JPH0621308B2 - Non-heat treatment type rapidly solidified aluminum alloy for mold materials - Google Patents

Non-heat treatment type rapidly solidified aluminum alloy for mold materials

Info

Publication number
JPH0621308B2
JPH0621308B2 JP2190408A JP19040890A JPH0621308B2 JP H0621308 B2 JPH0621308 B2 JP H0621308B2 JP 2190408 A JP2190408 A JP 2190408A JP 19040890 A JP19040890 A JP 19040890A JP H0621308 B2 JPH0621308 B2 JP H0621308B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
heat treatment
rapidly solidified
treatment type
solidified aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2190408A
Other languages
Japanese (ja)
Other versions
JPH0480343A (en
Inventor
秀男 佐野
喜正 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2190408A priority Critical patent/JPH0621308B2/en
Publication of JPH0480343A publication Critical patent/JPH0480343A/en
Publication of JPH0621308B2 publication Critical patent/JPH0621308B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、硬さ及び強度の高い金型材料用非熱処理型急
冷凝固アルミニウム合金に関するものである。
TECHNICAL FIELD The present invention relates to a non-heat treatment type rapidly solidified aluminum alloy for a die material having high hardness and strength.

[従来の技術] 最近、金型用の材料としては軽量、耐食性、快削性に優
れ、更に硬さ、強度の高いことから、アルミニウム展伸
合金7075−T651が採用されている。金型材料には厚さ50
mm以上の材料を採用することが多く、T651処理の焼入時
に材料の表面と内部において冷却速度差が生じるため、
内部は表面よりも軟らかく強度が低くなっていた。
[Prior Art] Recently, an aluminum wrought alloy 7075-T651 has been adopted as a material for a mold because of its light weight, corrosion resistance, free-cutting property, hardness and high strength. Thickness 50 for mold material
In many cases, materials with a size of mm or more are used, and there is a difference in cooling rate between the surface and the inside of the material during quenching during T651 treatment.
The inside was softer and weaker than the surface.

更に冷却速度差により残留応力が発生し、これは切削加
工時において解放され、材料を変形させていた。そし
て、厚肉、大型の金型材料ほど、焼入時の表面と内部の
冷却速度差が大きいため、切削加工による変形は大きく
なり、延性の低い材料において割れも発生した。したが
って、溶体化の温度を低くしたり、温水焼入して、表面
と内部の冷却速度差を小さくしたが、全体に冷却速度は
低くなるため、表1に示すように強度や硬さを犠牲にし
ていた。
Further, residual stress was generated due to the difference in cooling rate, which was released during the cutting work and deformed the material. The thicker and larger the die material, the larger the cooling rate difference between the surface and the interior during quenching, so the deformation due to the cutting process became large, and cracks occurred in the material with low ductility. Therefore, although the solutionizing temperature was lowered or the water was quenched, the cooling rate difference between the surface and the inside was reduced, but the cooling rate was low overall, so as shown in Table 1, strength and hardness were sacrificed. I was doing.

[発明が解決しようとする課題] 本発明は非熱処理状態で金型に使用できる材料について
種々検討していたところ、先にコンロッド等のエンジン
部品の軽量化を目的として開発したアルミニウム合金
(特開平1−108338号公報参照)に着目した。この合金
はT6処理後も引張強度、疲労強度及び切欠疲労強度が
優れているが、その後の特性調査によれば、この合金は
非熱処理状態においても、硬さ、引張強さ、耐熱性及び
耐摩耗性が7075−T651材よりも優れているため、金型材
料に適していることが判った。特に厚肉、大型の金型や
高温、高圧力下で使用する場合に適する。又、縦弾性係
数が高く、線膨張係数が低く、この点でも金型材料に適
している。更に延性も高いことにより、応力集中しやす
い形状に成形しても割れが発生しない。
[Problems to be Solved by the Invention] In the present invention, various investigations have been made on materials that can be used for a mold in a non-heat-treated state. Attention was paid to (1) to 108338). This alloy is excellent in tensile strength, fatigue strength and notch fatigue strength even after T6 treatment. However, according to subsequent property investigation, this alloy shows that hardness, tensile strength, heat resistance and resistance to heat resistance are high even in the non-heat treatment state. It was found that it is suitable as a mold material because it has better wear resistance than the 7075-T651 material. It is especially suitable for thick and large molds and when used under high temperature and high pressure. Further, it has a high modulus of longitudinal elasticity and a low coefficient of linear expansion, and in this respect, it is also suitable as a mold material. Further, since the ductility is high, cracks do not occur even when formed into a shape in which stress is easily concentrated.

本発明は、かかる知見に基づいて、硬さ及び強度の高い
金型材料用非熱処理型急冷凝固アルミニウム合金を提供
せんとするものである。
The present invention provides a non-heat treatment type rapidly solidified aluminum alloy for a die material having high hardness and strength based on the above findings.

[課題を解決するための手段] 本発明は重量基準で、Fe:6〜10%、Si:2.6〜
10%、Cu:1〜6%、Mg:0.3〜3%及びV:
0.5〜5%、Mo:0.5〜5%、Zr:0.4〜4
%の1種又は2種以上で合計8%以下の組成を有し、非
熱処理状態で使用することを特徴とする金型材料用非熱
処理型急冷凝固アルミニウム合金である。
[Means for Solving the Problems] The present invention is based on weight: Fe: 6-10%, Si: 2.6-
10%, Cu: 1-6%, Mg: 0.3-3% and V:
0.5-5%, Mo: 0.5-5%, Zr: 0.4-4
% Non-heat treatment type rapidly solidified aluminum alloy for die materials, which has a composition of 8% or less in total of 1% or 2% or more, and is used in a non-heat treatment state.

本発明における各成分の限定理由は下記の通りである。The reasons for limiting each component in the present invention are as follows.

Fe:AlFe、AlFe、Al−Fe系準安定相あるいはAl−
Si−Fe系化合物として分散し、引張強さ、耐熱性、疲労
強度、切欠疲労強度を高める。又、弾性係数を高め、線
膨脹係数を下げる効果もある。その量が6%未満では効
果が不足し、又、10%を超えると延性が不足し、熱間加
工が困難となる。
Fe: Al 3 Fe, Al 6 Fe, Al-Fe metastable phase or Al-
Disperses as a Si-Fe compound to enhance tensile strength, heat resistance, fatigue strength and notch fatigue strength. It also has the effect of increasing the elastic coefficient and decreasing the linear expansion coefficient. If the amount is less than 6%, the effect is insufficient, and if it exceeds 10%, the ductility is insufficient and hot working becomes difficult.

Si:Feと共存してAl−Fe−Si系化合物として分散し、
延性、疲労強度、切欠疲労強度を高める。又、弾性係数
を高め、線膨脹係数を下げる。その量が2.6%未満で
はAl−Si−Fe系化合物の量が不足して延性、疲労強度、
切欠疲労強度が低くなる。又、10%を越えると、Al−Si
−Fe系化合物が粗大になるので、延性、切欠疲労強度が
低くなる。
Si: coexist with Fe and dispersed as an Al-Fe-Si compound,
Increases ductility, fatigue strength and notch fatigue strength. It also increases the elastic coefficient and lowers the linear expansion coefficient. If the amount is less than 2.6%, the amount of Al-Si-Fe compound is insufficient, and the ductility, fatigue strength,
Notch fatigue strength becomes low. Also, if it exceeds 10%, Al-Si
Since the Fe-based compound becomes coarse, the ductility and notch fatigue strength become low.

Cu:Mgと共存し、時効硬化性を付与する。ただし、時
効硬化は熱間加工後の空冷及び室温時効によって行う。
時効硬化により引張強度、疲労強度、切欠疲労強度が向
上する。その量が下限未満では効果が十分でなく、上限
を越えると延性が耐食性を低下させる。
Coexists with Cu: Mg and imparts age hardening. However, age hardening is performed by air cooling after hot working and room temperature aging.
Age hardening improves tensile strength, fatigue strength, and notch fatigue strength. If the amount is less than the lower limit, the effect is not sufficient, and if it exceeds the upper limit, the ductility reduces the corrosion resistance.

Mg:Cuと共存し、時効硬化性を付与する。時効硬化に
より、引張強度、疲労強度、切欠疲労強度が向上する。
その量が下限未満では効果が十分でなく、上限を越える
と効果が飽和する。
Coexists with Mg: Cu and imparts age hardenability. Age hardening improves tensile strength, fatigue strength and notch fatigue strength.
If the amount is less than the lower limit, the effect is not sufficient, and if it exceeds the upper limit, the effect is saturated.

V、Mo:Feと共存してAl−Fe−V、Al−Fe−Moあるい
はAl−Fe−V−Mo系の化合物として分散し、引張強さ及
び疲労特性特に高温における強度を向上させる。その量
が下限未満では効果が十分でなく、上限を越えると効果
が飽和し、コストが上昇する。
V, Mo: Co-exist with Fe and dispersed as an Al-Fe-V, Al-Fe-Mo or Al-Fe-V-Mo based compound to improve tensile strength and fatigue properties, especially strength at high temperature. If the amount is less than the lower limit, the effect is not sufficient, and if it exceeds the upper limit, the effect is saturated and the cost increases.

Zr:Al−Zr系の化合物を形成し、引張強さ及び疲労強
度を向上させる。又、Al−Fe、Al−Fe−V、Al−Fe−Mo
あるいはAl−Fe−V−Mo系化合物の粗大化を抑制する。
その量が下限未満では効果が十分でなく、上限を越える
と効果が飽和し、コストが上昇する。
It forms a Zr: Al-Zr compound to improve tensile strength and fatigue strength. Also, Al-Fe, Al-Fe-V, Al-Fe-Mo
Alternatively, it suppresses coarsening of Al-Fe-V-Mo compounds.
If the amount is less than the lower limit, the effect is not sufficient, and if it exceeds the upper limit, the effect is saturated and the cost increases.

V+Mo+Zr:8%を越えると効果が飽和するばかり
でなく、延性を阻害する。
V + Mo + Zr: When it exceeds 8%, not only the effect is saturated, but also the ductility is impaired.

本発明の合金を用いた金型材料を製造するには、本発明
組成のアルミニウム合金を溶解した後、溶湯を急冷凝固
させる。通常は100℃/sec以上の冷却速度で冷却され
る。具体的にはアトマイズ法やスプラットクーリング法
あるいはスプレーディポジション法が適用される。以下
にアトマイズ法又はスプラットクーリング法により製造
した粉末の成形法を示す。
In order to manufacture a die material using the alloy of the present invention, the aluminum alloy having the composition of the present invention is melted, and then the molten metal is rapidly solidified. Usually, it is cooled at a cooling rate of 100 ° C / sec or more. Specifically, the atomization method, the splat cooling method, or the spray deposition method is applied. The molding method of the powder manufactured by the atomizing method or the splat cooling method is shown below.

(a) 予備圧縮…加熱真空脱ガス−押出 (b) 予備圧縮…加熱真空脱ガス−ホットプレス (c) 予備圧縮…加熱真空脱ガス−ホットプレス−容器除
去−押出 (d) 予備圧縮…加熱真空脱ガス−HIP(高温静水圧圧縮) 等の工程により成形固化する。具体的には、(a)の工程
では、CIP又は金型圧縮によりアルミニウム合金粉末
を真密度の60〜90%程度まで予備圧縮した後、300〜550
℃に加熱しながら真空排気し脱ガスする。脱ガス時の加
熱温度が300℃未満の場合、脱ガスが不十分となり最終
製品に膨れが生じたり、気孔が生じる。550℃を越える
とSi粒子が成長し、素材になる。こうして脱ガスした
予備圧縮体(ビレット)を300〜520℃の温度に加熱し押
出する。予備圧縮を省略しても品質に変化ない。脱ガス
・熱間加工時の真空シールは、粉末の容器装入や治工具
のシールによって行う。
(a) Pre-compression ... Heating vacuum degassing-extrusion (b) Pre-compression ... Heating vacuum degassing-hot pressing (c) Pre-compression ... Heating vacuum degassing-hot pressing-container removal-extrusion (d) Pre-compression ... heating It is molded and solidified by a process such as vacuum degassing-HIP (high temperature isostatic pressing). Specifically, in the step (a), the aluminum alloy powder is pre-compressed to about 60 to 90% of the true density by CIP or die compression, and then 300 to 550.
Degas by evacuation while heating to ℃. If the heating temperature during degassing is less than 300 ° C, the degassing will be insufficient and the final product will swell and have pores. When it exceeds 550 ° C, Si particles grow and become a raw material. The preliminary compressed body (billet) thus degassed is heated to a temperature of 300 to 520 ° C. and extruded. The quality does not change even if pre-compression is omitted. Vacuum sealing during degassing and hot working is performed by charging a powder container and sealing jigs and tools.

前記手法(b) は押出に代えてホットプレス(300〜550℃
で据え込み圧縮すること)によりビレットを緻密化した
もの、(c) はホットプレスの後容器を切削除去し押出し
たもの、(d) は予備圧縮後空気中、真空中又はN、A
r等のガス中で加熱して脱ガスし、その後押出しするも
の、(e) は押出やホットプレスに代えてHIP処理によ
りアルミニウム合金材を得るものである。
The method (b) is hot pressing (300 to 550 ° C) instead of extrusion.
The billet is densified by upsetting and compressing), (c) is hot-pressed and then the container is cut off and extruded, and (d) is pre-compressed in air, in vacuum or under N 2 , A
A material which is heated in a gas such as r to be degassed and then extruded, and (e) is one which obtains an aluminum alloy material by HIP treatment instead of extrusion or hot pressing.

金型のサイズが大きく、大寸法の材料が必要な場合、
(b) のホットプレスや(e) のHIPにより固化成形した
後、鍛造や圧延により延ばして大寸法の材料とする。
If the mold size is large and you need large size material,
After being solidified and molded by the hot pressing of (b) and HIP of (e), it is extended by forging and rolling to obtain a large-sized material.

[実施例] 表2に示すNo.1〜15の合金を溶解し、エアアトマイズ
により急冷凝固粉末を作成した。得られた粉末を粒径29
7μm以下に分散した後、CIPにより真密度の70〜75
%まで予備圧縮し、アルミニウム容器に装入して加熱し
ながら真空排気した。加熱温度は500℃とした。このよ
うにして得たビレットを390℃に加熱し、押出比14にて
間接押出して外径40mmの棒を得た。
[Examples] Alloys Nos. 1 to 15 shown in Table 2 were melted and rapidly solidified powder was prepared by air atomization. The resulting powder has a particle size of 29
After dispersing to 7 μm or less, the true density is 70-75 by CIP.
%, Precompressed to%, charged into an aluminum container and evacuated while heating. The heating temperature was 500 ° C. The billet thus obtained was heated to 390 ° C. and indirectly extruded at an extrusion ratio of 14 to obtain a bar having an outer diameter of 40 mm.

表2のNo.16の合金については、溶解後外径150mmの鋳塊
を作成し、これを上記と同条件で押出した。押出棒につ
いて465℃×1hr→水冷→2%の永久歪の引張→120℃×24h
r→放冷の条件で熱処理(T651処理)を行った。
As for No. 16 alloy in Table 2, an ingot having an outer diameter of 150 mm was prepared after melting and extruded under the same conditions as above. Extrusion rod 465 ℃ × 1hr → Water cooling → Tension of 2% permanent strain → 120 ℃ × 24h
The heat treatment (T651 treatment) was performed under the condition of r → cooling.

以上の材料について、常温硬さ200℃加熱後の常温硬
さ、常温引張強さ、200℃で100hr保持した後の200℃で
の引張強さ、ピンディスク摩耗試験におけるディスクの
摩耗深さ、残留応力、ヤング率および線膨脹係数を測定
した。
Regarding the above materials, room temperature hardness after room temperature heating 200 ℃, room temperature tensile strength, room temperature tensile strength, tensile strength at 200 ℃ after holding at 200 ℃ for 100 hours, wear depth of the disk in pin disk wear test, residual The stress, Young's modulus and linear expansion coefficient were measured.

結果は表3に示すとおりである。表3は厚さ50mmの場合
である。
The results are shown in Table 3. Table 3 is for a thickness of 50 mm.

発明合金は、硬さ、常温及び200℃における引張強さ更
に耐摩耗性が7075−T651(比較合金N0.16)よりも高
く、常温及び200℃の伸びも十分に高い。
The invention alloy has higher hardness, higher tensile strength at room temperature and 200 ° C., and higher wear resistance than 7075-T651 (comparative alloy N0.16), and has sufficiently high elongation at room temperature and 200 ° C.

比較合金のうち、No.10はV、Mo、Zrが添加されて
いないため、No.11はFeが少ないため、硬さ、引張強
さが低い。No.12はFe量が多いため延性が乏しい。No.
13はSi量が多いため延性が乏しい。No.14はCu量が
少ないため硬さ及び常温の引張強さが低い。No.15はV
+Mo+Zr量が8%を越えているため延性が乏しい。
Among the comparative alloys, No. 10 has no added V, Mo and Zr, and No. 11 has a small amount of Fe, and thus has low hardness and low tensile strength. No. 12 has a large amount of Fe and thus has poor ductility. No.
13 has a large amount of Si and thus has poor ductility. Since No. 14 has a small amount of Cu, hardness and tensile strength at room temperature are low. No.15 is V
Since + Mo + Zr content exceeds 8%, ductility is poor.

[発明の効果] 本発明によれば、非熱処理状態で、7075−T651材より
も、硬さ、引張強さ、耐摩耗性の優れた金型用材料が得
られる。したがって、7075−T651材の大型品において
問題となっている表面が内部よりも硬く、強い現象や切
削加工時の残留応力解放により歪が発生する現象を解決
できる。本発明金型は7075−T651材よりも150〜200℃
の強度を高く、SMC(Silicon Mould Compound)のよ
うに成形温度の高い場合に有利である。
[Effects of the Invention] According to the present invention, a die material having better hardness, tensile strength, and wear resistance than the 7075-T651 material in a non-heat-treated state can be obtained. Therefore, it is possible to solve the problem that the surface of the large-sized 7075-T651 material is harder than the inside thereof and is strong, and that strain occurs due to residual stress release during cutting. The mold of the present invention is 150 to 200 ° C more than 7075-T651 material.
It is advantageous when the molding temperature is high and the molding temperature is high like SMC (Silicon Mold Compound).

本発明金型を用いて成形する対象物としては、樹脂、ゴ
ム、金属粉末、セラミックス粉末等広範囲のものがあ
る。
Objects to be molded using the mold of the present invention include a wide range of objects such as resin, rubber, metal powder, and ceramic powder.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量基準で、Fe:6〜10%、Si:2.6〜10
%、Cu:1〜6%、Mg:0.3〜3%及びV:0.5〜5%、
Mo:0.5〜5%、Zr:0.4〜4%の1種又は2種以上で合
計8%以下の組成を有し、非熱処理状態で使用すること
を特徴とする金型材料用非熱処理型急冷凝固アルミニウ
ム合金。
1. Fe: 6-10%, Si: 2.6-10 by weight
%, Cu: 1-6%, Mg: 0.3-3% and V: 0.5-5%,
Mo: 0.5-5%, Zr: 0.4-4%, 1 type or 2 or more types, having a total composition of 8% or less, and being used in a non-heat-treated state, non-heat-treated rapid cooling for die materials. Solidified aluminum alloy.
JP2190408A 1990-07-20 1990-07-20 Non-heat treatment type rapidly solidified aluminum alloy for mold materials Expired - Lifetime JPH0621308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2190408A JPH0621308B2 (en) 1990-07-20 1990-07-20 Non-heat treatment type rapidly solidified aluminum alloy for mold materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2190408A JPH0621308B2 (en) 1990-07-20 1990-07-20 Non-heat treatment type rapidly solidified aluminum alloy for mold materials

Publications (2)

Publication Number Publication Date
JPH0480343A JPH0480343A (en) 1992-03-13
JPH0621308B2 true JPH0621308B2 (en) 1994-03-23

Family

ID=16257649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2190408A Expired - Lifetime JPH0621308B2 (en) 1990-07-20 1990-07-20 Non-heat treatment type rapidly solidified aluminum alloy for mold materials

Country Status (1)

Country Link
JP (1) JPH0621308B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108338A (en) * 1987-10-21 1989-04-25 Sumitomo Light Metal Ind Ltd Aluminum alloy having excellent tensile and fatigue strength
JPH01319644A (en) * 1988-06-18 1989-12-25 Furukawa Alum Co Ltd Heat-resistant aluminum alloy material and its manufacture

Also Published As

Publication number Publication date
JPH0480343A (en) 1992-03-13

Similar Documents

Publication Publication Date Title
US4702885A (en) Aluminum alloy and method for producing the same
US5561829A (en) Method of producing structural metal matrix composite products from a blend of powders
JPH02503331A (en) Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy
JPS627828A (en) Al alloy with high li and si content and its production
EP0529993B1 (en) Production of Aluminum matrix composite powder
CN100371483C (en) Aluminum alloy for plastic working and manufacture thereof
US20200238385A1 (en) Compressor component for transport and method for manufacturing same
JP6738212B2 (en) Aluminum alloy forged product and manufacturing method thereof
SU1722234A3 (en) Aluminum base alloy and method of manufacturing parts from aluminum alloys
JPS60208443A (en) Aluminum alloy material
US4889557A (en) Aluminium alloy having an excellent forgiability
JP2003277867A (en) Aluminum powder alloy having excellent high temperature strength, method of producing piston for internal combustion engine and piston for internal combustion engine
JP2020007594A (en) Aluminum alloy material, manufacturing method of aluminum alloy cast material, and manufacturing method of aluminum alloy powder extrusion material
JPH0621308B2 (en) Non-heat treatment type rapidly solidified aluminum alloy for mold materials
JP2730284B2 (en) Manufacturing method of Al-Si alloy sintered forged parts
JP2010126740A (en) Aluminum alloy and method for manufacturing the same
JPH11302807A (en) Manufacture of aluminum alloy for compressor vane
JPH0368941B2 (en)
JP3245652B2 (en) High temperature aluminum alloy and method for producing the same
JPH0643628B2 (en) Method for manufacturing aluminum alloy member
JPH1157965A (en) Production of aluminum alloy casting
JPH01230743A (en) Aluminum alloy material for mold
JP3691399B2 (en) Method for producing hot-worked aluminum alloy powder
JPS62188739A (en) Al alloy stock
JPH06145864A (en) Production of heat resistant aluminum alloy for automotive engine and parts made of heat resistant aluminum alloy