固化体作製用容器。
1. A general formula (1): aM c O d .bW x O y General formula (1) [wherein W represents a tungsten element, O represents an oxygen element, and M represents Nb. , Zr, Ni, Co, Cu, Mn, M
1 is an element selected from the group consisting of g or a combination of 2 or more elements, a and b are integers or decimals, a / b is in the range of 0 or more and 1 or less, and c and d are mainly M It is an integer value determined by the ionic valence,
x and y are integer values mainly determined by the ionic valence number of W. ] A container for producing a radioactive waste vitrified body having the ceramics shown as a constituent element.
【請求項2】 前記一般式(1)で示されるセラミック
スが容器内側にライニングされてなる請求項1に記載の
放射性廃棄物ガラス固化体作製用容器。
2. The container for producing a radioactive waste vitrified body according to claim 1, wherein the ceramic represented by the general formula (1) is lined inside the container.
JP5009969A 1993-01-25 1993-01-25 Container for producing vitrified radioactive waste Expired - Lifetime JP2846540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5009969A JP2846540B2 (en) 1993-01-25 1993-01-25 Container for producing vitrified radioactive waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5009969A JP2846540B2 (en) 1993-01-25 1993-01-25 Container for producing vitrified radioactive waste

Publications (2)

Publication Number Publication Date
JPH06222197A true JPH06222197A (en) 1994-08-12
JP2846540B2 JP2846540B2 (en) 1999-01-13

Family

ID=11734756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5009969A Expired - Lifetime JP2846540B2 (en) 1993-01-25 1993-01-25 Container for producing vitrified radioactive waste

Country Status (1)

Country Link
JP (1) JP2846540B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100826966B1 (en) * 2006-11-01 2008-05-02 재단법인 포항산업과학연구원 Method for producing disposal canister of radioactive waste
JP2010098271A (en) * 2008-10-20 2010-04-30 Yutaka Watanabe Photovoltaic cell using radiation of nuclear waste
JP2011046996A (en) * 2009-08-26 2011-03-10 Mitsubishi Materials Corp MEMBER MADE OF Co-BASED ALLOY FOR ELECTRIC MELTING FURNACE FOR SUBJECTING HIGH LEVEL RADIOACTIVE WASTE GLASS TO SOLIDIFICATION TREATMENT, AND ELECTRIC MELTING FURNACE THEREFOR

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100826966B1 (en) * 2006-11-01 2008-05-02 재단법인 포항산업과학연구원 Method for producing disposal canister of radioactive waste
JP2010098271A (en) * 2008-10-20 2010-04-30 Yutaka Watanabe Photovoltaic cell using radiation of nuclear waste
JP2011046996A (en) * 2009-08-26 2011-03-10 Mitsubishi Materials Corp MEMBER MADE OF Co-BASED ALLOY FOR ELECTRIC MELTING FURNACE FOR SUBJECTING HIGH LEVEL RADIOACTIVE WASTE GLASS TO SOLIDIFICATION TREATMENT, AND ELECTRIC MELTING FURNACE THEREFOR

Also Published As

Publication number Publication date
JP2846540B2 (en) 1999-01-13

Similar Documents

Publication Publication Date Title
US5461185A (en) Radioactive waste material disposal
JPH03264898A (en) Treatment of high level radioactive wastes
JPH06222197A (en) Container for fabricating vitrified radioactive waste
Mendel High-level waste glass
KR100832233B1 (en) Preparation method of metal ingot from metal powders or metal dendrites by using li metal
US3485594A (en) Molten iron method of recovering nuclear material from composite bodies
JP2001027694A (en) Solidified body of radioactive condensed waste substance and manufacture of the same
US20020004017A1 (en) Melting crucible
JPH04366800A (en) Method for disposing of highly radioactive waste through capacity-reducing vitrification
JPS5944574A (en) Induction crucible furnace
RU2145126C1 (en) Ingot of radioactive metal wastes and its production process
JPH0915386A (en) Producing method for radioactive materials container vessel
JP3563546B2 (en) Treatment of radioactive stainless steel
Feng et al. Vitreous ceramic waste form for waste immobilization
JPS6022699A (en) Method of solidifying and treating radioactive waste
US5033533A (en) Method for producing a container for contaminated metal waste, and a container produced by this method
Ivanov et al. Melting and casting of beryllium
US3205068A (en) Process for the purification of uranium and particularly irradiated uranium
JPH0420159B2 (en)
JPH0375589A (en) Conversion method of actinoid compound into metallic fuel
Imrich Degradation of a N06690 borescope in a radioactive waste/glass melter system
JPS60106000A (en) Method of melting and decontaminating metal aluminum
JPH03235100A (en) Volume reduction method for sheared segment of cladding tube of spent nuclear fuel
JP2003294890A (en) Method for processing radioactive substance
JPH1164587A (en) Fine metallic waste decontamination method and device therefor