JPH06173635A - Exhaust emission control device for vehicle diesel engine - Google Patents

Exhaust emission control device for vehicle diesel engine

Info

Publication number
JPH06173635A
JPH06173635A JP2355491A JP2355491A JPH06173635A JP H06173635 A JPH06173635 A JP H06173635A JP 2355491 A JP2355491 A JP 2355491A JP 2355491 A JP2355491 A JP 2355491A JP H06173635 A JPH06173635 A JP H06173635A
Authority
JP
Japan
Prior art keywords
insulator
diesel
exhaust gas
electrode
diesel engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2355491A
Other languages
Japanese (ja)
Inventor
Shigeo Watanabe
茂男 渡辺
Katsuharu Kinoshita
勝晴 木下
Tsugukazu Hayashi
二一 林
Hisashi Matsunaga
久 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagao Kogyo Co Ltd
Original Assignee
Nagao Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagao Kogyo Co Ltd filed Critical Nagao Kogyo Co Ltd
Priority to JP2355491A priority Critical patent/JPH06173635A/en
Publication of JPH06173635A publication Critical patent/JPH06173635A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/49Collecting-electrodes tubular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/66Applications of electricity supply techniques
    • B03C3/70Applications of electricity supply techniques insulating in electric separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/12Cleaning the device by burning the trapped particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/30Details of magnetic or electrostatic separation for use in or with vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Abstract

PURPOSE:To provide an exhaust emission control device for a diesel engine by which insulating degradation of an insulator caused by accumulation of diesel particulates can be prevented. CONSTITUTION:Since an insulator 3 supports an electrode 42 and a diesel particulate incinerating means (nichrome wire) 95 is arranged close to a surface of an insulator, insulating resistance on the surface of the insulator 3 is restored by burning diesel particulates accumulated on the surface of the insulator 3 by the heating action.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は車両用ディ−ゼル機関の
排気ガス浄化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for a vehicle diesel engine.

【0002】[0002]

【従来の技術】従来、バスやトラックなどの車両用ディ
−ゼル機関の排気ガス中に含まれるディ−ゼルパティキ
ュレ−ト(煤塵粒子)が環境を汚染したり、人間の健康
に被害を与えるという問題が極めて深刻であり、この問
題を解決するためにディ−ゼル機関の燃焼方式の改良や
セラミックフィルタなどを採用することが考えられる。
2. Description of the Related Art Conventionally, the problem that diesel particulates (dust particles) contained in the exhaust gas of a diesel engine for vehicles such as buses and trucks pollute the environment and damage human health. However, in order to solve this problem, it is considered to improve the combustion system of the diesel engine or adopt a ceramic filter or the like.

【0003】[0003]

【発明が解決しようとする課題】ところが車両用ディ−
ゼル機関では冷温始動時や登坂時や過積時など多様な運
転が行われるので、燃焼方式の改良によるディ−ゼルパ
ティキュレ−トの大幅な削減は困難である。一方、セラ
ミックフィルタなどでディ−ゼルパティキュレ−トを吸
着する方式では、排気圧力損失が大きく、その分だけ機
関効率が低下する欠点があった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
Since a variety of operations are performed in a Zel engine during cold start, climbing, and overloading, it is difficult to significantly reduce diesel particulates by improving the combustion method. On the other hand, the method of adsorbing the diesel particulates with a ceramic filter or the like has a drawback that the exhaust pressure loss is large and the engine efficiency is reduced accordingly.

【0004】特に、フィルタへのディ−ゼルパティキュ
レ−トの吸着量が増加すると、上記排気圧力損失が加速
度的に増大してディ−ゼル機関の出力低下及び燃焼特性
の悪化を招き、余計にディ−ゼルパティキュレ−トを発
生させてしまう。また排気圧力損失を低減するにはセラ
ミックフィルタを大型化せざるを得ず、コスト及びスペ
−スの点で実用化が難しかった。
In particular, when the amount of the diesel particulate adsorbed on the filter increases, the exhaust pressure loss increases at an accelerated rate, which causes the output of the diesel engine to decrease and the combustion characteristics to deteriorate. It will generate Zerupaticulate. Further, in order to reduce the exhaust pressure loss, the ceramic filter had to be upsized, and it was difficult to put it into practical use in terms of cost and space.

【0005】この問題を解決するために本出願人は、車
両用ディ−ゼル機関に静電集塵技術を応用することによ
りその排気ガスからディ−ゼルパティキュレ−トを分離
する排気ガス浄化装置を開発した。実験によれば、簡単
な装置と小さい排気ガス圧力損失で良好なディ−ゼルパ
ティキュレ−ト分離が可能なことが判明した。また、デ
ィ−ゼルパティキュレ−トは燃焼時に帯電するので、例
えばコロナ放電によるディ−ゼルパティキュレ−トの強
制帯電は必ずしも必要でないということも判明した。更
に、この排気ガス浄化装置によれば、ディ−ゼルパティ
キュレ−トの堆積により排気ガス圧力損失の増加が殆ど
ないので、セラミックフィルタ方式に比較して機関出力
の低下や燃焼の悪化が無く、それにともなうディ−ゼル
パティキュレ−ト排出量の増加もないという車両用エン
ジンとして優れた利点を有している。
In order to solve this problem, the present applicant has developed an exhaust gas purifying apparatus for separating the diesel particulates from the exhaust gas by applying the electrostatic dust collection technology to the diesel engine for vehicles. did. Experiments have shown that good diesel particulate separation is possible with a simple device and a small exhaust gas pressure drop. It was also found that the diesel particulates are charged during combustion, so that the forced charging of the diesel particulates by corona discharge is not always necessary. Further, according to this exhaust gas purifying apparatus, since the exhaust gas pressure loss hardly increases due to the accumulation of the diesel particulates, there is no decrease in the engine output or deterioration of the combustion as compared with the ceramic filter method, which is accompanied by it. It has an excellent advantage as an engine for a vehicle that does not increase the emission amount of diesel particulates.

【0006】この静電集塵方式の車両用ディ−ゼル機関
の排気ガス浄化装置は、上記したように優れた利点を持
つにもかかわらず、以下のような問題点があることがわ
かった。すなわち、排気ガス中のディ−ゼルパティキュ
レ−トは炭素質で導電性をもつ。したがって、高電圧を
印加される電極対の高圧側の電極をそれらの低圧側の電
極から絶縁する碍子が短時間で汚損され、放電又は収集
効率が低下してしまうことである。
It has been found that the electrostatic dust collecting type exhaust gas purifying apparatus for a vehicle diesel engine has the following problems in spite of the excellent advantages as described above. That is, the diesel particulates in the exhaust gas are carbonaceous and electrically conductive. Therefore, the insulator that insulates the high-voltage side electrode of the electrode pair to which the high voltage is applied from the low-voltage side electrode is contaminated in a short time, and the discharge or collection efficiency is reduced.

【0007】本発明は上記問題点に鑑みなされたもので
あって、ディ−ゼルパティキュレ−ト堆積による碍子の
絶縁劣化を防止することが可能なディ−ゼル機関の排気
ガス浄化装置を提供することをその解決すべき課題とし
ている。
The present invention has been made in view of the above problems, and it is an object of the present invention to provide an exhaust gas purifying apparatus for a diesel engine capable of preventing the insulation deterioration of the insulator due to the accumulation of diesel particulates. It is a problem to be solved.

【0008】[0008]

【課題を解決するための手段】本発明の車両用ディ−ゼ
ル機関の排気ガス浄化装置は、車両用ディ−ゼル機関の
排気経路中に設けられディ−ゼルパティキュレ−トを静
電力により収集する電極対と、該電極対を互いに電気的
に絶縁分離する碍子と、該碍子の表面に近接して配設さ
れ上記碍子表面上のディ−ゼルパティキュレ−トに着火
して焼去するディ−ゼルパティキュレ−ト焼去手段とを
備えることを特徴としている。
An exhaust gas purifying apparatus for a vehicle diesel engine according to the present invention is an electrode provided in an exhaust path of a vehicle diesel engine for collecting diesel particulates by electrostatic force. A pair, an insulator that electrically insulates and separates the pair of electrodes from each other, and a diesel particulate that is disposed close to the surface of the insulator and ignites and burns off the diesel particulate on the surface of the insulator. And a burn-out means.

【0009】放電電極対は収集電極対を兼ねることがで
きる。好適な態様において、ディ−ゼルパティキュレ−
トは上記碍子に内蔵されるヒ−タ(すなわち、電気抵抗
加熱手段)で構成することができる。このようにすれ
ば、ディ−ゼルパティキュレ−ト焼去手段を碍子と別設
するより省スペ−ス化が可能で、加熱効率も向上する。
The discharge electrode pair can also serve as the collecting electrode pair. In a preferred embodiment, the diesel particulate
The heater can be constituted by a heater (that is, electric resistance heating means) built in the insulator. By doing so, space saving can be achieved and heating efficiency can be improved as compared with the case where the diesel particulate burning-out means is provided separately from the insulator.

【0010】好適な態様において、着火時に上記排気経
路に排気ガス及び空気の少なくとも一方を供給する酸素
供給手段を備える。このようにすれば、ディ−ゼルパテ
ィキュレ−ト燃焼用の酸素が不足することがない。特
に、この酸素供給手段としてディ−ゼル機関自身を採用
すれば、特別の酸素供給手段を設ける必要がない。好適
な態様において、上記電極対間にコロナ放電を生じない
試験電圧を印加した場合の漏れ電流により碍子汚損の程
度を検出する碍子汚損度検出手段が設けられ、この碍子
汚損度検出手段の判定結果によりディ−ゼルパティキュ
レ−ト焼去手段を駆動する。このようにすれば、適切な
間隔で焼去を実施することができる。
In a preferred embodiment, an oxygen supply means for supplying at least one of exhaust gas and air to the exhaust passage at the time of ignition is provided. In this way, the oxygen for burning diesel particulates will not run short. In particular, if the diesel engine itself is adopted as the oxygen supply means, it is not necessary to provide a special oxygen supply means. In a preferred embodiment, insulator pollution degree detection means for detecting the degree of insulator pollution by the leakage current when a test voltage that does not generate corona discharge is applied between the pair of electrodes is provided, and the determination result of this insulator pollution degree detection means To drive the diesel particulate burn-out means. In this way, it is possible to burn off at appropriate intervals.

【0011】[0011]

【作用】まず、本発明の車両用ディ−ゼル機関の排気ガ
ス浄化装置の原理を説明する。本発明では、電気集塵の
原理を応用してディ−ゼル機関の排気ガス中に含まれる
ディ−ゼルパティキュレ−トを排気ガスから分離する。
すなわち、高電圧電源部は電極対に所定の電圧を印加
し、電極対は車両用ディ−ゼル機関から排出される排気
ガス中のディ−ゼルパティキュレ−トを静電力により収
集する。
First, the principle of the exhaust gas purifying apparatus for a vehicle diesel engine according to the present invention will be described. In the present invention, the principle of electrostatic precipitator is applied to separate the diesel particulate contained in the exhaust gas of the diesel engine from the exhaust gas.
That is, the high-voltage power supply unit applies a predetermined voltage to the electrode pair, and the electrode pair collects the diesel particulates in the exhaust gas discharged from the vehicle diesel engine by electrostatic force.

【0012】ディ−ゼルパティキュレ−ト焼去手段は、
碍子表面に近接して設けられ、碍子表面に堆積したディ
−ゼルパティキュレ−トを燃焼して碍子表面の絶縁抵抗
を回復する。
The means for burning off the diesel particulate is
It is provided close to the insulator surface and burns the diesel particulates deposited on the insulator surface to restore the insulation resistance of the insulator surface.

【0013】[0013]

【発明の効果】上記説明したように本発明によれば、碍
子表面に近接して設けられ、碍子表面に堆積したディ−
ゼルパティキュレ−トを燃焼して碍子表面の絶縁抵抗を
回復するディ−ゼルパティキュレ−ト焼去手段を備えて
いるので、ディ−ゼルパティキュレ−ト堆積による碍子
の絶縁劣化を防止することが可能となり、碍子の絶縁劣
化によりディ−ゼルパティキュレ−トの帯電効率や収集
効率が低下するのを防止することができる。
As described above, according to the present invention, a diode provided near the surface of the insulator and deposited on the surface of the insulator.
Equipped with a diesel particulate burn-out means that burns the diesel particulates to restore the insulation resistance of the insulator surface, it is possible to prevent the insulator deterioration of the insulator due to the diesel particulate accumulation, and It is possible to prevent the deterioration of the charging efficiency and the collection efficiency of the diesel particulate due to the insulation deterioration.

【0014】[0014]

【実施例】本発明の各実施例を以下、図面を参照して順
番に説明する。なお、実施例8以外は、本発明の装置の
各構成要素の実施例である。 (実施例1)実施例1の排気ガス浄化装置の横断面図を
図1及び図2に示す。
Embodiments of the present invention will now be described in order with reference to the drawings. It is to be noted that, except for Example 8, it is an example of each component of the apparatus of the present invention. (Embodiment 1) FIGS. 1 and 2 are cross-sectional views of an exhaust gas purification apparatus of Embodiment 1.

【0015】この装置は、車両用ディ−ゼル機関の上流
側排気管1a及び下流側排気管1bに嵌合して両排気管
1a、1bを連結する外缶部2と、外缶部2内に絶縁碍
子3により支持されるステンレス製の高電圧電極部5
と、高圧電極部5に接続される高電圧電源部6とからな
る。外缶部2はステンレス製の密閉箱形状を有し、その
両側壁に設けられた流入孔21及び流出孔22に上流側
排気管1a及び下流側排気管1bが個別に嵌合してい
る。外缶部2の内部には、隔壁25、29により区画さ
れて流入孔21及び流出孔22に至る数字2の形状の流
路が形成されており、この流路の最初の直線部分が本発
明でいう放電空間Sdを形成し、その後の流路が本発明
でいう収集空間(すなわち、収集電極対間の空間)Sc
を形成する。したがって、放電空間Sdを囲む外缶部2
の部分23及び隔壁25の一面が本発明でいう放電電極
対の一方を形成し、放電空間Sd内の高圧電極部5の部
分53が放電電極対の他方を形成している。また、収集
空間Scを囲む外缶部2の部分24、隔壁25の他面及
び隔壁29が本発明でいう収集電極対の一方を形成し、
収集空間Sc内の高圧電極部5の部分54が収集電極対
の他方を形成している。図2に示すように、放電電極対
の一方となる外缶部2の部分(以下、放電電極部分とい
う)23は小径長管状に形成され、収集電極対の一方と
なる外缶部2の部分(以下、収集電極部分という)24
は角箱状に形成されている。
In this device, an outer can portion 2 that fits into the upstream exhaust pipe 1a and the downstream exhaust pipe 1b of a vehicle diesel engine to connect the exhaust pipes 1a and 1b, and the outer can portion 2 are provided. The high-voltage electrode part 5 made of stainless steel supported on the insulator 3
And a high-voltage power supply unit 6 connected to the high-voltage electrode unit 5. The outer can 2 has a closed box shape made of stainless steel, and the upstream exhaust pipe 1a and the downstream exhaust pipe 1b are individually fitted into the inflow hole 21 and the outflow hole 22 provided on both side walls thereof. Inside the outer can portion 2, there is formed a flow passage of the shape of numeral 2 which is divided by the partition walls 25 and 29 and reaches the inflow hole 21 and the outflow hole 22, and the first straight line portion of this flow passage is the present invention. Forming the discharge space Sd, and the flow path thereafter is the collecting space (that is, the space between the collecting electrode pair) Sc in the present invention.
To form. Therefore, the outer can portion 2 surrounding the discharge space Sd
The portion 23 and one surface of the partition wall 25 form one of the discharge electrode pairs referred to in the present invention, and the portion 53 of the high voltage electrode portion 5 in the discharge space Sd forms the other of the discharge electrode pairs. Further, the portion 24 of the outer can portion 2 surrounding the collection space Sc, the other surface of the partition wall 25 and the partition wall 29 form one of the collection electrode pairs in the present invention,
The portion 54 of the high voltage electrode portion 5 in the collection space Sc forms the other of the collection electrode pair. As shown in FIG. 2, a portion (hereinafter, referred to as a discharge electrode portion) 23 of the outer can portion 2 that is one of the discharge electrode pairs is formed in a small-diameter long tube, and a portion of the outer can portion 2 that is one of the collection electrode pairs. (Hereinafter referred to as the collecting electrode portion) 24
Is formed in a rectangular box shape.

【0016】高圧電極部5の放電電極側の部分53は細
幅長尺板状に形成され、高圧電極部5の収集電極側の部
分54は広幅長尺板状に形成され、高圧電極部5の板幅
方向は垂直方向となっている。高圧電極部5の収集電極
側の部分54には垂直方向に伸びる支持棒55が溶接さ
れており、支持棒55の上下端はアルミナ磁器製の碍子
3により外缶部2に電気絶縁可能に支持されている。更
に説明すると、外缶部2の小孔(図示せず)を貫通して
碍子3が固定されており、この碍子3を貫通して支持棒
55が固定されている。この支持棒55は給電部材とし
て高電圧電源部6に接続されている。高電圧電源部6は
高圧電極部5に負の直流高電圧を印加し、車体(図示せ
ず)を介して接地された外缶部2と高圧電極部5との間
にコロナ放電を発生させる。高電圧電源部6の回路構成
自体は周知であるのでその説明は省略する。
The discharge electrode side portion 53 of the high voltage electrode portion 5 is formed in a narrow and long plate shape, and the collecting electrode side portion 54 of the high voltage electrode portion 5 is formed in a wide and long plate shape, and the high voltage electrode portion 5 is formed. The board width direction is vertical. A support rod 55 extending in the vertical direction is welded to a portion 54 of the high-voltage electrode portion 5 on the collecting electrode side, and the upper and lower ends of the support rod 55 are supported by the insulator 3 made of alumina porcelain on the outer can portion 2 so as to be electrically insulated. Has been done. More specifically, the insulator 3 is fixed by penetrating a small hole (not shown) of the outer can portion 2, and the support rod 55 is fixed by penetrating the insulator 3. The support rod 55 is connected to the high-voltage power supply section 6 as a power supply member. The high-voltage power supply unit 6 applies a high negative DC voltage to the high-voltage electrode unit 5 to generate corona discharge between the high-voltage electrode unit 5 and the outer can unit 2 which is grounded via the vehicle body (not shown). . The circuit configuration of the high-voltage power supply unit 6 is well known, and therefore its explanation is omitted.

【0017】以下に、この装置の動作を説明する。車両
のディ−ゼル機関から出る排気ガスは上流側排気管1a
を介して外缶部2内に送られ、そして下流側排気管1b
及び消音器(図示せず)を介して外部に排出される。高
電圧電源部6は高圧電極部5に負の直流高電圧を印加
し、小さい間隙d1をもつ放電空間Sdにおいて高圧電
極部5と外缶部2との間にコロナ放電を発生させる。こ
のコロナ放電により放電空間Sd中の排気ガスに含まれ
るディ−ゼルパティキュレ−トは負に帯電される。収集
空間Scでは間隙d2が広いのでコロナ放電は発生せ
ず、ただ静電界だけが形成される。したがって、収集空
間Scに流入した帯電ディ−ゼルパティキュレ−トはこ
の静電界に引かれて外缶部2の内面に堆積し、下流側排
気管1bから清浄な排気ガスが排出される。
The operation of this device will be described below. The exhaust gas emitted from the diesel engine of the vehicle is the upstream exhaust pipe 1a.
Is sent to the inside of the outer can portion 2 via the
And is discharged to the outside through a silencer (not shown). The high-voltage power supply unit 6 applies a negative DC high voltage to the high-voltage electrode unit 5 to generate corona discharge between the high-voltage electrode unit 5 and the outer can unit 2 in the discharge space Sd having the small gap d1. Due to this corona discharge, the diesel particulate contained in the exhaust gas in the discharge space Sd is negatively charged. Since the gap d2 is wide in the collection space Sc, no corona discharge occurs and only an electrostatic field is formed. Therefore, the charged diesel particulates that have flowed into the collection space Sc are attracted by this electrostatic field and are deposited on the inner surface of the outer can portion 2, and clean exhaust gas is discharged from the downstream side exhaust pipe 1b.

【0018】外缶部2内部に堆積したディ−ゼルパティ
キュレ−トは、適当な時間間隔でヒ−タ(図示せず)に
より焼去される。なお、本実施例では高い電界が生じる
放電空間Sdにおいて碍子3を配設していないので漏れ
電流を低減できる利点がある。 (実施例2)本発明の他の実施例を図3乃至図6に示
す。ここで、図3は横断面図、図4はB−B線断面図、
図5はA−A線断面図、図6はノズル部の断面図であ
る。
The diesel particulates deposited inside the outer can 2 are burned off by a heater (not shown) at appropriate time intervals. In this embodiment, since the insulator 3 is not arranged in the discharge space Sd where a high electric field is generated, there is an advantage that the leakage current can be reduced. (Embodiment 2) Another embodiment of the present invention is shown in FIGS. Here, FIG. 3 is a cross-sectional view, FIG. 4 is a cross-sectional view taken along line BB,
5 is a sectional view taken along the line AA, and FIG. 6 is a sectional view of the nozzle portion.

【0019】この装置は、車両用ディ−ゼル機関(図示
せず)の上流側排気管1aに取り付けられ本発明でいう
放電電極対を構成するノズル部4と、ノズル部4と下流
側排気管1bとの間に設けられ本発明でいう収集電極対
を構成する外缶部7と、これらノズル部4及び外缶部7
に直流高電圧を印加する高電圧電源部6とからなる。ノ
ズル部4は、図6に示すように、先細円筒形状のコ−ン
部(本発明でいう放電電極の一方)41と、コ−ン部4
1の軸心に沿って伸びる電極棒(本発明でいう放電電極
の他方)42とからなり、電極棒42は碍子3により支
持されている。更に説明すると、碍子3は、コ−ン部4
1の径大部に設けられた孔部を貫通してねじ43により
コ−ン部41に固定されている。碍子3はノズル先端に
向けてL字状に曲がっており、碍子中央部には電極棒4
2の基部が貫通している。電極棒の外端は高電圧電源部
6に接続されている。
This apparatus is attached to an upstream exhaust pipe 1a of a diesel engine for a vehicle (not shown) and constitutes a discharge electrode pair according to the present invention, a nozzle portion 4, a nozzle portion 4 and a downstream exhaust pipe. 1b and the outer can portion 7 that constitutes the collecting electrode pair in the present invention, and the nozzle portion 4 and the outer can portion 7
And a high voltage power supply unit 6 for applying a DC high voltage to the. As shown in FIG. 6, the nozzle portion 4 includes a tapered cylindrical cone portion (one of the discharge electrodes in the present invention) 41 and a cone portion 4.
The electrode rod 42 (the other side of the discharge electrode in the present invention) 42 extending along the axis of 1 is supported by the insulator 3. To further explain, the insulator 3 has the cone portion 4
1 is passed through a hole provided in the large diameter portion and is fixed to the cone portion 41 by a screw 43. The insulator 3 is bent in an L shape toward the tip of the nozzle, and the electrode rod 4 is provided at the center of the insulator.
The base of 2 penetrates. The outer ends of the electrode rods are connected to the high voltage power supply unit 6.

【0020】外缶部(本発明でいう収集電極の一方)7
は、図4及び図5に示すように蓋部71及び底部72か
らなる密閉浅底缶であって、図3に示すように外缶部7
の左側壁7aの一端部に設けられた孔74にはノズル部
4の先端が嵌入されており、外缶部7の右側壁7bの他
端部に設けられた孔75には下流側排気管1bが嵌入さ
れている。
Outer can portion (one of the collecting electrodes in the present invention) 7
4 is a closed shallow-bottom can that includes a lid portion 71 and a bottom portion 72 as shown in FIGS. 4 and 5, and an outer can portion 7 as shown in FIG.
The tip of the nozzle portion 4 is fitted in a hole 74 provided at one end portion of the left side wall 7a of the outer wall 7a, and a downstream exhaust pipe is provided in a hole 75 provided at the other end portion of the right side wall 7b of the outer can portion 7. 1b is inserted.

【0021】外缶部7の内部空間(本発明でいう収集空
間Sc)には複数の垂直隔壁板73が互いに平行に設け
られていて、これら垂直隔壁板73により、図3に示す
ように、互いに平行な複数の流路8aが形成されてい
る。各流路8aは上流側流路8bと下流側流路8cとを
接続しており、各流路8aは上流側流路8b及び下流側
流路8cに対して直角方向に伸びている。上流側流路8
bの入口はノズル部4に連通しており、下流側流路8c
の出口は下流側排気管1bに連通している。
A plurality of vertical partition plates 73 are provided in parallel with each other in the internal space of the outer can portion 7 (collection space Sc in the present invention). As shown in FIG. A plurality of flow paths 8a parallel to each other are formed. Each flow path 8a connects the upstream flow path 8b and the downstream flow path 8c, and each flow path 8a extends in a direction perpendicular to the upstream flow path 8b and the downstream flow path 8c. Upstream channel 8
The inlet of b communicates with the nozzle part 4, and the downstream flow path 8c
Is connected to the downstream exhaust pipe 1b.

【0022】各流路8aの中央部には垂直隔壁板73と
平行に電極板(本発明でいう収集電極の他方)76が設
けられている。各電極板76は、図4に示すように碍子
3に支持された金属細棒製の水平枠77に溶接されて収
集空間Sc中に保持されている。碍子3を貫通して外部
に突出する上記金属細棒は高電圧電源部6の出力端に接
続されている。
An electrode plate (the other of the collecting electrodes in the present invention) 76 is provided in the center of each flow path 8a in parallel with the vertical partition plate 73. As shown in FIG. 4, each electrode plate 76 is welded to a horizontal frame 77 made of a thin metal rod supported by the insulator 3 and held in the collection space Sc. The thin metal rod that penetrates the insulator 3 and projects to the outside is connected to the output end of the high-voltage power supply unit 6.

【0023】次に、この装置の動作を説明する。ノズル
部4は、流入する排気ガスを絞って高速化する。コ−ン
部41の径小な先端部44とその内部の電極棒42とは
本発明でいう放電電極対を構成しており、両者の間の放
電空間Sdにコロナ放電が生じると、この高速排気ガス
流中のディ−ゼルパティキュレ−トが帯電される。
Next, the operation of this device will be described. The nozzle unit 4 throttles the inflowing exhaust gas to increase the speed. The small-diameter tip end portion 44 of the cone portion 41 and the electrode rod 42 inside thereof constitute a discharge electrode pair in the present invention, and when corona discharge occurs in the discharge space Sd between them, this high speed The diesel particulates in the exhaust gas stream are charged.

【0024】本実施例によれば、放電電極対をノズル化
しているので、放電空間Sdを小型化することができ、
この部分にコロナ放電を集中することができる。また、
排気ガス流が高速であるので、コ−ン部41の内面や電
極棒42に付着するディ−ゼルパティキュレ−トは吹き
飛ばされ、放電の障害となることが防止される。また本
実施例では、放電空間Sdの間隔d1は小さく放電電圧
を低下することができる。また放電空間Sdが小さいの
で、たとえここに大電流を流しても排気ガス流が高速で
あるのと相まってNOxの発生を少なくすることができ
る。また、放電空間Sd全体に高密度に放電電流を流せ
るのでディ−ゼルパティキュレ−トの帯電漏れを防止す
ることができ、更に、排気ガス流が高速であるので、電
子やイオンとディ−ゼルパティキュレ−トとの接触性が
よく、速やかにディ−ゼルパティキュレ−トが帯電され
る。帯電したディ−ゼルパティキュレ−トは収集空間S
cで外缶部7の内壁や垂直隔壁73に堆積する。
According to this embodiment, since the discharge electrode pair is formed into a nozzle, the discharge space Sd can be downsized,
Corona discharge can be concentrated on this part. Also,
Since the exhaust gas flow is at a high speed, the diesel particulates adhering to the inner surface of the cone portion 41 and the electrode rod 42 are blown off and the discharge is prevented from becoming an obstacle. Further, in the present embodiment, the interval d1 between the discharge spaces Sd is small and the discharge voltage can be lowered. Further, since the discharge space Sd is small, the generation of NOx can be reduced in combination with the fact that the exhaust gas flow is high speed even if a large current is passed therethrough. In addition, since the discharge current can flow at a high density in the entire discharge space Sd, it is possible to prevent charge leakage of the diesel particulate, and since the exhaust gas flow is high in speed, the diesel particulate with electrons and ions can be prevented. It has good contact properties with the diesel particulates and is quickly charged. The charged diesel particulate is a collection space S
It is deposited on the inner wall of the outer can portion 7 and the vertical partition wall 73 at c.

【0025】なお、収集空間Scの間隔d2は放電空間
Sdの間隔d1より広く、同じ大きさの電圧を印加して
もコロナ放電を生じないようになっている。また収集空
間Scにおける排気ガスの流速は小さく、ディ−ゼルパ
ティキュレ−トの走行時間は充分に確保されているもの
とする。 (実施例3)本発明の他の実施例を図7乃至図9に示
す。ここで、図7は水平断面図、図8はA−A線断面
図、図9はB−B線断面図である。
The distance d2 between the collection spaces Sc is wider than the distance d1 between the discharge spaces Sd so that corona discharge does not occur even if the same voltage is applied. Further, it is assumed that the flow velocity of the exhaust gas in the collection space Sc is low and the traveling time of the diesel particulate is sufficiently secured. (Embodiment 3) Another embodiment of the present invention is shown in FIGS. Here, FIG. 7 is a horizontal sectional view, FIG. 8 is a sectional view taken along the line AA, and FIG. 9 is a sectional view taken along the line BB.

【0026】この装置は、実施例2の図6に示すノズル
部4を、放電のための間隙d1を増加することなく大型
化したものであり、碍子3の両端はコ−ン部41の径大
部に固定されており、碍子3からノズル部4の径小な先
端部44に互いに平行な5本の電極棒42が伸びてい
る。ノズル部4の先端部44は、各電極棒42を囲む同
心円を連接した形状となっており、内部に均一なコロナ
放電が生じるように工夫されている。
In this apparatus, the nozzle portion 4 shown in FIG. 6 of the second embodiment is enlarged without increasing the gap d1 for discharging, and the both ends of the insulator 3 have the diameter of the cone portion 41. Five electrode rods 42, which are fixed to a large portion and are parallel to each other, extend from the insulator 3 to a small-diameter tip portion 44 of the nozzle portion 4. The tip portion 44 of the nozzle portion 4 is formed by connecting concentric circles surrounding each electrode rod 42, and is devised so that a uniform corona discharge is generated inside.

【0027】このようにすれば、放電電圧の増加が必要
な先端部44の増径を行わずに、排気ガス流量を増加す
ることができる。 (実施例4)本発明の他の実施例を図10の横断面図及
び図11の縦断面図に示す。この装置は、実施例2の図
7乃至図9に示すノズル部4の碍子3を碍子カバ−83
で覆い、そして碍子カバ−83と碍子3との間の空間8
4に清浄空気を充満させる構造を採用している。
In this way, the exhaust gas flow rate can be increased without increasing the diameter of the tip portion 44 which requires an increase in the discharge voltage. (Embodiment 4) Another embodiment of the present invention is shown in the horizontal sectional view of FIG. 10 and the vertical sectional view of FIG. In this device, the insulator 3 of the nozzle portion 4 shown in FIGS.
And the space 8 between the insulator cover 83 and the insulator 3
The structure used to fill the 4 with clean air.

【0028】更に説明すれば、碍子3のノズル先端側の
外表面を除く残り表面に所定間隔を隔てて横U字形でア
ルミナ磁器製の碍子カバ−83が設けられており、碍子
カバ−83の両側端はコ−ン部41の両側壁内面に密接
している。更に、碍子カバ−83と碍子3との間の空間
84に連通して空気導入孔85が開口されており、空気
導入孔85及びパイプ81を通じてエアコンプレッサ8
から空間84へ清浄空気が導入される。
To explain further, an insulator cover 83 made of alumina porcelain is formed in a horizontal U shape at a predetermined interval on the remaining surface of the insulator 3 excluding the outer surface on the nozzle tip side. Both side ends are in close contact with the inner surfaces of both side walls of the cone portion 41. Further, an air introduction hole 85 is opened in communication with a space 84 between the insulator cover 83 and the insulator 3, and the air compressor 8 is opened through the air introduction hole 85 and the pipe 81.
Clean air is introduced into the space 84 from.

【0029】空間84に導入された清浄空気は碍子カバ
−83と碍子3との間の隙間からノズル先端方向へ吹き
出され、碍子3の表面の電気絶縁性を良好に維持する。 (実施例5)本発明の他の実施例を図12の縦断面図に
示す。この装置は、実施例2の図6に示すノズル部4の
碍子構造を変更したものである。
The clean air introduced into the space 84 is blown out from the gap between the insulator cover 83 and the insulator 3 toward the tip of the nozzle, and the surface of the insulator 3 is kept in good electrical insulation. (Embodiment 5) Another embodiment of the present invention is shown in the vertical sectional view of FIG. This apparatus is a modification of the insulator structure of the nozzle portion 4 shown in FIG. 6 of the second embodiment.

【0030】すなわち、この実施例の碍子3の中央部に
はその長手方向へ送気直孔33が穿設されており、送気
直孔33の入口はパイプ81によりエアコンプレッサ8
の吐出口に接続されている。送気直孔33の底部側面に
はノズル部4の先端に向けてエア吹き出し口34が穿設
されており、電極棒42はこのエア吹き出し口34の中
心線に沿ってノズル部4の先端に向けて延伸している。
That is, an air feed straight hole 33 is formed in the central portion of the insulator 3 of this embodiment in the longitudinal direction, and the inlet of the air feed straight hole 33 is provided by a pipe 81 to the air compressor 8
Is connected to the discharge port of. An air outlet 34 is formed on the bottom side surface of the direct air supply hole 33 toward the tip of the nozzle portion 4, and the electrode rod 42 is attached to the tip of the nozzle portion 4 along the center line of the air outlet 34. Stretching towards.

【0031】したがって、エア吹き出し口34から清浄
空気を吹き出せば、たとえ碍子3の外表面がディ−ゼル
パティキュレ−トにより汚損して絶縁劣化しても、電極
棒42の絶縁を確保することができる。特にこの実施例
では、碍子3自体が送気直孔33及びエア吹き出し口3
4を有しているので余分な部品をノズル部4内部に設け
なくてもよく、構造が簡単となる。
Therefore, if clean air is blown out from the air blowing port 34, the insulation of the electrode rod 42 can be secured even if the outer surface of the insulator 3 is contaminated by the diesel particulates and the insulation is deteriorated. . In particular, in this embodiment, the insulator 3 itself is the direct air supply hole 33 and the air outlet 3.
Since it has 4, the extra parts do not have to be provided inside the nozzle portion 4, and the structure is simplified.

【0032】(実施例6)本発明の他の実施例を図13
及び図16に示す。ここで、図13は上部縦断面図、図
14は下部縦断面図、図15はB−B線矢視断面図、図
16はA−A線矢視断面図である。この装置は、バス又
はトラック用向けの大型かつ縦型の排気ガス浄化装置で
あって、上部が径小で中央部及び下部が径大な下端開口
の固定円筒部91と、この固定円筒部91の下部に回転
可能に嵌合する両端開口の回転円筒部92と、回転円筒
部92の回転を許容しつつ回転円筒部92の下端開口に
嵌合する収集箱93とを有している。
(Embodiment 6) Another embodiment of the present invention is shown in FIG.
16 and FIG. Here, FIG. 13 is an upper longitudinal sectional view, FIG. 14 is a lower longitudinal sectional view, FIG. 15 is a sectional view taken along the line BB, and FIG. 16 is a sectional view taken along the line AA. This device is a large-sized and vertical type exhaust gas purifying device for buses or trucks, and has a fixed cylindrical portion 91 with a lower opening at the upper portion and a central portion and a large diameter at the lower portion, and the fixed cylindrical portion 91. It has a rotating cylinder portion 92 with both ends opening that is rotatably fitted to the lower part of the above, and a collection box 93 that fits into the lower end opening of the rotating cylinder portion 92 while allowing the rotation of the rotating cylinder portion 92.

【0033】固定円筒部91の頂部には、送気孔35付
きの碍子3が固定されており、碍子3の下面中央から固
定円筒部91の中心線に沿って放電電極対及び収集電極
対の各一方を構成する電極棒42が垂下されている。固
定円筒部91の頂部近傍の側面には楕円開口94が設け
られ、楕円開口94には上流側排気管1aの径小先端筒
部1cが嵌入している。固定円筒部91の下部側面には
径大な排気口95が設けられ、排気口95には下流側排
気管1bが嵌入されている。
An insulator 3 with an air supply hole 35 is fixed to the top of the fixed cylindrical portion 91, and a discharge electrode pair and a collection electrode pair are provided from the center of the lower surface of the insulator 3 along the center line of the fixed cylindrical portion 91. The electrode rod 42 that constitutes one side is suspended. An elliptical opening 94 is provided on the side surface near the top of the fixed cylindrical portion 91, and the small-diameter tip cylindrical portion 1c of the upstream exhaust pipe 1a is fitted into the elliptic opening 94. A large-diameter exhaust port 95 is provided on the lower side surface of the fixed cylindrical portion 91, and the downstream exhaust pipe 1b is fitted into the exhaust port 95.

【0034】固定円筒部91は楕円開口94の直下にお
いて最も径小な径小部91aとなっており、この径小部
91aの内部空間が本発明でいう放電空間Sdを構成
し、この径小部91aが本発明で言う放電電極対の他方
を構成している。固定円筒部91は最径小部91aの下
方において最も径大な径大部となっており、この径大部
91bの内部空間が本発明でいう収集空間Scを構成
し、この径大部91bが本発明で言う収集電極対の他方
を構成している。
The fixed cylindrical portion 91 is a small diameter portion 91a having the smallest diameter immediately below the elliptical opening 94, and the internal space of the small diameter portion 91a constitutes the discharge space Sd according to the present invention. The portion 91a constitutes the other of the discharge electrode pairs referred to in the present invention. The fixed cylindrical portion 91 is the largest diameter portion below the smallest diameter portion 91a, and the internal space of the large diameter portion 91b constitutes the collection space Sc referred to in the present invention. Constitutes the other of the pair of collecting electrodes referred to in the present invention.

【0035】回転円筒部92は下部が径小な切頭円錐形
状を有し、図示しない減速モ−タにより低速回転してい
る。回転円筒部92の内面から上方に長尺のバ−96が
立設しており、バ−96の外縁は固定円筒部91の径大
部91bの内面に接している。以下、この装置の動作を
説明する。
The lower portion of the rotating cylindrical portion 92 has a frustoconical shape with a small diameter, and is rotated at a low speed by a deceleration motor (not shown). A long bar 96 stands upright from the inner surface of the rotating cylindrical portion 92, and the outer edge of the bar 96 is in contact with the inner surface of the large diameter portion 91b of the fixed cylindrical portion 91. The operation of this device will be described below.

【0036】上流側排気管1aの径小先端筒部1cで絞
られて高速となった排気ガス流は放電空間Sdに吹き込
まれる。ディ−ゼルパティキュレ−トは、放電空間Sd
で電極棒42と固定円筒部91の径小部91aとの間の
コロナ放電により帯電された後、放電空間Sdの下部の
収集空間Scに達する。帯電したディ−ゼルパティキュ
レ−トはこの収集空間Sc中の静電界に引かれて固定円
筒部91の径大部91bの内面に堆積する。
The exhaust gas flow, which is narrowed by the small-diameter tip cylinder portion 1c of the upstream exhaust pipe 1a and has a high speed, is blown into the discharge space Sd. The diesel particulate is the discharge space Sd.
After being charged by the corona discharge between the electrode rod 42 and the small diameter portion 91a of the fixed cylindrical portion 91, it reaches the collecting space Sc below the discharge space Sd. The charged diesel particulates are attracted to the electrostatic field in the collecting space Sc and are deposited on the inner surface of the large diameter portion 91b of the fixed cylindrical portion 91.

【0037】回転円筒部92の回転とともに、バ−96
は固定円筒部91の径大部91bの内面に接して低速で
回転し、径大部91bの内面に堆積したディ−ゼルパテ
ィキュレ−ト層を落下させる。落下したディ−ゼルパテ
ィキュレ−トは収集箱93に集められる。このようにす
れば、収集箱9を取り外してその中のディ−ゼルパティ
キュレ−トを除去するとができる。
As the rotating cylindrical portion 92 rotates, the bar 96
Is in contact with the inner surface of the large diameter portion 91b of the fixed cylindrical portion 91 and rotates at a low speed to drop the diesel particulate layer deposited on the inner surface of the large diameter portion 91b. The dropped diesel particulates are collected in the collecting box 93. In this way, the collection box 9 can be removed and the diesel particulates therein can be removed.

【0038】この実施例によれば、径大部91bの内面
へのディ−ゼルパティキュレ−ト層の過大な堆積を防止
できるので径大部91bを小型化することができ、収集
電圧も低減することができる。また、装置の連続使用も
可能となる。 (実施例7)本発明の他の実施例を図17の縦断面図に
示す。
According to this embodiment, it is possible to prevent the diesel particulate layer from being excessively deposited on the inner surface of the large diameter portion 91b, so that the large diameter portion 91b can be downsized and the collecting voltage can be reduced. You can Also, continuous use of the device is possible. (Embodiment 7) Another embodiment of the present invention is shown in the vertical sectional view of FIG.

【0039】この装置は、実施例2の図6に示すノズル
部4の碍子構造を変更したものである。すなわち、この
実施例の碍子3には電極棒42と離れた位置にてニクロ
ム線(本発明でいうディ−ゼルパティキュレ−ト焼去手
段)95が埋設されており、ニクロム線95の一端はタ
−ミナル99に接続され、ニクロム線95の他端は低抵
抗の電極棒42に接続されている。
This device is a modification of the insulator structure of the nozzle portion 4 shown in FIG. 6 of the second embodiment. That is, a nichrome wire (a diesel particulate burning means in the present invention) 95 is embedded in the insulator 3 of this embodiment at a position apart from the electrode rod 42, and one end of the nichrome wire 95 is a terminal. It is connected to the terminal 99 and the other end of the nichrome wire 95 is connected to the low resistance electrode rod 42.

【0040】タ−ミナル99と電極棒42との間に電圧
を印加するとニクロム線95が加熱され、碍子3が高温
となってその表面に堆積したディ−ゼルパティキュレ−
ト層が焼去され、それにより碍子3の絶縁が回復する。
本実施例では、ニクロム線95が碍子3内に内蔵されて
いるので、碍子加熱効率がよく、また、ニクロム線95
の劣化も少ない。 (実施例8)本発明の他の実施例を図18のブロック回
路図及び図19のフロ−チャ−トにより説明する。図1
8は、碍子3の表面に堆積するディ−ゼルパティキュレ
−トを焼去するために図17(実施例7)に示すニクロ
ム線95への通電を制御する制御装置を示す。
When a voltage is applied between the terminal 99 and the electrode rod 42, the nichrome wire 95 is heated and the insulator 3 becomes high in temperature, and the diesel particulates deposited on the surface thereof.
The insulating layer of the insulator 3 is restored by burning off the insulating layer.
In the present embodiment, since the nichrome wire 95 is built in the insulator 3, the insulator heating efficiency is good and the nichrome wire 95 is also used.
There is little deterioration. (Embodiment 8) Another embodiment of the present invention will be described with reference to the block circuit diagram of FIG. 18 and the flow chart of FIG. Figure 1
Reference numeral 8 denotes a control device for controlling energization to the nichrome wire 95 shown in FIG. 17 (Embodiment 7) in order to burn off the diesel particulates deposited on the surface of the insulator 3.

【0041】この制御装置は、電流センサ101、検波
回路102、平滑コンデンサ103、マイコン装置(本
発明でいう碍子汚損度検出手段)からなる。高電圧電源
部6は車両用ディ−ゼル機関により駆動されるオルタネ
−タ(図示せず)から給電され、直流高電圧を発生して
電極棒42に印加する。電流センサ101は、高電圧電
源部6へ供給する電流値(高電圧電源部6は電極棒42
にだけ通電するものとする)を検出し、検出した電流値
は検波回路102で検波され平滑コンデンサ103で平
滑化されてマイコン装置104に供給される。
This control device comprises a current sensor 101, a detection circuit 102, a smoothing capacitor 103, and a microcomputer device (insulator pollution degree detecting means in the present invention). The high voltage power supply unit 6 is supplied with power from an alternator (not shown) driven by a vehicle diesel engine, generates a DC high voltage and applies it to the electrode rod 42. The current sensor 101 uses the current value supplied to the high-voltage power supply unit 6 (the high-voltage power supply unit 6 uses the electrode rod 42).
The current value detected is detected by the detection circuit 102, smoothed by the smoothing capacitor 103, and supplied to the microcomputer device 104.

【0042】マイコン装置104によるニクロム線95
への通電制御動作を図19のフロ−チャ−トを参照して
説明する。まず、高電圧電源部6に指令して電極棒42
にコロナ放電用の電圧の数分の一程度の検査電圧を印加
し(300)、その時に高電圧電源部8へ供給される電
流(漏れ電流という)を電流センサ101から検出する
(301)。次に、所定時間内の平均漏れ電流Imを算
出し(302)、平均漏れ電流Imが所定のしきい値電
流値Ithより大きいかどうかを調べる(304)。な
お、漏れ電流の殆どは碍子3の表面をリ−クする電流で
あり、碍子3の表面にディ−ゼルパティキュレ−ト(ほ
とんど炭素からなる)が堆積する程、碍子3の絶縁抵抗
は低下し、漏れ電流は増加する。
Nichrome wire 95 by the microcomputer device 104
The energization control operation to the will be described with reference to the flowchart of FIG. First, the high voltage power supply unit 6 is instructed and the electrode rod
A test voltage of a fraction of the voltage for corona discharge is applied to (300), and the current (referred to as leakage current) supplied to the high-voltage power supply unit 8 at that time is detected from the current sensor 101 (301). Next, the average leakage current Im within a predetermined time is calculated (302), and it is checked whether the average leakage current Im is larger than a predetermined threshold current value Ith (304). Most of the leakage current is a current that leaks on the surface of the insulator 3, and as the diesel particulate (mostly made of carbon) is deposited on the surface of the insulator 3, the insulation resistance of the insulator 3 decreases, Leakage current increases.

【0043】もしIm>Ithでなければ、碍子3へデ
ィ−ゼルパティキュレ−トはあまり堆積していないもの
として300に所定時間待機後(306)、リタ−ン
し、Im>Ithであれば、碍子3へディ−ゼルパティ
キュレ−トが多く堆積しているものとして、ディ−ゼル
機関が運転中かどうかを調べ(308)、運転中でなけ
れば運転し(310)、暖機するまで待機した後(31
2)、碍子3内部のニクロム線95に通電し、碍子3を
加熱してその表面のディ−ゼルパティキュレ−トを燃焼
させる。ディ−ゼル機関の運転中には高温の排気ガスが
碍子3の周囲に流入するので、ディ−ゼルパティキュレ
−トの燃焼に有利である。ちなみに、ディ−ゼル機関の
排気ガスは充分な酸素成分を含んでいるので燃焼には支
障はないが、更に新鮮空気をエアコンプレッサなどで導
入することも可能である。
If Im> Ith is not satisfied, it is assumed that the diesel particulates are not much deposited on the insulator 3, and after waiting at 300 for a predetermined time (306), the insulator 3 is returned. If Im> Ith, the insulator is Assuming that a large amount of diesel particulates are deposited on the 3rd engine, it is checked whether or not the diesel engine is in operation (308), and if not in operation (310), after waiting until warming up ( 31
2) The Nichrome wire 95 inside the insulator 3 is energized to heat the insulator 3 and burn the diesel particulate on the surface thereof. During operation of the diesel engine, high-temperature exhaust gas flows into the periphery of the insulator 3, which is advantageous for combustion of the diesel particulates. By the way, the exhaust gas of the diesel engine does not interfere with combustion because it contains a sufficient oxygen component, but it is also possible to introduce fresh air by an air compressor or the like.

【0044】その後、碍子3の表面のディ−ゼルパティ
キュレ−ト層が消滅するのに充分な時間だけ待機し(3
16)、終了する。このようにすれば、碍子3の汚損程
度を自動検出することができ、しかも、汚損が大きいこ
とを判別した場合には碍子3を加熱してディ−ゼルパテ
ィキュレ−トを燃焼しているので、碍子3を清掃する手
間が要らず、管理が簡単となる。 (実施例9)本発明の他の実施例を図18のブロック回
路図及び図20のフロ−チャ−トにより説明する。図1
8の制御装置は、図3及び図5(実施例7)に示すヒ−
タ100への通電制御を制御して収集電極73の表面に
堆積するディ−ゼルパティキュレ−トを焼去するための
制御装置を示し、実施例8の制御装置と同じ構成を採用
している。
Thereafter, the insulator particle 3 on the surface of the insulator 3 is waited for a sufficient time to disappear (3
16) and ends. By doing so, the degree of fouling of the insulator 3 can be automatically detected, and when it is determined that the fouling is large, the insulator 3 is heated to burn the diesel particulates. No need to clean 3 and the management is simple. (Embodiment 9) Another embodiment of the present invention will be described with reference to the block circuit diagram of FIG. 18 and the flow chart of FIG. Figure 1
The control device of No. 8 is the heater shown in FIGS. 3 and 5 (Example 7).
A controller for controlling the energization of the controller 100 to burn off the diesel particulates deposited on the surface of the collecting electrode 73 is shown. The controller has the same configuration as that of the controller of the eighth embodiment.

【0045】電流センサ101は、高電圧電源部6へ供
給する電流値(高電圧電源部6は収集電極73にだけ通
電するものとする)を検出し、検出した電流値は検波回
路102で検波され平滑コンデンサ103で平滑化され
てマイコン装置104に供給される。マイコン装置10
4によるヒ−タ100の通電制御動作を図20のフロ−
チャ−トを参照して説明する。
The current sensor 101 detects the current value supplied to the high-voltage power supply section 6 (the high-voltage power supply section 6 energizes only the collecting electrode 73), and the detected current value is detected by the detection circuit 102. It is smoothed by the smoothing capacitor 103 and supplied to the microcomputer device 104. Microcomputer device 10
20 is a flowchart showing the energization control operation of the heater 100 according to FIG.
An explanation will be given with reference to the chart.

【0046】まず、高電圧電源部6が収集電極73に収
集電圧(定格の非コロナ放電電圧)を印加する時に高電
圧電源部6へ供給される電流を検出する(401)。次
に、所定時間内の平均電流Imを算出し(402)、平
均電流Imがしきい値電流値Ithより大きいかどうか
を調べる(404)。なお、この電流は収集電極73に
ディ−ゼルパティキュレ−トが堆積されて収集電極対7
3、76間の間隔が短縮されるとともに電界が強化され
て増大する。
First, when the high-voltage power supply unit 6 applies a collecting voltage (rated non-corona discharge voltage) to the collecting electrode 73, the current supplied to the high-voltage power supply unit 6 is detected (401). Next, the average current Im within a predetermined time is calculated (402), and it is checked whether the average current Im is larger than the threshold current value Ith (404). In addition, this current is generated by depositing a diesel particulate on the collecting electrode 73 and collecting electrode pair 7
The distance between 3,76 is shortened and the electric field is strengthened and increased.

【0047】もしIm>Ithでなければ、収集電極7
3にディ−ゼルパティキュレ−トはあまり堆積していな
いものとして所定時間待機後(406)、401にリタ
−ンし、Im>Ithであれば、収集電極73にディ−
ゼルパティキュレ−トが多く堆積しているものとして、
ディ−ゼル機関が運転中かどうかを調べ(408)、運
転中でなければ運転し(410)、暖機するまで待機し
た後(412)、ヒ−タ100(図3及び図5参照)に
通電し(414)、収集空間Sc中のディ−ゼルパティ
キュレ−トを燃焼させる。ヒ−タ100は収集空間Sc
の上流部に設けられているので、排気ガス流により速や
かに収集空間Scの全体に燃え広がる。
If Im> Ith, the collecting electrode 7
As shown in FIG. 3, the diesel particulate was not deposited so much, and after waiting for a predetermined time (406), it returned to 401, and if Im> Ith, it was collected on the collecting electrode 73.
As a lot of zeru particulates are deposited,
It is checked whether the diesel engine is in operation (408), if it is not in operation (410), and after waiting until it warms up (412), the heater 100 (see FIGS. 3 and 5) Power is supplied (414) to burn the diesel particulates in the collection space Sc. The heater 100 is a collection space Sc
Since it is provided in the upstream portion of the exhaust gas, the exhaust gas flow quickly burns and spreads throughout the collection space Sc.

【0048】その後、収集電極73の表面に堆積したデ
ィ−ゼルパティキュレ−ト層が消滅するのに充分な時間
だけ待機し(416)、終了する。このようにすれば、
収集電極に堆積したディ−ゼルパティキュレ−トの堆積
具合を自動検出することができ、しかも、堆積量が大き
いことを判別した場合には収集電極対73、76の表面
のディ−ゼルパティキュレ−トを燃焼しているので、収
集電極73、76を清掃する手間が要らず、管理が簡単
となる。
After that, the process waits for a sufficient time for the diesel particulate layer deposited on the surface of the collecting electrode 73 to disappear (416), and ends. If you do this,
The degree of deposition of the diesel particulates deposited on the collecting electrodes can be automatically detected, and when it is determined that the amount of deposits is large, the diesel particulates on the surfaces of the collecting electrode pairs 73 and 76 are burned. Therefore, it is not necessary to clean the collecting electrodes 73 and 76, and the management is easy.

【0049】なお本実施例では、収集電極73に給電す
る電流の変化によりディ−ゼルパティキュレ−ト堆積量
を判別しているが、ディ−ゼルパティキュレ−ト堆積に
伴う排気ガス圧力損失を圧力センサやディ−ゼル機関の
運転状況の変化で検出することも当然可能である。 (実施例10)本発明の他の実施例を図21のフロ−チ
ャ−トにより説明する。
In this embodiment, the amount of the diesel particulate deposit is determined by the change in the current supplied to the collecting electrode 73. However, the exhaust gas pressure loss caused by the diesel particulate deposit is detected by a pressure sensor or a detector. -It is naturally possible to detect the change in the operating condition of the diesel engine. (Embodiment 10) Another embodiment of the present invention will be described with reference to the flowchart of FIG.

【0050】このフロ−チャ−トは実施例8、9の制御
装置を用いて排気ガス浄化装置の最適運転を図るもので
ある。まず最初に、エンジンの運転状態、特に、そのデ
ィ−ゼルパティキュレ−ト排出量に連動する運転条件を
調べる(500)。ディ−ゼルパティキュレ−ト排出量
に連動する運転条件としては、冷却水温、燃料噴射量、
速度(負荷)などがあり、これらの条件を変えた場合の
ディ−ゼルパティキュレ−ト排出量は、マップとしてマ
イコン装置104の記憶部に予め記憶されている。
This flow chart is intended to optimize the operation of the exhaust gas purifying device by using the control devices of the eighth and ninth embodiments. First, the operating conditions of the engine, especially the operating conditions linked to its diesel particulate emission, are investigated (500). The operating conditions that are linked to the diesel particulate emission are cooling water temperature, fuel injection amount,
There are speeds (loads) and the like, and the diesel particulate discharge amount when these conditions are changed is stored in advance in the storage unit of the microcomputer device 104 as a map.

【0051】次に、検出した運転条件に基づいてディ−
ゼルパティキュレ−トの予想排出量をサ−チし(50
2)、更に、記憶部内蔵のマップに基づいて予想排出量
を所定の浄化率で処理可能な最小の放電電流値Io(最
適放電電流値)を求める(504)。なお、本発明で言
う放電電極対及び収集電極対には等しい電圧(以下、放
電電圧という)を印加しており、ここでいう放電電流は
両電極対に給電する電流の和をいう。
Next, based on the detected operating conditions,
Search for the expected amount of zer particulates (50
2) Further, a minimum discharge current value Io (optimal discharge current value) that can process the expected discharge amount at a predetermined purification rate is obtained based on a map built in the storage unit (504). In addition, the same voltage (hereinafter referred to as a discharge voltage) is applied to the discharge electrode pair and the collection electrode pair referred to in the present invention, and the discharge current here means the sum of currents supplied to both electrode pairs.

【0052】次に、上記放電電極対及び収集電極対に所
定の電圧を印加してディ−ゼルパティキュレ−トの帯電
及び収集を行い、その時の放電電流値を検出し(50
6)、その平均値を算出する(508)。次に、平均放
電電流値Imと最小放電電流値Ioを比較し(51
0)、Im>IoであればImが過大であるとして放電
電圧Vから所定電圧ΔVを減らし(512)、Im>I
oでなければ、Im<Ioであるかどうかを調べ(51
4)、Im<IoであればImが過小であるとして放電
電圧Vに所定電圧ΔVを増し(516)、Im<Ioで
なければそのまま、ステップ500にリタ−ンしてル−
チンを繰り返す。
Next, a predetermined voltage is applied to the discharge electrode pair and the collection electrode pair to charge and collect the diesel particulates, and the discharge current value at that time is detected (50
6) Then, the average value is calculated (508). Next, the average discharge current value Im and the minimum discharge current value Io are compared (51
0), if Im> Io, it is determined that Im is excessive, and the predetermined voltage ΔV is reduced from the discharge voltage V (512), Im> I.
If not o, it is checked whether Im <Io (51
4) If Im <Io, Im is considered to be too small and the predetermined voltage ΔV is increased to the discharge voltage V (516). If Im <Io is not satisfied, the process is returned to step 500 to return to the routine.
Repeat Chin.

【0053】この実施例によれば、ディ−ゼルパティキ
ュレ−ト排出量の変動に応じて放電電流値を最適範囲に
変化させているので、ディ−ゼルパティキュレ−ト排出
が少ない場合に大きな放電電流を通電して、電極の損
耗、消費電力の増大、NOxの増加を招くことがなく、
また、ディ−ゼルパティキュレ−ト排出が多い場合に小
さな放電電流を通電して、ディ−ゼルパティキュレ−ト
の浄化効率低下を招くことがない。
According to this embodiment, since the discharge current value is changed to the optimum range according to the fluctuation of the diesel particulate discharge amount, a large discharge current is supplied when the diesel particulate discharge is small. Then, without causing electrode wear, increase in power consumption, and increase in NOx,
In addition, when a large amount of diesel particulates is discharged, a small discharge current is passed, and the purification efficiency of the diesel particulates is not lowered.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の排気ガス浄化装置の横断面図、FIG. 1 is a cross-sectional view of an exhaust gas purification device according to a first embodiment,

【図2】図1の装置のA−A線矢視断面図、2 is a cross-sectional view taken along the line AA of the apparatus of FIG.

【図3】実施例2の排気ガス浄化装置の横断面図FIG. 3 is a cross-sectional view of an exhaust gas purifying device according to a second embodiment.

【図4】図3の装置のB−B線断面図、4 is a cross-sectional view taken along the line BB of the apparatus of FIG.

【図5】図3の装置のA−A線断面図、5 is a cross-sectional view taken along the line AA of the device of FIG.

【図6】図3の装置のノズル部の断面図6 is a cross-sectional view of the nozzle portion of the device of FIG.

【図7】実施例3の装置のノズル部の横断面図、FIG. 7 is a cross-sectional view of the nozzle portion of the device of Example 3,

【図8】図7の装置のA−A線断面図、8 is a cross-sectional view taken along the line AA of the apparatus of FIG.

【図9】図7の装置のB−B線断面図、9 is a sectional view taken along line BB of the apparatus of FIG.

【図10】実施例4の装置のノズル部の横断面図、FIG. 10 is a cross-sectional view of the nozzle portion of the device of Example 4,

【図11】図10の装置のB−B線断面図、11 is a sectional view taken along line BB of the apparatus of FIG.

【図12】実施例5の装置のノズル部の横断面図、FIG. 12 is a cross-sectional view of the nozzle portion of the device of Example 5,

【図13】実施例6の装置上部の縦断面図、FIG. 13 is a vertical cross-sectional view of the upper part of the device of Example 6,

【図14】実施例6の装置下部の縦断面図、FIG. 14 is a vertical cross-sectional view of the lower portion of the device of Example 6,

【図15】実施例6の装置のB−B線断面図、FIG. 15 is a sectional view taken along line BB of the apparatus of Example 6;

【図16】実施例6の装置のA−A線断面図、FIG. 16 is a cross-sectional view taken along the line AA of the device of Example 6;

【図17】実施例7の装置のノズル部の縦断面図、FIG. 17 is a vertical cross-sectional view of the nozzle portion of the device of Example 7,

【図18】実施例8の制御装置を示すブロック回路図、FIG. 18 is a block circuit diagram showing a control device of Example 8;

【図19】実施例8の制御装置のフロ−チャ−ト、FIG. 19 is a flowchart of the control device according to the eighth embodiment.

【図20】実施例9の制御装置のフロ−チャ−ト、FIG. 20 is a flowchart of the control device according to the ninth embodiment,

【図21】実施例9の制御装置のフロ−チャ−ト、FIG. 21 is a flowchart of the control device according to the ninth embodiment,

【符号の説明】[Explanation of symbols]

3は碍子、 4、42は収集電極対、 95はニクロム線(ディ−ゼルパティキュレ−ト焼去手
段)
3 is an insulator, 4 and 42 are collection electrode pairs, and 95 is a nichrome wire (diesel particulate burn-out means)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松永 久 愛知県名古屋市熱田区大宝1丁目6番22号 株式会 社長尾工業内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hisashi Matsunaga Hisashi Matsunaga 1-6-22 Daiho, Atsuta-ku, Nagoya-shi Aichi Prefecture

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】車両用ディ−ゼル機関の排気経路中に設け
られディ−ゼルパティキュレ−トを静電力により収集す
る電極対と、 該電極対を互いに電気的に絶縁分離する碍子と、 該碍子の表面に近接して配設され上記碍子表面上のディ
−ゼルパティキュレ−トに着火して焼去するディ−ゼル
パティキュレ−ト焼去手段とを備えることを特徴とする
車両用ディ−ゼル機関の排気ガス浄化装置。
1. An electrode pair provided in an exhaust path of a vehicle diesel engine for collecting a diesel particulate by electrostatic force, an insulator for electrically isolating and separating the electrode pair from each other, and an insulator for the insulator. Exhaust gas of a vehicle diesel engine, characterized in that it comprises a diesel particulate burning means for igniting and burning away the diesel particulate on the surface of the insulator which is arranged close to the surface. Purification device.
【請求項2】上記ディ−ゼルパティキュレ−ト焼去手段
は上記碍子に内蔵されるヒ−タからなる請求項1記載の
車両用ディ−ゼル機関の排気ガス浄化装置。
2. The exhaust gas purifying apparatus for a vehicle diesel engine according to claim 1, wherein the diesel particulate burning-out means comprises a heater built in the insulator.
【請求項3】上記着火時に上記排気経路に排気ガス及び
空気の少なくとも一方を供給する酸素供給手段を備える
請求項1記載の車両用ディ−ゼル機関の排気ガス浄化装
置。
3. The exhaust gas purifying apparatus for a diesel engine for a vehicle according to claim 1, further comprising oxygen supply means for supplying at least one of exhaust gas and air to the exhaust path at the time of ignition.
【請求項4】上記電極対間にコロナ放電を生じない試験
電圧を印加した場合の漏れ電流により碍子汚損の程度を
検出する碍子汚損度検出手段を備える請求項1記載の車
両用ディ−ゼル機関の排気ガス浄化装置。
4. The vehicle diesel engine according to claim 1, further comprising insulator pollution degree detecting means for detecting the degree of insulator pollution by a leakage current when a test voltage which does not generate corona discharge is applied between the pair of electrodes. Exhaust gas purification device.
JP2355491A 1991-02-18 1991-02-18 Exhaust emission control device for vehicle diesel engine Pending JPH06173635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2355491A JPH06173635A (en) 1991-02-18 1991-02-18 Exhaust emission control device for vehicle diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2355491A JPH06173635A (en) 1991-02-18 1991-02-18 Exhaust emission control device for vehicle diesel engine

Publications (1)

Publication Number Publication Date
JPH06173635A true JPH06173635A (en) 1994-06-21

Family

ID=12113720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2355491A Pending JPH06173635A (en) 1991-02-18 1991-02-18 Exhaust emission control device for vehicle diesel engine

Country Status (1)

Country Link
JP (1) JPH06173635A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188979A (en) * 2005-01-05 2006-07-20 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2006291708A (en) * 2005-04-05 2006-10-26 Denso Corp Exhaust gas treatment device
WO2010022359A3 (en) * 2008-08-22 2010-05-27 Board Of Regents Particulate matter sensor with a heater
WO2012124087A1 (en) 2011-03-16 2012-09-20 トヨタ自動車株式会社 Particulate-matter processing device
JP2012193704A (en) * 2011-03-17 2012-10-11 Toyota Motor Corp Particulate-matter processing device
JP2012193698A (en) * 2011-03-17 2012-10-11 Toyota Motor Corp Particulate-matter processing device
US8713991B2 (en) 2011-05-26 2014-05-06 Emisense Technologies, Llc Agglomeration and charge loss sensor for measuring particulate matter
US10175214B2 (en) 2011-05-26 2019-01-08 Emisense Technologies, Llc Agglomeration and charge loss sensor with seed structure for measuring particulate matter

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188979A (en) * 2005-01-05 2006-07-20 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP4577015B2 (en) * 2005-01-05 2010-11-10 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2006291708A (en) * 2005-04-05 2006-10-26 Denso Corp Exhaust gas treatment device
JP4604803B2 (en) * 2005-04-05 2011-01-05 株式会社デンソー Exhaust treatment device
WO2010022359A3 (en) * 2008-08-22 2010-05-27 Board Of Regents Particulate matter sensor with a heater
WO2012124087A1 (en) 2011-03-16 2012-09-20 トヨタ自動車株式会社 Particulate-matter processing device
US9284869B2 (en) 2011-03-16 2016-03-15 Toyota Jidosha Kabushiki Kaisha Particulate matter processing apparatus
JP2012193704A (en) * 2011-03-17 2012-10-11 Toyota Motor Corp Particulate-matter processing device
JP2012193698A (en) * 2011-03-17 2012-10-11 Toyota Motor Corp Particulate-matter processing device
US8713991B2 (en) 2011-05-26 2014-05-06 Emisense Technologies, Llc Agglomeration and charge loss sensor for measuring particulate matter
US10175214B2 (en) 2011-05-26 2019-01-08 Emisense Technologies, Llc Agglomeration and charge loss sensor with seed structure for measuring particulate matter

Similar Documents

Publication Publication Date Title
US4649703A (en) Apparatus for removing solid particles from internal combustion engine exhaust gases
US5557923A (en) Method and device for removing particles from exhaust gases from internal combustion engines
US5402639A (en) Device for cleaning exhaust gases
US20090038300A1 (en) Exhaust gas purification method and exhaust gas purification system
CN102171422B (en) Method and apparatus for regenerating filter
EP0465595A1 (en) Heating device
US6461398B2 (en) Regenerable particle filter for the removal of soot particles from exhaust gases
US8900520B2 (en) Apparatus for treating exhaust particulate matter
JPH06173635A (en) Exhaust emission control device for vehicle diesel engine
JPH06159035A (en) Exhaust emission control device of diesel engine for vehicle
WO2021248407A1 (en) Gpf oxygen pump auxiliary regeneration device and method for coupled bipolar charging and coagulation system
JPH06173637A (en) Exhaust emission control device for vehicle diesel engine
US4634806A (en) High-voltage insulator
CN103732872B (en) For controlling method and the motor vehicles of the ionization device in exhaust gas aftertreatment
DE4114935A1 (en) Vehicle exhaust filter for diesel engine - has electrostatic precipitator and mechanical collection of carbon
US5938802A (en) Exhaust gas purifier
JPH0617639A (en) Exhaust gas purifying device for vehicle diesel engine
JPH06159034A (en) Exhaust emission control device of diesel engine for vehicle
CN110985171A (en) System for regenerating DPF under controllable NTP working condition and control method
JPH06159036A (en) Exhaust emission control device of diesel engine for vehicle
JP3070621B2 (en) Exhaust gas purifier for vehicle diesel engine
JP2005232971A (en) Exhaust emission control device
JP2001173427A (en) Discharge regenerating type collecting filter
JP3073375B2 (en) Exhaust gas purification device
JP3201230B2 (en) Exhaust particulate processing equipment for internal combustion engines