JPH06188194A - Vapor growth device - Google Patents

Vapor growth device

Info

Publication number
JPH06188194A
JPH06188194A JP33622992A JP33622992A JPH06188194A JP H06188194 A JPH06188194 A JP H06188194A JP 33622992 A JP33622992 A JP 33622992A JP 33622992 A JP33622992 A JP 33622992A JP H06188194 A JPH06188194 A JP H06188194A
Authority
JP
Japan
Prior art keywords
susceptor
tube
downstream end
gas
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33622992A
Other languages
Japanese (ja)
Inventor
Masahiko Hata
雅彦 秦
Noboru Fukuhara
昇 福原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP33622992A priority Critical patent/JPH06188194A/en
Publication of JPH06188194A publication Critical patent/JPH06188194A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce servicing frequency by keeping an inside wall, the upstream of a susceptor and near there, to which gas contacts always clean and configuring so that the part where sublimation-deposition takes place is always situated downstream of a substrate through the entire processes. CONSTITUTION:A spray tube 4, that extends from a material gas introduction part 3 to above a susceptor 2 and gas a divergent open end part, extends as far as a downstream end of the susceptor 2. Further, the diameter of the upstream end of an inside tube 5 is larger than that of the downstream end of the spray tube 4, and the diameter of the downstream end of the spray tube 4 is larger than that of the downstream end of the susceptor 2. In addition, the upstream end of the inside tube 5 is situated upstream of gas than the downstream end of the spray tube 4 is. At least one kind of gas, among hydrogen, nitrogen and argon, is introduced from a gas introduction part 9 that is the tap part of a reaction tube 6, into the inside tube through the gap between the upstream end of the inside tube and the downstream end of the spray tube. With this, effect from reaction-deposition material is suppressed, and substrates of high quality are produced for a long period.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体等の薄膜の製造
に用いられる気相成長装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor phase growth apparatus used for manufacturing a thin film such as a semiconductor.

【0002】[0002]

【従来の技術】結晶基板上に気相成長により各種電子デ
バイスに用いうる化合物半導体薄膜を製造する気相成長
装置は、例えば縦型炉の場合には図1に示すように構成
されている。この図に示すように従来の気相成長装置で
は、原料ガス(例えばAsH3 ,PH3 ,Ga(C
3 3 など)は、適当なキャリアガス(例えばH2
2 など)と共に、原料ガス導入部3からサセプター2
に載置された基板1に対して供給される。サセプター上
の基板は、例えば外部からの誘導加熱により、あるいは
サセプター内部の抵抗加熱ヒーターや赤外加熱ヒーター
により加熱され、所定温度に保たれる。基板表面で気相
成長が生じ、反応残ガスはサセプターよりガスの下流側
から排出される。成長反応終了後は温度を下げ、反応管
内をパージ後、図2のようにサセプターを反応管外へ取
り出し、基板の交換を行なった後、次の薄膜成長に移
る。
2. Description of the Related Art A vapor phase growth apparatus for producing a compound semiconductor thin film that can be used in various electronic devices by vapor phase growth on a crystal substrate is constructed as shown in FIG. 1 in the case of a vertical furnace, for example. As shown in this figure, in the conventional vapor phase growth apparatus, the source gas (for example, AsH 3 , PH 3 , Ga (C
H 3 ) 3 etc.) is a suitable carrier gas (eg H 2 ,
N 2 etc.) together with the source gas introduction part 3 to the susceptor 2
It is supplied to the substrate 1 placed on. The substrate on the susceptor is heated to a predetermined temperature by, for example, induction heating from the outside or a resistance heater or an infrared heater inside the susceptor. Vapor growth occurs on the surface of the substrate, and the reaction residual gas is discharged from the gas downstream side of the susceptor. After completion of the growth reaction, the temperature is lowered, the inside of the reaction tube is purged, the susceptor is taken out of the reaction tube as shown in FIG. 2, the substrate is exchanged, and then the next thin film growth is started.

【0003】この時の反応の際、一般にサセプターの基
板以外の表面、およびサセプターからの輻射または伝熱
により加熱されたサセプター近傍の反応管内壁の一部で
も基板面上と同様の熱分解反応が生じ、多結晶性の付着
物が発生する。また、サセプター近傍で熱分解した原料
ガス成分の一部は、原料ガスより低蒸気圧物質となり、
反応管の下流側の低温部に昇華付着する。このような反
応管内部の基板以外の部位に生成した付着物は、通常も
ろく、剥落性であるため反応管内におけるダストの生成
原因となる。生成したダストは、基板に付着して、基板
の品質を低下させる。特に、反応管下流部の昇華付着物
は量も多く、また不定形であるため、基板の出し入れ時
の微妙な振動や気流の変動により容易に剥落し、基板面
上に付着しやすい。このためこのような装置を用いた半
導体薄膜の生産に当たっては、定期的に反応管を分解清
掃し、このような付着物を除去する必要があった。しか
し、通常このような定期保守は装置のランニングタイム
の減少を招き、生産性を低下させる大きな要因となって
いた。
During the reaction at this time, generally, the same thermal decomposition reaction as on the substrate surface occurs even on the surface of the susceptor other than the substrate and a part of the inner wall of the reaction tube near the susceptor heated by radiation or heat transfer from the susceptor. Occurs and a polycrystalline deposit is generated. Moreover, a part of the raw material gas component thermally decomposed in the vicinity of the susceptor becomes a substance having a lower vapor pressure than the raw material gas,
Sublimation adheres to the low temperature part on the downstream side of the reaction tube. The deposits formed on the inside of the reaction tube other than the substrate are generally brittle and peel off, which causes dust generation in the reaction tube. The generated dust adheres to the substrate and deteriorates the quality of the substrate. In particular, since the amount of sublimation deposits in the downstream portion of the reaction tube is large and has an indefinite shape, it easily peels off due to subtle vibrations and fluctuations in the air flow when the substrate is taken in and out, and easily adheres to the substrate surface. Therefore, in producing a semiconductor thin film using such an apparatus, it was necessary to periodically disassemble and clean the reaction tube to remove such deposits. However, such regular maintenance usually causes a decrease in the running time of the device, which is a major factor in reducing productivity.

【0004】これに対し、原料ガス流入口を反応容器上
部に備えた縦型有機金属化合物気相成長装置において、
該原料ガス流入口より基板結晶に至る間の反応容器壁を
強制的に冷却し、かつ反応ガス流入口の周囲をキヤリア
ガス流入口で取り囲んだガス流入口構造として、反応ガ
スがキャリアガスで包まれたガス気流となって基板結晶
に接するようにすることにより反応管壁での分解反応生
成物の付着を抑制する方法が報告されている(特開昭6
2ー20160号公報)。しかしながら、この方法では
反応管上部における温度勾配がきわめて大きくなり、熱
対流に基づく流れの不安定さが生じやすいため、安定か
つ均一なガス層を形成するためにはきわめて大量のキャ
リアガスを要する欠点がある。また、サセプター近傍か
ら下流部にかけての昇華付着物の生成は従来と変わらな
いことから、該付着物に起因する表面欠陥については効
果がない。
On the other hand, in a vertical organometallic compound vapor phase growth apparatus equipped with a source gas inlet in the upper part of the reaction vessel,
The reaction gas is surrounded by a carrier gas as a gas inlet structure in which the wall of the reaction vessel between the source gas inlet and the substrate crystal is forcibly cooled and the periphery of the reaction gas inlet is surrounded by the carrier gas inlet. A method has been reported in which the decomposition reaction product is prevented from adhering to the reaction tube wall by forming a gas flow and bringing it into contact with the substrate crystal (Japanese Patent Application Laid-Open No. Sho 6-62).
2-20160). However, in this method, the temperature gradient in the upper part of the reaction tube becomes extremely large, and flow instability due to thermal convection tends to occur, so an extremely large amount of carrier gas is required to form a stable and uniform gas layer. There is. In addition, since the formation of sublimation deposits from the vicinity of the susceptor to the downstream portion is the same as the conventional one, there is no effect on the surface defects caused by the deposits.

【0005】[0005]

【発明が解決しようとする課題】本発明は、基板への付
着物の影響を抑制し、保守頻度を大幅に低減し、装置の
ランニングタイムの大幅な改善を可能にすることを目的
とするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to suppress the influence of deposits on a substrate, significantly reduce the maintenance frequency, and significantly improve the running time of the device. Is.

【0006】[0006]

【課題を解決するための手段】本発明者らは、このよう
な問題点をみて、鋭意検討した結果、本発明に到達し
た。すなわち、本発明は、原料ガス導入部、基板を載置
するサセプター、反応管および排気管を有する薄膜の気
相成長装置において、(1)基板上に原料ガスを導入す
るための吹き付け管を有し、吹き付け管の下流端はサセ
プター下流端にまで伸び、吹き付け管の下流端の径はサ
セプターの下流端の径より大きく、(2)サセプター保
持軸を取り囲んだ内管を有し、内管の下部で内管と排気
管が連結しており、内管の上流端の径は吹き付け管の下
流端の径より大きく、かつ内管上流端は吹き付け管下流
端よりも、ガスの上流側に位置し、(3)水素、窒素お
よびアルゴンからなる群から選ばれた少なくとも1種の
ガスの導入部を反応管上部に有し、該ガスが反応管と吹
き付け管との間を流れるようにして、(4)内管ととも
にサセプターが上下移動する機構を有することを特徴と
する気相成長装置に関するものである。
The present inventors have arrived at the present invention as a result of intensive investigations in view of such problems. That is, the present invention relates to a thin film vapor phase growth apparatus having a source gas introduction section, a susceptor for mounting a substrate, a reaction tube and an exhaust tube, and (1) has a blowing tube for introducing the source gas onto the substrate. However, the downstream end of the blowing pipe extends to the downstream end of the susceptor, the diameter of the downstream end of the blowing pipe is larger than the diameter of the downstream end of the susceptor, and (2) has an inner pipe surrounding the susceptor holding shaft. The inner pipe and the exhaust pipe are connected in the lower part, the diameter of the upstream end of the inner pipe is larger than the diameter of the downstream end of the blowing pipe, and the upstream end of the inner pipe is located on the gas upstream side of the downstream end of the blowing pipe. And (3) at least one gas selected from the group consisting of hydrogen, nitrogen and argon is provided in the upper part of the reaction tube so that the gas flows between the reaction tube and the blowing tube, (4) The susceptor moves up and down together with the inner tube It relates vapor deposition apparatus characterized by having a mechanism for.

【0007】本発明について図面をもとにさらに詳細に
説明する。図3は本発明の気相成長装置について概要を
図示したものである。装置は、原料ガス導入部3、基板
1を載置するサセプター2、吹き付け管4、内管5、反
応管6、排気管10から構成される。サセプター2は、
サセプター保持軸7によって保持され、サセプター保持
軸7は必要に応じて回転させることもできる。原料ガス
8はキャリアガスとともに原料ガス導入部3を通じて吹
き付け管4に導入される。
The present invention will be described in more detail with reference to the drawings. FIG. 3 shows an outline of the vapor phase growth apparatus of the present invention. The apparatus is composed of a raw material gas introduction unit 3, a susceptor 2 on which the substrate 1 is placed, a blowing pipe 4, an inner pipe 5, a reaction pipe 6, and an exhaust pipe 10. Susceptor 2 is
It is held by the susceptor holding shaft 7, and the susceptor holding shaft 7 can be rotated if necessary. The raw material gas 8 is introduced into the spray pipe 4 through the raw material gas introduction part 3 together with the carrier gas.

【0008】吹き付け管4は、原料ガス導入部からサセ
プター上に伸び、末広がりの開口端部を有する。吹き付
け管4の開口端部すなわち下流端は、サセプター2の下
流端まで伸びている。また、内管5の上流端の径は吹き
付け管4の下流端の径より大きい。また、吹き付け管4
の下流端の径は、サセプターの下流端の径より大きい。
また、内管5の上流端は、吹き付け管4の下流端よりガ
スの上流側に位置している。水素、窒素およびアルゴン
からなる群から選ばれた少なくとも1種のガス(以下、
不活性ガスということがある)は、反応管6の上部の不
活性ガス導入部9から導入され、吹き付け管の外壁に沿
って流れた後、内管上流端と吹き付け管下流端との間隙
から内管内部に流入する。この不活性ガスおよび反応残
ガスは合流後、内管内部を経て、ガス下流部に設置され
た排気管10から排気系に排出される。
The blowing tube 4 extends from the raw material gas introduction portion onto the susceptor and has an opening end portion that widens toward the end. The open end, that is, the downstream end of the spray tube 4 extends to the downstream end of the susceptor 2. Further, the diameter of the upstream end of the inner pipe 5 is larger than the diameter of the downstream end of the blowing pipe 4. Also, the blowing tube 4
The diameter of the downstream end of the susceptor is larger than the diameter of the downstream end of the susceptor.
Further, the upstream end of the inner pipe 5 is located upstream of the gas from the downstream end of the blowing pipe 4. At least one gas selected from the group consisting of hydrogen, nitrogen and argon (hereinafter,
(It may be called an inert gas) is introduced from the inert gas introducing portion 9 at the upper part of the reaction tube 6, flows along the outer wall of the blowing tube, and then from the gap between the inner tube upstream end and the blowing tube downstream end. It flows into the inner pipe. The inert gas and the reaction residual gas are merged, then passed through the inside of the inner pipe, and are discharged to the exhaust system from the exhaust pipe 10 installed in the gas downstream portion.

【0009】本発明の気相成長装置は、内管とともにサ
セプターが上下移動する機構を有する。特に、基板の交
換に際して、基板の交換が可能な位置まで内管とともに
サセプターが上下移動する機構を有する。基板の交換に
際して、図4に示すように、サセプターは、内管ごとサ
セプターを移動することにより行なうことができる。し
たがって、特にサセプターが、内管の上流端よりガスの
上流側に位置するように位置関係を保持しつつ、基板の
交換が可能な位置まで、内管とともにサセプターを移動
させることができる。また、基板交換にともなう雰囲気
汚染を避けるため、副室11とゲートバルブ12から構
成されるロードロック機構と組み合わせて実施すること
ができる。
The vapor phase growth apparatus of the present invention has a mechanism in which the susceptor moves up and down together with the inner tube. In particular, when the substrate is replaced, the susceptor has a mechanism that moves up and down together with the inner tube to a position where the substrate can be replaced. When exchanging the substrate, the susceptor can be moved by moving the susceptor together with the inner tube as shown in FIG. Therefore, in particular, the susceptor can be moved together with the inner pipe to a position where the substrate can be exchanged while maintaining the positional relationship so that the susceptor is located on the upstream side of the gas from the upstream end of the inner pipe. Further, in order to avoid atmosphere pollution due to substrate exchange, it can be implemented in combination with a load lock mechanism composed of the sub chamber 11 and the gate valve 12.

【0010】本発明によれば、原料ガスは吹き付け管か
らサセプター上の基板面に吹き付けられて所定の薄膜を
成長の後、反応残ガスは内管内を通ってその下部に設け
られた排気管から排出される。この時、吹き付け管のサ
セプターからの距離を適切に選択することにより、また
吹き付け管外側と反応管との間を流す、水素、窒素およ
びアルゴンからなる群から選ばれた少なくとも1種のガ
スの流量を適切に選択することにより、加熱されたサセ
プターからの輻射および伝熱を制御することが可能であ
る。したがって、吹き付け管とサセプターとの間での温
度勾配が熱対流を発生しない程度で、接触する原料ガス
の分解を極小にするように、該吹き付け管の温度を設定
することができる。これによりまず、基板近傍でのサセ
プターおよび基板面以外での吹き付け管壁への反応生成
物の付着を減少させることができる。
According to the present invention, the raw material gas is blown from the blowing pipe onto the surface of the substrate on the susceptor to grow a predetermined thin film, and the reaction residual gas passes through the inner pipe from the exhaust pipe provided therebelow. Is discharged. At this time, the flow rate of at least one gas selected from the group consisting of hydrogen, nitrogen and argon, which flows between the outside of the blowing tube and the reaction tube, by appropriately selecting the distance of the blowing tube from the susceptor. It is possible to control the radiation and heat transfer from the heated susceptor by appropriately selecting Therefore, the temperature of the blowing tube can be set so as to minimize the decomposition of the raw material gas in contact with the temperature gradient between the blowing tube and the susceptor to the extent that thermal convection does not occur. As a result, first, it is possible to reduce the adhesion of the reaction product to the susceptor near the substrate and the wall of the spray tube other than the substrate surface.

【0011】次に、加熱基板およびサセプター面上で分
解した反応ガス成分の一部はキャリアガスと共に下流部
へ輸送され、温度の低い内管の壁に昇華付着する。この
時、吹き付け管と反応管の間に流す不活性ガスが、内管
の内部に流入する際に内管の壁と反応残ガスとの間に不
活性ガス層を形成し、内管の壁の上部を上記反応生成物
の昇華付着から保護する役割を果たし、昇華付着が生じ
る部位をサセプターから、よりガスの下流側に移動させ
ることができる。また、基板交換に際してはサセプター
を内管とともに移動させることにより、以上のようにし
て生じた昇華生成物の付着部位は、薄膜の成長および基
板交換作業を通じて、常にサセプターより下流側に位置
させることが可能になる。
Next, a part of the reaction gas component decomposed on the heating substrate and the susceptor surface is transported to the downstream portion together with the carrier gas, and sublimates and adheres to the wall of the inner tube having a low temperature. At this time, the inert gas flowing between the blowing pipe and the reaction pipe forms an inert gas layer between the inner pipe wall and the reaction residual gas when flowing into the inner pipe, and the inner pipe wall Plays a role of protecting the upper part of the above from the sublimation adhesion of the above reaction product, and the site where the sublimation adhesion occurs can be moved further downstream of the gas from the susceptor. Further, when the substrate is exchanged, by moving the susceptor together with the inner tube, the sublimation product adhesion site generated as described above can be always located downstream of the susceptor through the growth of the thin film and the substrate exchange operation. It will be possible.

【0012】以上の結果、サセプター上流から近傍にか
けての、ガスが接触する内壁は常に清浄な状態に保持さ
れるとともに、昇華付着が生じる部位は、薄膜の成長お
よび基板の交換などの全ての工程を通じて常に基板の下
流に位置する。したがって、該生成物の堆積により剥落
が生じても基板面に悪影響を与えることがなく、高品質
な製品の長期にわたる生産が可能になる。
As a result of the above, from the upstream to the vicinity of the susceptor, the inner wall with which the gas comes into contact is always kept in a clean state, and the site where sublimation adheres occurs through all steps such as thin film growth and substrate exchange. Always located downstream of the substrate. Therefore, even if peeling occurs due to the deposition of the product, the substrate surface is not adversely affected, and high-quality products can be produced for a long period of time.

【0013】この時の吹き付け管下流端、サセプター下
流端および内管上流端の位置関係について、さらに詳し
く説明する。吹き付け管には反応生成物の昇華付着をさ
せず、また反応残ガスが吹き付け管と内管との間隙から
漏れだし、不要な付着物を反応管内壁や吹き付け管外壁
に付着することを抑制できるように、吹き付け管下流端
は、サセプター下流端から±50mm以内の位置にある
のが好ましい。また、内管上流端は、吹き付け管下流端
よりも、0mm以上上流側に位置することが好ましい。
The positional relationship between the downstream end of the blowing pipe, the downstream end of the susceptor and the upstream end of the inner pipe at this time will be described in more detail. The reaction product is not sublimated and adhered to the spray tube, and the reaction residual gas can be prevented from leaking out from the gap between the spray tube and the inner tube to attach unnecessary deposits to the inner wall of the reaction tube and the outer wall of the spray tube. As described above, the downstream end of the blowing tube is preferably located within ± 50 mm from the downstream end of the susceptor. In addition, the upstream end of the inner pipe is preferably located 0 mm or more upstream from the downstream end of the blowing pipe.

【0014】ただし、内管上流端が、サセプター上流端
より上流側に位置すると、基板交換の際に障害となるの
で、内管上流端はサセプター上流端より下流側に位置す
るか、または基板交換の際にサセプターを内管に対して
上流側に移動させる機構を設置する必要がある。また、
内管上流端と吹き付け管下流端の間隙については、そこ
を通じて流入する不活性ガス流量に応じて選択可能であ
るが、2〜50mmの範囲が好ましい。本発明の気相成
長装置の形式としては、前記の説明で用いた縦型炉に限
定されるものではなく、横型炉、バレル型炉、パンケー
キ型炉などに適用可能であることは言うまでもない。
However, if the upstream end of the inner pipe is located upstream of the upstream end of the susceptor, it will hinder the substrate replacement. Therefore, the upstream end of the inner pipe is located downstream of the upstream end of the susceptor, or the substrate replacement is performed. In this case, it is necessary to install a mechanism that moves the susceptor upstream with respect to the inner pipe. Also,
The gap between the upstream end of the inner pipe and the downstream end of the blowing pipe can be selected according to the flow rate of the inert gas flowing therethrough, but is preferably in the range of 2 to 50 mm. The form of the vapor phase growth apparatus of the present invention is not limited to the vertical furnace used in the above description, and it goes without saying that it can be applied to a horizontal furnace, a barrel furnace, a pancake furnace, etc. .

【0015】[0015]

【実施例】以下、本発明について実施例に基づきさらに
詳細に説明するが、本発明はこれに限定されるものでは
ない。 実施例1 本実施例において使用した装置の概略は図3に示したも
のと同様である。吹き付け管および内管上部および反応
管上部はいずれも石英部材を使用した。キャリアガスと
しては9standardl/ min( 以下、slmと略す)の水
素ガスを用い、0.1気圧の減圧条件下で行なった。基
板としては単結晶GaAsのウエーハを洗浄後、副室1
1に載置し、水素で減圧置換後、ゲートバルブ12を開
き、水素気流下でグラファイト製サセプター2上に載置
した。サセプターを所定の位置まで移動した後、反応管
内を0.1気圧に調整し、外部高周波加熱コイル13に
よる誘導加熱を行なった。なお反応管内の圧力は反応管
に取付けた圧力センサー14で検出し、その出力を排気
部に設けたコントロールバルブにフィードバックさせる
ことにより調整した。
The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited thereto. Example 1 The outline of the apparatus used in this example is similar to that shown in FIG. A quartz member was used for each of the spray tube, the upper part of the inner tube, and the upper part of the reaction tube. As a carrier gas, 9 standardl / min (hereinafter, abbreviated as slm) hydrogen gas was used, and it was performed under a reduced pressure condition of 0.1 atm. After cleaning a single crystal GaAs wafer as a substrate, the sub chamber 1
1 was placed under reduced pressure with hydrogen, the gate valve 12 was opened, and placed on the graphite susceptor 2 under a hydrogen stream. After moving the susceptor to a predetermined position, the inside of the reaction tube was adjusted to 0.1 atm, and induction heating was performed by the external high frequency heating coil 13. The pressure in the reaction tube was detected by the pressure sensor 14 attached to the reaction tube, and the output was adjusted by feeding it back to the control valve provided in the exhaust section.

【0016】また、基板温度は、サセプター内部に挿入
した熱電対で検出し、同出力を高周波加熱コイルにフィ
ードバックさせることにより制御した。温度上昇の過程
で550℃に達したときにGaAsの分解を抑えるため
に5.2×10-5mol/minのアルシン(As
3 )を供給開始した。なお、この時の吹き付け管下流
端と内管上流端との間隙は5mmであり、吹き付け管外
側には不活性ガス導入部9から6slmの水素を流し
た。また、内管上流端は、サセプター下流端から5mm
下流側に位置する構造としている。
The substrate temperature was controlled by detecting it with a thermocouple inserted inside the susceptor and feeding back the output to a high frequency heating coil. In order to suppress the decomposition of GaAs when the temperature reached 550 ° C. in the process of increasing the temperature, 5.2 × 10 −5 mol / min of arsine (As
H 3) was started supply. At this time, the gap between the downstream end of the blowing pipe and the upstream end of the inner pipe was 5 mm, and 6 slm of hydrogen was flown from the inert gas introducing portion 9 to the outside of the blowing pipe. The inner pipe upstream end is 5 mm from the susceptor downstream end.
The structure is located on the downstream side.

【0017】温度が650℃で安定したところで、アル
シン(AsH3 )流量を2.6×10-3mol/min
に調整し、さらに温度、圧力、各ガス流量が安定したと
ころで、5.2×10-5mol/minのトリメチルガ
リウム(TMG)を供給して結晶成長を開始した。2時
間の成長後、原料の供給を停止し、直ちに加熱を停止、
降温し室温付近になったところでサセプターを図4に示
すように移動し、ゲートバルブを開いて基板を副室に移
動後、ゲートバルブを閉じ、副室内を窒素置換後、大気
に取り出した。この時の成長膜厚は6ミクロンで、表面
欠陥数はおよそ15個/cm2 であった。またホール測
定の結果、この結晶はn型で77Kでの電子移動度は9
8000cm2 /Vsecで、実用上、十分な品質を有
するものであることがわかった。この時の反応後、反応
管の中の吹き付け管、および内管上部にはほとんど反応
生成物の付着は見られなかった。
When the temperature became stable at 650 ° C., the flow rate of arsine (AsH 3 ) was changed to 2.6 × 10 -3 mol / min.
When the temperature, the pressure and the flow rates of the respective gases were stabilized, 5.2 × 10 −5 mol / min of trimethylgallium (TMG) was supplied to start crystal growth. After growing for 2 hours, stop the supply of raw materials and immediately stop heating,
When the temperature was lowered to near room temperature, the susceptor was moved as shown in FIG. 4, the gate valve was opened to move the substrate to the sub chamber, the gate valve was closed, the sub chamber was replaced with nitrogen, and the substrate was taken out to the atmosphere. At this time, the grown film thickness was 6 microns and the number of surface defects was about 15 / cm 2 . As a result of Hall measurement, this crystal was n-type and had an electron mobility of 9 at 77K.
At 8000 cm 2 / Vsec, it was found that the product had practically sufficient quality. After the reaction at this time, almost no reaction products were adhering to the spray tube in the reaction tube and the upper part of the inner tube.

【0018】この後、30回の同様な結晶成長を繰り返
し、再び表面欠陥密度を測定したところ、12個/cm
2 であることがわかった。その後さらに30回の、上記
と同様の成長を繰り返した後、再度、同様な結晶での表
面欠陥密度を計測した結果、13個/cm2 であった。
またこの後、装置を分解してみたところ、反応生成物は
内管下部に付着しており、またその多くは剥落し、排気
管下流部に設置した補集フィルター(図示せず)に堆積
していることがわかった。この結果、本発明にかかわる
気相成長装置が高品質な結晶の安定した製造に適してい
ることがわかった。
After that, the same crystal growth was repeated 30 times, and the surface defect density was measured again. As a result, 12 defects / cm.
Turned out to be 2 . After repeating the same growth as above 30 times, the surface defect density of the same crystal was measured again, and the result was 13 defects / cm 2 .
After that, when the equipment was disassembled, reaction products were found to have adhered to the lower part of the inner pipe, and most of them fell off and accumulated on a collection filter (not shown) installed downstream of the exhaust pipe. I found out. As a result, it was found that the vapor phase growth apparatus according to the present invention is suitable for stable production of high quality crystals.

【0019】比較例1 気相成長装置として図1に記載したような装置を用いた
以外は、実施例と同様にして結晶成長を行なった結果、
最初の結晶成長後サセプターより下流側に大量の付着物
が見られた。この時の成長結晶の表面状態は欠陥密度に
して21個/cm2 と良好なものであったが、続く成長
時に上記付着物の一部が基板面上に剥落し、結晶欠陥密
度は5000個/cm2 以上であった。そこでいったん
反応管を分解洗浄して再度同条件にて成長を行なったと
ころ100個/cm2 の表面欠陥密度を有する結晶を得
た。しかし次回の成長では前回同様、剥落物の影響によ
り、表面欠陥密度は10000個/cm2 以上となっ
た。
Comparative Example 1 Crystal growth was carried out in the same manner as in Example except that the apparatus shown in FIG. 1 was used as the vapor phase growth apparatus.
After the initial crystal growth, a large amount of deposits were found on the downstream side of the susceptor. The surface state of the grown crystal at this time was good with a defect density of 21 defects / cm 2 , but during the subsequent growth, a part of the deposits fell off on the substrate surface, and the crystal defect density was 5000 defects. / Cm 2 or more. Then, the reaction tube was once disassembled and washed, and growth was again carried out under the same conditions to obtain a crystal having a surface defect density of 100 / cm 2 . However, in the next growth, the surface defect density became 10,000 or more / cm 2 due to the influence of the exfoliated material as in the previous time.

【0020】[0020]

【発明の効果】本発明によれば、反応付着物の影響を抑
制し、長期にわたり、高品質の基板を生産することがで
き、工業生産上、その意義は極めて大きい。
According to the present invention, the influence of reaction deposits can be suppressed and high quality substrates can be produced for a long period of time, which is extremely significant in industrial production.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来用いられてきた反応装置例で、比較例でも
使用した反応装置の断面図である。
FIG. 1 is a cross-sectional view of a reaction device used in a comparative example, which is an example of a conventionally used reaction device.

【図2】従来用いられてきた装置において、基板を載置
するときの状況説明図である。
FIG. 2 is an explanatory view of a situation when a substrate is placed in a conventionally used apparatus.

【図3】本発明の気相成長装置の1例の断面図である。FIG. 3 is a sectional view of an example of a vapor phase growth apparatus of the present invention.

【図4】本発明の気相成長装置において、基板を載置す
るときの状況説明図である。
FIG. 4 is an explanatory view of a situation when a substrate is placed in the vapor phase growth apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 サセプター 3 原料ガス導入部 4 吹き付け管 5 内管 6 反応管 7 サセプター保持軸 8 原料ガス 9 不活性ガス導入部 10 排気管 11 副室 12 ゲートバルブ 13 高周波加熱コイル 14 圧力センサー 1 Substrate 2 Susceptor 3 Raw Material Gas Introducing Section 4 Spraying Tube 5 Inner Tube 6 Reaction Tube 7 Susceptor Holding Shaft 8 Raw Material Gas 9 Inert Gas Introducing Section 10 Exhaust Pipe 11 Sub Chamber 12 Gate Valve 13 High Frequency Heating Coil 14 Pressure Sensor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】原料ガス導入部、基板を載置するサセプタ
ー、反応管および排気管を有する薄膜の気相成長装置に
おいて、 (1)基板上に原料ガスを導入するための吹き付け管を
有し、吹き付け管の下流端はサセプター下流端にまで伸
び、吹き付け管の下流端の径はサセプターの下流端の径
より大きく、 (2)サセプター保持軸を取り囲んだ内管を有し、内管
の下部で内管と排気管が連結しており、内管の上流端の
径は吹き付け管の下流端の径より大きく、かつ内管上流
端は吹き付け管下流端よりも、ガスの上流側に位置し、 (3)水素、窒素およびアルゴンからなる群から選ばれ
た少なくとも1種のガスの導入部を反応管上部に有し、
該ガスが反応管と吹き付け管との間を流れるようにし
て、 (4)内管とともにサセプターが上下移動する機構を有
することを特徴とする気相成長装置。
1. A thin film vapor phase growth apparatus having a source gas introduction part, a susceptor for mounting a substrate, a reaction tube and an exhaust tube, comprising: (1) a blowing tube for introducing the source gas onto the substrate. , The downstream end of the blowing pipe extends to the downstream end of the susceptor, the diameter of the downstream end of the blowing pipe is larger than the diameter of the downstream end of the susceptor, and (2) has an inner pipe surrounding the susceptor holding shaft and has a lower portion of the inner pipe. The inner pipe and exhaust pipe are connected with each other, the diameter of the upstream end of the inner pipe is larger than the diameter of the downstream end of the blowing pipe, and the upstream end of the inner pipe is located upstream of the gas from the downstream end of the blowing pipe. (3) The reaction tube has an inlet for at least one gas selected from the group consisting of hydrogen, nitrogen, and argon,
(4) A vapor phase growth apparatus having a mechanism in which the susceptor moves up and down together with the inner tube so that the gas flows between the reaction tube and the blowing tube.
JP33622992A 1992-12-16 1992-12-16 Vapor growth device Pending JPH06188194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33622992A JPH06188194A (en) 1992-12-16 1992-12-16 Vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33622992A JPH06188194A (en) 1992-12-16 1992-12-16 Vapor growth device

Publications (1)

Publication Number Publication Date
JPH06188194A true JPH06188194A (en) 1994-07-08

Family

ID=18296980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33622992A Pending JPH06188194A (en) 1992-12-16 1992-12-16 Vapor growth device

Country Status (1)

Country Link
JP (1) JPH06188194A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7353709B2 (en) 2005-07-06 2008-04-08 National Research Council Of Canada Method and system for determining material properties using ultrasonic attenuation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7353709B2 (en) 2005-07-06 2008-04-08 National Research Council Of Canada Method and system for determining material properties using ultrasonic attenuation

Similar Documents

Publication Publication Date Title
US4421592A (en) Plasma enhanced deposition of semiconductors
EP0502209B1 (en) Method and apparatus for growing compound semiconductor crystals
JPH04164895A (en) Method for growing semiconductor crystal film
JP3553583B2 (en) Vapor growth equipment for nitride
JPH06188194A (en) Vapor growth device
JPH0258325A (en) Apparatus for vapor growth of semiconductor thin film
JP3955397B2 (en) Crystal growth apparatus, crystal growth method, crystal manufacturing apparatus, crystal manufacturing method, and GaN-based semiconductor thin film manufacturing method
JP4816079B2 (en) Method for producing Ga-containing nitride semiconductor
US4609424A (en) Plasma enhanced deposition of semiconductors
JPH06188195A (en) Vapor browth device
JP5360136B2 (en) Method for producing Ga-containing nitride semiconductor
JPH0345957Y2 (en)
JPS63299115A (en) Vapor phase growth equipment
JPS62128518A (en) Vapor growth equipment
JPH05217910A (en) Vapor growing apparatus for compound semiconductor and vapor growing method
JP2003100642A (en) Vapor phase thin film epitaxial growth system and vapor phase thin film epitaxial growth method
JPH0547674A (en) Apparatus and method for vapor growth
JPH04139816A (en) Vapor deposition method
JPH1145858A (en) Compound semiconductor vapor growth equipment and its method
JP2002261030A (en) Method and apparatus for 3-5-family compound semiconductor epitaxial growth
JPH04238890A (en) Preparation of compound semiconductor single crystal
JP4615539B2 (en) Crystal manufacturing apparatus and crystal manufacturing method
JPS62297295A (en) Vapor growth by thermal decomposition of organometallic compounds and apparatus therefor
JPH03236220A (en) Vapor growth method for semiconductor
JPS63129616A (en) Semiconductor device and manufacture thereof