JPH0617133A - Production of grain-oriented silicon steel sheet having uniform magnetism even in the case of heavy weight coil - Google Patents

Production of grain-oriented silicon steel sheet having uniform magnetism even in the case of heavy weight coil

Info

Publication number
JPH0617133A
JPH0617133A JP17721192A JP17721192A JPH0617133A JP H0617133 A JPH0617133 A JP H0617133A JP 17721192 A JP17721192 A JP 17721192A JP 17721192 A JP17721192 A JP 17721192A JP H0617133 A JPH0617133 A JP H0617133A
Authority
JP
Japan
Prior art keywords
rolling
sheet
grain
rolled
hot rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17721192A
Other languages
Japanese (ja)
Inventor
Yoshio Nakamura
吉男 中村
Yozo Suga
洋三 菅
Kiyoshi Ueno
清 植野
Hiroe Nakajima
浩衛 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP17721192A priority Critical patent/JPH0617133A/en
Publication of JPH0617133A publication Critical patent/JPH0617133A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a grain-oriented silicon steel sheet having uniform magnetism even in the case of heavy weight coil. CONSTITUTION:At the time of producing a grain-oriented silicon steel sheet, the joining between a roughed sheet bar or a sheet bar cast to the thickness equal to that of the roughed bar by means of rapid solitification and a sheet bar in the course of finish rolling is completed at a temp. not lower than a metallurgically determined temp. and finish hot rolling is done continuously while limiting the temp. hysteresis before the entrance of a coil into a continuous finish hot rolling mill and the temp. region where finish hot rolling is finished, respectively. By this method, magnetism uniform in a longitudinal direction can be obtained even if the weight of the coil is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は方向性電磁鋼板の製造方
法に関し、特にそのスラブの熱間圧延方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet, and more particularly to a hot rolling method for its slab.

【0002】[0002]

【従来の技術】変圧器およびその他の各種電気機器に利
用される方向性電磁鋼には、高い磁束密度と低い鉄損が
要求される。この要求を満たすためには、{110}
〈001〉方位(いわゆるGOSS方位)に近い方位を
持つ二次再結晶粒を得る必要がある。
2. Description of the Prior Art Grain-oriented electrical steels used for transformers and various other electric devices are required to have high magnetic flux density and low iron loss. To meet this requirement, {110}
It is necessary to obtain secondary recrystallized grains having an orientation close to the <001> orientation (so-called GOSS orientation).

【0003】GOSS方位に集積した二次再結晶粒を得
るためには、インヒビターと称されるMnS,AlN,
MnSe等の析出物を適量・適当なサイズで析出させる
ことが必要である。電磁鋼板におけるこれら析出物の分
布は、その鋼板が得られるまでの熱・加工履歴に大きく
左右される。
In order to obtain secondary recrystallized grains integrated in the GOSS direction, MnS, AlN, called an inhibitor,
It is necessary to deposit a precipitate such as MnSe in a proper amount and a proper size. The distribution of these precipitates in the magnetic steel sheet is greatly influenced by the heat and working history until the steel sheet is obtained.

【0004】従来、方向性電磁鋼板のインヒビターとし
て用いられている析出物の組み合わせとしては、N.
P.Gossによって提案されたMnSを利用する方法
(U.S.Patent 1965559,(193
4))、田口らによって提案されたAlNとMnSを用
いる方法(特公昭33−4710号公報)、今井らによ
って提案されたMnSeまたはMnSとMnSeを利用
する方法(特公昭36−17154号公報)がある。こ
れら技術の中で、現在最も優れた{110}〈001〉
方位集積度を得ることができるのはAlNとMnSを利
用する方法であるが、析出物制御の観点からは、この方
法は工業的に最も難しい。
Conventionally, as a combination of precipitates used as an inhibitor for grain-oriented electrical steel sheets, N.
P. A method using MnS proposed by Goss (US Patent 1965559, (193
4)), a method using AlN and MnS proposed by Taguchi et al. (Japanese Patent Publication No. 33-4710) and a method using MnSe or MnS and MnSe proposed by Imai et al. (Japanese Patent Publication No. 36-17154). There is. Among these technologies, currently the best {110} <001>
It is the method using AlN and MnS that can obtain the orientation integration degree, but this method is industrially the most difficult from the viewpoint of controlling the precipitates.

【0005】AlNとMnSをインヒビターとして用い
て高磁束密度一方向性電磁鋼板を製造する場合の、Mn
S,AlNの析出状態制御の考え方は次の通りである。
AlNについては特開昭48−51852号公報に基本
指針が提示されており、まず熱延に先立ちAlNを完全
に固溶させた後、熱延中にAlNを析出させないように
析出温度以下を急冷する。AlNの析出ノーズはIWA
YAMAら(J.Magnetism and Mag
netic Materials,19(1980),
15)が示すごとく1130〜1160℃であり、実際
にはこの温度域よりも高温で粗圧延を完了し、かつ仕上
圧延時にこの温度域を急冷することが行われている。
In the case of producing a high magnetic flux density grain-oriented electrical steel sheet using AlN and MnS as inhibitors, Mn
The concept of controlling the state of precipitation of S and AlN is as follows.
Regarding AlN, a basic guideline is presented in Japanese Patent Laid-Open No. 48521/1978. First, AlN is completely solid-soluted before hot rolling, and then rapidly cooled below the precipitation temperature so as not to precipitate AlN during hot rolling. To do. AlN precipitation nose is IWA
YAMA et al. (J. Magnetism and Mag)
netic Materials, 19 (1980),
As indicated by 15), it is 1130 to 1160 ° C., and in reality, rough rolling is completed at a temperature higher than this temperature range, and this temperature range is rapidly cooled during finish rolling.

【0006】以上の熱履歴は、最終製品の{110}
〈001〉方位集積度に極めて多大な影響を及ぼし、た
とえば熱延コイル単重が大きくなり圧延時間がかかるこ
とによってコイル後部の温度が低下すると、該部分に細
粒と呼ばれる二次再結晶不良が生じる。
The above thermal history is {110} of the final product.
When the temperature of the rear part of the coil is lowered due to an extremely large effect on the <001> orientation integration degree, for example, the unit weight of the hot-rolled coil becomes large and rolling takes a long time, secondary recrystallization defects called fine grains occur in the part. Occurs.

【0007】AlNと併用する際のMnSに関しては、
特開昭48−69720号公報に基本指針が提示されて
おり、まず熱延に先立ちMnSを完全に固溶させた後、
熱延中に析出させ必要量のMnSを確保する。MnSの
析出ノーズは先のIWAYAMAらが示すように116
0〜1200℃であるため、実際は粗バーが1200℃
以下950℃以上の温度範囲に一定時間保たれるように
熱延が行われる。
Regarding MnS when used in combination with AlN,
Japanese Unexamined Patent Publication No. 48-69720 discloses a basic guideline. First, MnS is completely dissolved before hot rolling, and then,
Precipitate during hot rolling to secure the required amount of MnS. The precipitation nose of MnS is 116 as shown by IWAYAMA et al.
0-1200 ℃, so the actual bar is 1200 ℃
Then, hot rolling is performed so that the temperature is maintained in a temperature range of 950 ° C. or higher for a certain period of time.

【0008】AlNとMnSを併用する際の操業上の難
しさは、両者の析出ノーズの温度差が極めて小さいた
め、MnSの析出を十分に行わせるべく圧延に時間をか
けると、粗バーまたは仕上圧延中のコイルの温度低下に
よるAlN析出起因の細粒が発生すること、またAlN
の析出を回避するべく、より高温から急冷するとMnS
の析出不足起因で磁束密度が低下することにある。
The difficulty in operation when AlN and MnS are used in combination is that the temperature difference between the precipitation noses of the two is extremely small. Therefore, if rolling is carried out for a sufficient time to precipitate MnS, a rough bar or finish will be produced. Fine particles are generated due to AlN precipitation due to the temperature drop of the coil during rolling.
To avoid precipitation of MnS
The reason is that the magnetic flux density is lowered due to the insufficient precipitation of.

【0009】従って従来の熱延技術においては、スラブ
重量を大きくすると熱延コイル長手方向で均一な熱履歴
を得ることが難しく、前述の細粒または磁束密度の低下
を招くためコイル重量に制限があり、生産性及び歩留の
低下を招いていた。
Therefore, in the conventional hot rolling technique, if the slab weight is increased, it is difficult to obtain a uniform heat history in the longitudinal direction of the hot rolled coil, and the fine grain or the magnetic flux density is lowered as described above, so that the coil weight is limited. There was a decrease in productivity and yield.

【0010】コイルの長手方向の熱履歴の差に基づくA
lNの析出状態の差異を解消するために、熱延板焼鈍後
の冷却速度をコイル仕上温度が高い部位と低い部位とで
変える技術が特開昭58−164725号公報に提示さ
れている。この技術によりコイル長手方向のAlN析出
状態変動に基づく磁性変動をある程度解消することがで
きるが、コイル重量が大きくなり長手方向の熱履歴の差
が大きくなると、この技術ではもはや磁性変動を解消し
きれなくなる。
A based on the difference in thermal history of the coil in the longitudinal direction
In order to eliminate the difference in the precipitation state of 1N, JP-A-58-164725 discloses a technique of changing the cooling rate after hot-rolled sheet annealing between a high coil finishing temperature region and a low coil finishing temperature region. With this technique, it is possible to eliminate the magnetic fluctuation due to the variation of the AlN precipitation state in the longitudinal direction of the coil to some extent. However, when the weight of the coil increases and the difference in the thermal history in the longitudinal direction increases, this technique can no longer eliminate the magnetic variation. Disappear.

【0011】また、熱延コイル長手方向の熱履歴の差を
少なくする方策として、スラブ加熱時にスラブ後端を前
端よりも200℃以下の範囲で高くなるように加熱する
方法が特開昭59−193216号公報で提案されてい
る。しかしながら、スラブ加熱温度はMnSの完全固溶
を行うために極めて高温になっており更に温度を高める
余地は少なく、なおかつ高温加熱部では結晶粒が粗大化
し、製品において線混と呼ばれる、線状の二次再結晶不
良部を発生させるため、スラブ加熱温度upによるコイ
ル後端部の温度低下の補償には限界がある。
Further, as a measure for reducing the difference in heat history in the longitudinal direction of the hot rolled coil, there is a method of heating the slab rear end so as to be higher than the front end by 200 ° C. or less when heating the slab. It is proposed in Japanese Patent No. 193216. However, the slab heating temperature is extremely high for complete solid solution of MnS, and there is little room for further raising the temperature. Moreover, the crystal grains become coarse in the high temperature heating part, and the linear slab in the product is called a line mixture. Since the secondary recrystallization defect portion is generated, there is a limit to the compensation of the temperature decrease at the coil rear end portion due to the slab heating temperature up.

【0012】更に、熱延コイル長手方向の熱履歴の差を
少なくする別の方策として、熱延時にスラブ先端側の圧
延速度よりも後端側の圧延速度を速くし、後端部の圧延
時間を短くすることによって、コイル後端部の温度低下
を防止する技術が特開昭59−208021号公報に提
示されている。この技術は有効であるが、スラブ先端が
ロールに噛み込む際には、噛み込み不良を避けるために
スラブ圧延速度を落とさざるを得ず、その間スラブ後端
部の温度低下は避けられないため、やはりコイル重量を
大きくすることには限界がある。
Further, as another measure for reducing the difference in heat history in the longitudinal direction of the hot rolled coil, the rolling speed at the trailing end side is made faster than the rolling speed at the leading end side of the slab during hot rolling, and the rolling time at the trailing end portion is increased. Japanese Patent Application Laid-Open No. 59-208021 proposes a technique for preventing the temperature drop at the rear end of the coil by shortening the length. This technique is effective, but when the slab tip bites into the roll, the slab rolling speed must be reduced in order to avoid bite failure, and during that time the temperature drop at the slab rear end is unavoidable. After all, there is a limit to increasing the coil weight.

【0013】MnSのみをインヒビターとして用いる場
合は、前述のAlNの析出回避からくる熱延時の温度履
歴の制約が緩和されるが、やはり熱延時の必要量・必要
サイズのMnSを析出させておくことが必要であり、ス
ラブ重量が大きくなれば、コイル長手方向に均一なMn
S析出状態を得ることが難しくなる。
When only MnS is used as an inhibitor, the restrictions on the temperature history during hot rolling due to the avoidance of AlN precipitation are alleviated, but MnS of the required amount and size during hot rolling should also be precipitated. Is required, and if the weight of the slab increases, the Mn that is uniform in the longitudinal direction of the coil
It becomes difficult to obtain the S precipitation state.

【0014】MnSとMnSeを併用する場合は、特開
昭51−20716号公報に提示されているように微細
均一にMnS,MnSeを析出させることが必要であ
り、そのためにMnSeの析出ノーズである950〜1
200℃の範囲にコイル温度を保ちつつなおかつ析出し
たMnSeが粗大化しないように冷却速度を高める必要
がある。
When MnS and MnSe are used in combination, it is necessary to finely and uniformly precipitate MnS and MnSe as disclosed in JP-A-51-20716, and for that reason, it is a precipitation nose of MnSe. 950-1
It is necessary to increase the cooling rate while keeping the coil temperature in the range of 200 ° C. and preventing the precipitated MnSe from coarsening.

【0015】この場合の析出急冷処理を連続仕上熱延機
に入る以前の粗バ−の段階で行おうとすると、冷却効率
が悪いばかりでなく、板厚が厚いために板厚方向に温度
差を生じ、板表面層と中心層でMnSeの析出に不均一
が生じる。
If the precipitation quenching treatment in this case is to be carried out at the stage of the rough bar before entering the continuous finishing hot rolling machine, not only the cooling efficiency is bad but also the temperature difference in the plate thickness direction is caused due to the thick plate thickness. Occurs, resulting in nonuniform deposition of MnSe between the plate surface layer and the center layer.

【0016】従って操業上は、MnSeが析出しない高
温域で粗圧延を完了し、連続仕上熱延時に圧延によって
生じる格子欠陥を析出サイトとして、MnSeを微細均
一に分散させる処理が行われる。この場合もコイル重量
が大きくなると、圧延時間がかかることによりコイル後
部の圧延・冷却が間に合わずMnSeの粗大化が生じ、
磁束密度が低下する。
[0016] Therefore, in operation, rough rolling is completed in a high temperature range where MnSe does not precipitate, and MnSe is finely and uniformly dispersed using lattice defects generated by rolling during continuous hot rolling as precipitation sites. Also in this case, when the coil weight becomes large, it takes a long time for rolling, so that rolling and cooling of the rear portion of the coil cannot be performed in time and MnSe becomes coarse.
The magnetic flux density decreases.

【0017】[0017]

【発明が解決しようとする課題】本発明は、鋼片を1本
ずつ熱延する従来の技術では、大重量コイルを用いた場
合に避けられない方向性電磁鋼板コイル長手方向の熱履
歴差に基づく磁性不良を解消し、生産性および歩留を高
めつつ磁性の優れた電磁鋼板を工業的に安定して得る方
向性電磁鋼板の製造方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention, in the conventional technique of hot-rolling steel strips one by one, has a directional magnetic steel sheet coil which is inevitable when a heavy coil is used. It is an object of the present invention to provide a method for producing a grain-oriented electrical steel sheet, which eliminates the magnetic defect based on the above, and industrially stably obtains an electrical steel sheet having excellent magnetism while improving productivity and yield.

【0018】[0018]

【課題を解決するための手段】本発明者らは、従来の熱
延技術におけるコイル長手方向の不均一熱履歴を解消す
べく鋭意実験を重ねた結果、粗圧延されたシートバーま
たは急冷凝固により該粗バー厚と同等厚に鋳込まれたシ
ートバーと、仕上圧延中のシートバーとの接合を、ある
冶金的に決定される温度以上で完了し、連続仕上熱延機
にコイルが入る前の温度履歴と、仕上熱延を完了する温
度域を限定して連続的に仕上熱延することによって、コ
イル重量が大きくなっても長手方向で均一な磁性が得ら
れることを見いだし本発明を完成させたものである。
Means for Solving the Problems The inventors of the present invention have conducted extensive experiments in order to eliminate the non-uniform heat history in the coil longitudinal direction in the conventional hot rolling technique, and as a result, the sheet bar roughly rolled or rapidly solidified. Before joining the sheet bar cast into the same thickness as the rough bar and the sheet bar during finish rolling at a temperature not lower than a certain metallurgically determined temperature and before the coil enters the continuous finishing hot rolling machine. The present invention has been completed by finding out that even if the coil weight becomes large, uniform magnetism can be obtained in the longitudinal direction by limiting the temperature history of and the temperature range for completing the finish hot rolling. It was made.

【0019】この場合の接合方法は公知の手段による。
すなわち、特開昭54−4842号公報に提示されるフ
ラッシュ溶接によって接合する方法、特公昭59−37
861号公報に提示される先行鋼片と後行鋼片とを所定
量重ね合わせてプレス装置で圧接する方法、特開昭59
−130603号公報に記載されるレーザービーム溶接
による方法、或いは特開昭61−159285号公報に
提示される両シートバーを突き合わせた後突き合わせ部
を通電加熱して圧接する方法などが挙げられる。
The joining method in this case is a known means.
That is, a method of joining by flash welding disclosed in Japanese Patent Laid-Open No. 54-4842, Japanese Patent Publication No. 59-37.
Japanese Patent Laid-Open No. 861 discloses a method in which a preceding steel piece and a trailing steel piece are overlapped by a predetermined amount and pressure-welded by a press machine.
The method by laser beam welding described in Japanese Patent Laid-Open No. 130603, or the method disclosed in Japanese Patent Laid-Open No. 61-159285, in which both sheet bars are butted and then the butted portions are electrically heated and pressure-welded.

【0020】熱延において有限長さのシートバーを粗圧
延機と仕上圧延機の間で接合し、エンドレスの仕上圧延
をする技術が既に提案(前述の接合方法に関する公開特
許公報群)されているが、これらはみな薄板、ステンレ
スなどを対象とし、生産性向上、製品板厚寸法変動の減
少、製品材質の均一化、高張力圧延の可能化などをうた
うものであり、本発明は該技術を初めて方向性電磁鋼板
の製造に適用することによって、従来法では不可能であ
った、大重量コイルを用いつつコイル長手方向で磁性均
一な方向性電磁鋼板の製造が可能となることを新たに見
いだしたものである。
In hot rolling, a technique of joining a sheet bar having a finite length between a rough rolling mill and a finish rolling mill to perform endless finish rolling has already been proposed (the above-mentioned published patent publications relating to the joining method). However, these are all intended for thin plates, stainless steel, etc., and are intended to improve productivity, reduce product plate thickness dimension variation, make product material uniform, and enable high-tensile rolling. By applying it to the production of grain-oriented electrical steel sheets for the first time, it has been newly found that it is possible to produce grain-oriented electrical steel sheet with uniform magnetism in the longitudinal direction of the coil while using a large weight coil, which was impossible with the conventional method. It is a thing.

【0021】すなわち、接合されたシートバーをエンド
レスに連続仕上圧延するにあたって、従来の熱延技術に
比べて、圧延速度を速めること、仕上温度をコイル全長
にわたって高めにすること、の2点を取り込むことによ
り、コイル重量を大きくした場合でも従来技術に比べて
コイル先端部と後端部の温度履歴の差を小さくすること
が可能になり、結果として磁性差が生じないことを新た
に知見した。本発明によればコイル重量を大きくし連続
的に熱延することが可能なため、生産性および歩留を著
しく高めることができる。
That is, in continuous endless rolling of the joined sheet bars, two points are taken into account: increasing the rolling speed and increasing the finishing temperature over the entire length of the coil as compared with the conventional hot rolling technique. As a result, it has been newly found that even when the coil weight is increased, it is possible to reduce the difference in temperature history between the front end portion and the rear end portion of the coil as compared with the conventional technique, and as a result, no magnetic difference occurs. According to the present invention, since the weight of the coil can be increased and the hot rolling can be continuously performed, the productivity and the yield can be remarkably improved.

【0022】本発明に供される電磁鋼粗圧延シートバー
は、公知の製鋼方法、たとえば平炉、転炉、電気炉、底
吹き転炉等によって精錬された溶湯を造塊したもの、あ
るいは連続鋳造したスラブで、本発明の成分範囲を含有
するものを加熱炉で加熱、あるいは連続鋳造後に直接粗
圧延したものを意味する。また双ベルト、双ロール、片
ベルト等の急冷凝固法によって、前記粗シートバーと同
等厚に鋳込まれた素材を用いても良い。
The electromagnetic steel rough-rolled sheet bar used in the present invention is obtained by ingoting a molten metal refined by a known steelmaking method such as a flat furnace, a converter, an electric furnace, a bottom blowing converter, or continuous casting. It means a slab containing the component range of the present invention, heated in a heating furnace, or directly rough-rolled after continuous casting. Further, a raw material cast into a thickness equal to that of the rough sheet bar by a rapid solidification method such as twin belts, twin rolls, single belts may be used.

【0023】次に本発明の成分限定理由について説明す
る。Siは比抵抗を高め、電磁鋼板に要求される低鉄損
を得るために少なくとも2%含有させることが必要であ
り、また7%を超えてのSi添加は圧延が工業的に難し
くなるばかりでなく、飽和磁束密度が下がり電磁鋼板の
用途に適さなくなるために2.0%〜7.0%とした。
Next, the reasons for limiting the components of the present invention will be described. Si needs to be contained in at least 2% in order to increase the specific resistance and to obtain the low iron loss required for electromagnetic steel sheets, and addition of Si in excess of 7% not only makes rolling industrially difficult. However, the saturation magnetic flux density is lowered and the magnetic steel sheet becomes unsuitable for use as an electrical steel sheet, so the content was set to 2.0% to 7.0%.

【0024】Cは、α単相であるFe−Si合金中にγ
相を形成し、鋳造組織、熱延組織の微細化を通じて二次
再結晶不良の発生を抑制させるとともに、二次再結晶前
の集合組織形成に寄与するため添加するが、0.09%
を超えての添加は脱炭焼鈍に時間がかかり、生産性の著
しい低下を招くことから0.09%以下に限定した。し
かし、本発明の効果は必ずしもCを含む場合に限定され
るものではなく従ってCの下限は特に設けていない。
C is γ in the Fe-Si alloy which is an α single phase.
It is added to form a phase and suppress the occurrence of secondary recrystallization defects by refining the cast structure and hot rolled structure, and contribute to the formation of texture before secondary recrystallization, but 0.09%
If it is added in excess of 10%, decarburization annealing will take time, resulting in a significant decrease in productivity, so the content was limited to 0.09% or less. However, the effect of the present invention is not necessarily limited to the case where C is included, and therefore the lower limit of C is not particularly set.

【0025】MnはMnSを形成しインヒビターとして
働く重要な元素であり、MnS単独またはMnSとAl
Nをインヒビターとして用いる場合は少なくとも0.0
3%のMnが必要であり、MnSとMnSeをインヒビ
ターとして用いる場合には0.01%のMnを必要とす
る。
Mn is an important element that forms MnS and acts as an inhibitor. MnS alone or MnS and Al
At least 0.0 if N is used as an inhibitor
3% Mn is required, and 0.01% Mn is required when MnS and MnSe are used as inhibitors.

【0026】しかしながら必要量を超えてのMn添加
は、インヒビターを強化し過ぎることになり、二次再結
晶が発現しなくなるためMnS単独またはMnSとMn
Seをインヒビターとして用いる場合には0.2%を上
限とし、強いAlNを併用する場合には0.09%を上
限とした。
However, addition of Mn in excess of the required amount will strengthen the inhibitor too much and secondary recrystallization will not occur, so MnS alone or MnS and Mn will not occur.
The upper limit was 0.2% when Se was used as an inhibitor, and the upper limit was 0.09% when strong AlN was used in combination.

【0027】SはMnと同様にMnSを形成しインヒビ
ターとして働くが、一次再結晶粒の成長を効果的に抑制
するためには少なくとも0.005%が必要であり、M
nS単独またはMnSとMnSeをインヒビターとして
用いる場合には、0.1%を超えるS添加は熱延時に熱
間割れが生じるため0.005〜0.1%とする。
Similar to Mn, S forms MnS and acts as an inhibitor, but at least 0.005% is required to effectively suppress the growth of primary recrystallized grains.
When nS alone or MnS and MnSe are used as inhibitors, addition of S exceeding 0.1% causes 0.005 to 0.1% because hot cracking occurs during hot rolling.

【0028】AlNとMnSをインヒビターとして用い
る場合には、AlNの粒成長抑制力が強いため、Sの上
限は前記2種インヒビターの場合よりも小さくてすむた
め0.03%とした。
When AlN and MnS are used as inhibitors, the upper limit of S is 0.03% because the upper limit of S is smaller than that of the above two inhibitors because AlN has a strong grain growth inhibitory effect.

【0029】AlはAlNを形成しインヒビターとして
働くが、一次再結晶粒の成長を効果的に抑制するために
は少なくとも0.01%が必要であり、二次再結晶を発
現させるためには0.07%以下にする必要がある。
Al forms AlN and acts as an inhibitor, but at least 0.01% is necessary for effectively suppressing the growth of primary recrystallized grains, and 0 for expressing secondary recrystallization. It must be 0.07% or less.

【0030】NはAlと同様にAlNを形成しインヒビ
ターとして働くが、一次再結晶粒の成長を効果的に抑制
するためには少なくとも0.003%が必要であり、
0.01%を超えての添加は、ブリスタと呼ばれる表面
欠陥を生じるため0.003〜0.01%とした。
N forms AlN like Al and acts as an inhibitor, but at least 0.003% is necessary to effectively suppress the growth of primary recrystallized grains.
If added in excess of 0.01%, surface defects called blister will occur, so the content was made 0.003 to 0.01%.

【0031】SeはMnSeを形成し、インヒビターと
して働くが、一次再結晶粒の成長を効果的に抑制するた
めには少なくとも0.005%が必要であるが、経済的
理由により0.1%を上限とした。
Se forms MnSe and acts as an inhibitor. At least 0.005% is necessary to effectively suppress the growth of primary recrystallized grains, but 0.1% is added for economic reasons. The upper limit was set.

【0032】SbはMnSやMnSeと共存することに
よって、より一層強い粒成長抑制効果をもたらすことか
ら添加されるもので、0.2%を超えての添加は無意味
であることから上限を0.2%とした。しかし、本発明
の効果は必ずしもSbを含む場合に限定されるものでは
ない。
Sb is added because it coexists with MnS and MnSe to bring about a stronger grain growth suppressing effect, and the addition of more than 0.2% is meaningless, so the upper limit is 0. It was set to 0.2%. However, the effect of the present invention is not necessarily limited to the case where Sb is included.

【0033】次に接合されたシートバーを保熱する温度
域の限定理由について説明する。◎MnSのみをインヒ
ビターとして用いる場合、仕上圧延中にMnSの析出を
行おうとすると、コイル薄手化に伴うコイル長手温度降
下が著しく、均一な析出状態が得られない。粗シートバ
ーと仕上シートバーが接合された状態で連続仕上熱延機
に入る前に、MnSの析出ノーズである1200〜95
0℃の温度範囲に一定時間保持することにより、MnS
の充分量の均一析出状態が得られる。保持時間として
は、少なくとも25秒が必要であり、長時間の保持は連
続熱延の生産性を損なうばかりでなくMnSの粗大化を
ももたらすため、上限を180秒とした。
Next, the reason for limiting the temperature range in which the joined sheet bars are kept warm will be described. ◎ When only MnS is used as an inhibitor, if the precipitation of MnS is attempted during finish rolling, the coil longitudinal temperature drop due to the thinning of the coil is remarkable and a uniform precipitation state cannot be obtained. Before entering the continuous finishing hot rolling machine in a state where the rough sheet bar and the finishing sheet bar are joined, the precipitation nose of MnS is 1200 to 95.
By maintaining the temperature range of 0 ° C for a certain period of time, MnS
A sufficient amount of uniform precipitation state can be obtained. The holding time is required to be at least 25 seconds, and holding for a long time not only impairs the productivity of continuous hot rolling but also causes coarsening of MnS, so the upper limit was set to 180 seconds.

【0034】AlNとMnSをインヒビターとして用い
る場合、連続仕上熱延機に入る前にMnSを析出させて
おくだけでなく、仕上圧延中にAlNが析出しないよう
にすることが重要である。AlNは、γ相中にα相中の
10倍以上固溶するため、成分C,Si量によって決ま
るγ量の大小でAlNの析出温度域が上下する。通常の
3.2%Si、0.05%Cの場合、最大γ量は30%
程度でAlNの析出ノーズは1130〜1160℃にな
る。従ってこの場合は、シートバーを1100℃以上好
ましくは1130℃〜1200℃に保ち、1050℃以
上好ましくは1100〜1200℃で仕上熱延を完了す
る。
When AlN and MnS are used as inhibitors, it is important not only to precipitate MnS before entering the continuous finishing hot rolling machine but also to prevent AlN from being precipitated during finish rolling. Since AlN forms a solid solution in the γ phase ten times or more than in the α phase, the precipitation temperature range of AlN fluctuates depending on the amount of γ determined by the amounts of the components C and Si. In the case of normal 3.2% Si and 0.05% C, the maximum γ amount is 30%
The precipitation nose of AlN reaches 1130-1160 ° C. Therefore, in this case, the sheet bar is kept at 1100 ° C or higher, preferably 1130 ° C to 1200 ° C, and the finish hot rolling is completed at 1050 ° C or higher, preferably 1100 to 1200 ° C.

【0035】シートバー保熱温度範囲の上限は、本発明
の範囲記載の最大Si量と最低C量で決定され、下限は
最低Si量と最大C量の組み合わせで決定される。すな
わち、2%Si、0.09%Cを含有する場合の最大γ
量は、ほぼ100%であり、シートバー保持温度を80
0℃まで、仕上熱延完了温度を750℃まで下げてもA
lNの析出回避が可能になる。
The upper limit of the heat retention temperature range of the sheet bar is determined by the maximum Si amount and the minimum C amount described in the range of the present invention, and the lower limit is determined by the combination of the minimum Si amount and the maximum C amount. That is, the maximum γ when containing 2% Si and 0.09% C
The amount is almost 100%, and the sheet bar holding temperature is 80%.
A, even if the finishing hot rolling completion temperature is lowered to 0 ° C to 750 ° C
It is possible to avoid the precipitation of 1N.

【0036】一方C量を含まず、7%のSiを含有する
場合にはα単相となるため、シートバー保持温度を12
00〜1250℃とし、1150℃以上で熱延を完了す
ることが必要になる。このSi,C成分範囲で最大γ量
は0〜100%まで連続的に変化し、AlNの析出回避
は前述の温度を上限・下限とすることで可能となるた
め、シートバー保熱温度範囲として800〜1250
℃、仕上圧延温度を750℃以上とした。
On the other hand, when the C content is not included and 7% of Si is contained, the α single phase is formed, so that the sheet bar holding temperature is 12
It is necessary to set the temperature to 00 to 1250 ° C and complete the hot rolling at 1150 ° C or higher. The maximum γ amount continuously changes from 0 to 100% in the Si and C component ranges, and the precipitation of AlN can be avoided by setting the above-mentioned temperature as the upper limit and the lower limit. 800-1250
℃, the finish rolling temperature was 750 ℃ or more.

【0037】MnSとMnSeをインヒビターとして用
いる場合、粗シートバーと仕上シートバーが接合された
状態で連続仕上熱延機に入る前に、MnSeの析出ノー
ズである1200〜950℃より高温域、すなわち10
50〜1250℃の温度範囲に保ち、引き続く仕上熱延
中にMnSeの析出ノーズがかかるように、950℃以
上で仕上熱延を完了することにより、MnSeの充分な
均一微細析出状態が得られる。
When MnS and MnSe are used as inhibitors, before entering the continuous finishing hot rolling machine in a state where the rough sheet bar and the finishing sheet bar are joined, a temperature range higher than 1200 to 950 ° C. which is the precipitation nose of MnSe, that is, 10
By maintaining the temperature range of 50 to 1250 ° C. and finishing hot rolling at 950 ° C. or higher so that the precipitation nose of MnSe may be applied during the subsequent hot rolling for finishing, a sufficiently uniform fine precipitation state of MnSe can be obtained.

【0038】本発明が導かれた実施例に従って具体的に
説明する。図1はMnSとAlNをインヒビターとして
用いて従来法と本発明法で熱延し、重量の異なるコイル
の先端部と後端部の鉄損を測定した結果である。
The present invention will be specifically described with reference to the embodiments. FIG. 1 shows the results of measuring the iron loss at the leading end and the trailing end of coils having different weights by hot rolling using MnS and AlN as inhibitors by the conventional method and the method of the present invention.

【0039】従来法では、コイル後端部に温度低下起因
による二次再結晶不良のため鉄損が悪い部分が発生する
が、本発明法によれば、コイル先端部と後端部で鉄損に
大きな差が生じない。
In the conventional method, a portion where the iron loss is bad occurs at the rear end of the coil due to the secondary recrystallization defect due to the temperature decrease. According to the method of the present invention, the iron loss is caused at the coil front end and the rear end. Does not make a big difference.

【0040】図2はMnSとMnSeをインヒビターと
して用いた場合であり、本発明法がコイル先端部と後端
部の磁性不均一を解消することがわかる。
FIG. 2 shows the case where MnS and MnSe are used as inhibitors, and it can be seen that the method of the present invention eliminates the non-uniformity of the magnetism at the front and rear ends of the coil.

【0041】図3はMnSのみをインヒビターとして用
いた場合であり、やはり本発明法がコイル先端部と後端
部の磁性不均一を解消することがわかる。
FIG. 3 shows the case where only MnS was used as an inhibitor, and it can be seen that the method of the present invention also eliminates the non-uniformity of the magnetic properties at the front and rear ends of the coil.

【0042】[0042]

【実施例】【Example】

[実施例1]Si;3.25wt%、C;0.06%、酸
可溶性Al;0.026wt%、N;0.008wt%を含
む溶鋼を連続鋳造でスラブとした。1380℃に加熱
後、一部のスラブを通常の方法で粗圧延・仕上圧延を行
い板厚2.3mmの熱延板とした。
[Example 1] Molten steel containing Si; 3.25 wt%, C; 0.06%, acid-soluble Al; 0.026 wt%, N; 0.008 wt% was continuously cast into a slab. After heating to 1380 ° C., a part of the slab was roughly rolled and finish-rolled by a usual method to obtain a hot rolled sheet having a sheet thickness of 2.3 mm.

【0043】仕上熱延にあたってはバー噛み込み時に圧
延速度を遅くしたため、コイル先端部とコイル後端部の
圧延完了時の温度差は62℃であった。
In the finish hot rolling, the rolling speed was slowed down when the bar was caught, so that the temperature difference between the coil front end portion and the coil rear end portion when the rolling was completed was 62 ° C.

【0044】残りのスラブは粗圧延後、1200℃で溶
接を完了し、1180℃でシートバーが仕上圧延機に噛
み込まれるようにして連続的に仕上熱延を行い板厚2.
3mmの熱延板とした。
After the rough rolling, the remaining slabs were completely welded at 1200 ° C., and at 1180 ° C., the sheet bars were continuously hot-rolled so that the sheet bar was caught in the finishing rolling mill to obtain a sheet thickness of 2.
A 3 mm hot rolled sheet was used.

【0045】連続圧延にあたっては、定常圧延部分では
従来法よりも圧延速度を12%アップした結果、コイル
先端部と後端部の温度差が34℃となった。両方法で作
製した熱延板を1120℃で熱延板焼鈍した後、1回の
冷延で0.23mmとした。830℃、湿水素中で脱炭焼
鈍後、焼鈍分離剤を塗布しコイル状で仕上焼鈍を行っ
た。製品の磁気特性は300mm×60mmの単板試料で測
定した。
In continuous rolling, the rolling speed in the steady rolling portion was increased by 12% as compared with the conventional method, and as a result, the temperature difference between the coil front end portion and the rear end portion became 34 ° C. The hot-rolled sheet produced by both methods was annealed at 1120 ° C. and then cold-rolled once to 0.23 mm. After decarburization annealing at 830 ° C. in wet hydrogen, an annealing separator was applied and finish annealing was performed in a coil shape. The magnetic properties of the product were measured on a 300 mm x 60 mm veneer sample.

【0046】得られた結果を図1で示す。従来法ではコ
イル尾部に細粒起因と思われる鉄損の劣化が認められる
のに対して、本発明法によれば尾部でも先端部と同様優
れた鉄損値を得ることができる。図4は、コイル先端部
と尾部のマクロ写真である。従来法において、先端部で
は充分に二次再結晶粒が成長しているのに対し、尾部で
は熱延時のコイル温度低下による細粒が発生している。
一方、本発明法の場合は、コイル先端部と尾部の温度差
が34℃と、従来法に比べて30℃近く小さくなったた
めコイル先端部も尾部も充分に二次再結晶粒が成長して
いることがわかる。
The obtained results are shown in FIG. In the conventional method, deterioration of iron loss, which is considered to be caused by fine grains, is recognized in the tail portion of the coil, whereas according to the method of the present invention, the iron loss value as excellent as that of the tip portion can be obtained in the tail portion. FIG. 4 is a macro photograph of the coil tip and tail. In the conventional method, the secondary recrystallized grains are sufficiently grown at the tip part, whereas the fine grains are generated at the tail part due to the decrease in coil temperature during hot rolling.
On the other hand, in the case of the method of the present invention, the temperature difference between the coil tip portion and the tail portion is 34 ° C., which is smaller than that of the conventional method by about 30 ° C. Therefore, secondary recrystallized grains grow sufficiently in the coil tip portion and the tail portion. You can see that

【0047】[実施例2]Si;3.1%、C;0.0
46%、Mn;0.07%、S;0.020%、Se:
0.010%を含有する溶鋼を連続鋳造でスラブとし
た。1370℃で加熱後、一部のスラブを通常の方法で
粗圧延・仕上圧延を行い板厚3.3mmの熱延板とした。
仕上熱延にあたって、コイル先端部とコイル後端部の圧
延完了時の温度差は60℃であった。残りのスラブは粗
圧延後、1250℃で溶接を完了し、1100℃でシー
トバーが仕上圧延機に噛み込まれるようにして連続的に
仕上熱延を行い板厚3.3mmの熱延板とした。
[Example 2] Si: 3.1%, C: 0.0
46%, Mn; 0.07%, S; 0.020%, Se:
Molten steel containing 0.010% was continuously cast into a slab. After heating at 1370 ° C., a part of the slab was rough-rolled and finish-rolled by an ordinary method to obtain a hot-rolled plate having a plate thickness of 3.3 mm.
Upon finish hot rolling, the temperature difference between the coil front end and the coil rear end at the time of completion of rolling was 60 ° C. After the rough rolling, the remaining slabs were welded at 1250 ° C and continuously hot-rolled at 1100 ° C so that the sheet bar was caught in the finishing rolling mill to form a hot-rolled sheet with a thickness of 3.3 mm. did.

【0048】この場合も仕上圧延速度を従来法よりも1
2%アップした結果、コイル先端部と後端部の温度差は
31℃となった。両方法で作製した熱延板を、0.88
mmまで冷延し、900℃−5分間の中間焼鈍を施した。
酸洗後更に0.35mmまで冷延し、湿水素中810℃で
脱炭焼鈍を行った。
In this case as well, the finish rolling speed is set to 1 compared with the conventional method.
As a result of the increase of 2%, the temperature difference between the front end portion and the rear end portion of the coil was 31 ° C. The hot rolled sheet produced by both methods is 0.88
It was cold-rolled to mm and subjected to intermediate annealing at 900 ° C. for 5 minutes.
After pickling, the product was further cold rolled to 0.35 mm and decarburized and annealed at 810 ° C. in wet hydrogen.

【0049】焼鈍分離材を塗布後コイル状で仕上焼鈍を
行い、300mm×60mmの単板試料で磁気測定した。結
果を図2に示す。従来法ではコイル尾部にMnSeの粗
大化起因と思われる鉄損の劣化が認められるのに対し
て、本発明法によれば尾部でも先端部と同様優れた鉄損
値を得ることができる。
After the annealing separator was applied, finish annealing was performed in a coil shape, and magnetic measurement was performed on a 300 mm × 60 mm single plate sample. The results are shown in Figure 2. In the conventional method, deterioration of iron loss, which is considered to be caused by coarsening of MnSe, is recognized in the coil tail portion, whereas according to the method of the present invention, an excellent iron loss value can be obtained in the tail portion as in the tip portion.

【0050】[実施例3]Si;3.1%、C;0.0
46%、Mn;0.07%、S;0.020%を含有す
る溶鋼を連続鋳造で20,40トンのスラブとした。1
370℃で加熱後、一部のスラブを通常の方法で粗圧延
・仕上圧延を行い板厚2.5mmの熱延板とした。仕上熱
延にあたって、コイル先端部とコイル後端部の圧延完了
時の温度差は66℃であった。残りのスラブは粗圧延
後、1250℃で溶接を完了し、1150℃でシートバ
ーが仕上圧延機に噛み込まれるようにして連続的に仕上
熱延を行い板厚2.5mmの熱延板とした。
[Example 3] Si: 3.1%, C: 0.0
Molten steel containing 46%, Mn: 0.07%, S: 0.020% was continuously cast into a slab of 20,40 tons. 1
After heating at 370 ° C., a part of the slab was rough-rolled and finish-rolled by a usual method to obtain a hot-rolled plate having a plate thickness of 2.5 mm. In the finish hot rolling, the temperature difference between the coil front end and the coil rear end at the time of completion of rolling was 66 ° C. After the rough rolling, the remaining slabs were welded at 1250 ° C, and at 1150 ° C, finish hot rolling was performed continuously so that the sheet bar was caught in the finishing rolling mill to form a hot rolled sheet with a thickness of 2.5 mm. did.

【0051】この場合も仕上圧延速度を従来法よりも1
2%アップした結果、コイル先端部と後端部の温度差が
32℃となった。両方法で作製した熱延板を、0.67
mmまで冷延し、900℃−5分間の中間焼鈍を施した。
酸洗後更に0.30mmまで冷延し、湿水素中810℃で
脱炭焼鈍を行った。
In this case as well, the finish rolling speed is set to 1 compared with the conventional method.
As a result of the increase of 2%, the temperature difference between the front end portion and the rear end portion of the coil became 32 ° C. The hot-rolled sheet produced by both methods was 0.67
It was cold-rolled to mm and subjected to intermediate annealing at 900 ° C. for 5 minutes.
After pickling, the product was further cold rolled to 0.30 mm and decarburized and annealed at 810 ° C. in wet hydrogen.

【0052】焼鈍分離材を塗布後コイル状で仕上焼鈍を
行い、300mm×60mmの単板試料で磁気測定した。結
果を図3に示す。従来法ではコイル尾部にMnSの粗大
化起因と思われる鉄損の劣化が認められるのに対して、
本発明法によれば尾部でも先端部と同様優れた鉄損値を
得ることができる。
After the annealing separator was applied, finish annealing was performed in a coil shape, and magnetic measurement was performed on a 300 mm × 60 mm single plate sample. The results are shown in Fig. 3. In the conventional method, deterioration of iron loss, which is considered to be caused by coarsening of MnS, is recognized in the tail of the coil.
According to the method of the present invention, it is possible to obtain an excellent iron loss value in the tail portion as in the tip portion.

【0053】[0053]

【発明の効果】本発明によれば、コイル長手方向の熱履
歴差に基づく磁性不良が解消され、工業的に安定して磁
気特性が優れた方向性電磁鋼板が得られるばかりでな
く、コイル単重を増加させることにより生産性,歩留を
高めることができるのでその工業的価値は極めて大き
い。
EFFECTS OF THE INVENTION According to the present invention, not only the magnetic defect due to the thermal history difference in the longitudinal direction of the coil is eliminated, and the grain-oriented electrical steel sheet which is industrially stable and has excellent magnetic characteristics is obtained. By increasing the weight, productivity and yield can be increased, so its industrial value is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のコイル位置と鉄損との関係の図表であ
る。
FIG. 1 is a chart showing a relationship between a coil position and iron loss according to the present invention.

【図2】本発明の他の例のコイル位置と鉄損との関係の
図表である。
FIG. 2 is a chart showing a relationship between coil position and iron loss in another example of the present invention.

【図3】本発明の更に他の例のコイル位置と鉄損との関
係の図表である。
FIG. 3 is a chart showing the relationship between coil position and iron loss in still another example of the present invention.

【図4】(a)及び(b)はコイル先端部(イ)、及び
後部(ロ)のマクロ写真である。
4 (a) and 4 (b) are macrophotographs of a coil front end portion (a) and a rear portion (b).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中島 浩衛 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Kouei Nakajima 20-1 Shintomi, Futtsu City Nippon Steel Corporation Technical Development Division

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 方向性電磁鋼板の製造において、熱延仕
上圧延機の入り側で先行圧延材の後端部と後行圧延材の
先端部を接合し、連続仕上熱延することを特徴とする大
重量コイルで磁性均一な方向性電磁鋼板の製造方法。
1. In the production of a grain-oriented electrical steel sheet, the rear end portion of the preceding rolled material and the leading end portion of the following rolled material are joined at the entry side of the hot rolling finish rolling mill, and continuous finish hot rolling is performed. A method of manufacturing a grain-oriented electrical steel sheet with a large weight and uniform magnetism.
【請求項2】 重量%で Si;2.0〜7.0% C ;0.09%以下 sol−Al;0.01〜0.07% N ;0.003〜0.010% Mn;0.03〜0.09% S ;0.005〜0.03% を含む電磁鋼スラブを加熱、熱間圧延し、熱延板焼鈍を
施した後一回以上の冷延によって最終板厚とし、脱炭焼
鈍、更に仕上焼鈍を施す方向性電磁鋼板の製造方法にお
いて、前記熱延時に粗圧延されたシートバーまたは急冷
凝固により該粗バー厚と同等厚に鋳込まれたシートバー
と仕上圧延中のシートバーとの接合を、AlNが析出し
ない温度域で完了し、連続仕上熱延機に入る前のシート
部分をSi及びC量に応じて800〜1250℃の温度
範囲に保ち、750℃以上で連続的に仕上圧延を完了す
ることを特徴とする方向性電磁鋼板の製造方法。
2. By weight% Si; 2.0 to 7.0% C; 0.09% or less sol-Al; 0.01 to 0.07% N; 0.003 to 0.010% Mn; 0 An electromagnetic steel slab containing 0.03 to 0.09% S; 0.005 to 0.03% is heated, hot-rolled, hot-rolled and annealed, and then cold rolled one or more times to obtain the final thickness. In the method for producing a grain-oriented electrical steel sheet subjected to decarburization annealing and further finish annealing, a sheet bar roughly rolled at the time of hot rolling or a sheet bar cast to a thickness equal to the rough bar by quench solidification and finish rolling Joining with the sheet bar of No. 2 is completed in a temperature range in which AlN does not precipitate, and the sheet portion before entering the continuous finishing hot rolling machine is maintained in a temperature range of 800 to 1250 ° C depending on the amounts of Si and C, and 750 ° C or more. Of the grain-oriented electrical steel sheet characterized by continuously finishing rolling in Production method.
【請求項3】 重量%で Si;2.0〜7.0% C ;0.09%以下 Mn;0.03〜0.20% S ;0.005〜0.10% を含む電磁鋼スラブを加熱後熱間圧延し、一回以上の冷
延を施して最終板厚とした後、脱炭焼鈍、更に仕上焼鈍
を施す方向性電磁鋼板の製造方法において、前記熱延時
に粗圧延されたシートバーまたは急冷凝固により該粗バ
ー厚と同等厚に鋳込まれたシートバーと仕上圧延中のシ
ートバーとの接合を、MnSが析出しない温度域で完了
し、連続仕上熱延機に入る前のシート部分を1200℃
〜950℃の温度範囲に25秒〜180秒保ちながら連
続的に仕上熱延することを特徴とする方向性電磁鋼板の
製造方法。
3. An electromagnetic steel slab containing, by weight%, Si; 2.0 to 7.0% C; 0.09% or less Mn; 0.03 to 0.20% S; 0.005 to 0.10%. After hot-rolling after heating, after cold rolling one or more times to the final plate thickness, decarburization annealing, further in the method for producing a grain-oriented electrical steel sheet subjected to finish annealing, rough rolling during the hot rolling. Before completion of joining of a sheet bar or a sheet bar cast into a thickness equal to the rough bar by rapid solidification and a sheet bar during finish rolling in a temperature range where MnS does not precipitate and before entering a continuous finishing hot rolling machine Sheet part of 1200 ℃
A method for producing a grain-oriented electrical steel sheet, which comprises continuously performing hot rolling while maintaining a temperature range of 950C to 950C for 25 seconds to 180 seconds.
【請求項4】 重量%で Si;2.0〜7.0% C ;0.09%以下 Mn;0.01〜0.20% SまたはSeの何れか1種または2種合計;0.005
〜0.10% 必要に応じてSbを0.2%以下 を含む電磁鋼スラブを加熱、熱間圧延し、一回以上の冷
延を施して最終板厚とした後脱炭焼鈍、更に仕上焼鈍を
施す方向性電磁鋼板の製造方法において、前記熱延時に
粗圧延されたシートバーまたは急冷凝固により該粗バー
厚と同等厚に鋳込まれたシートバーと仕上圧延中のシー
トバーとの接合を、MnSeが析出しない温度域で完了
し、連続仕上熱延機に入る前のシート部分を1050℃
〜1250℃の温度範囲に保ち、950℃以上で連続的
に仕上圧延を行うことを特徴とする方向性電磁鋼板の製
造方法。
4. By weight%, Si; 2.0 to 7.0% C; 0.09% or less Mn; 0.01 to 0.20% Any one or two kinds of S and Se; 005
~ 0.10% If necessary, an electromagnetic steel slab containing 0.2% or less of Sb is heated, hot-rolled, cold-rolled one or more times to obtain the final plate thickness, and then decarburized and annealed. In a method of manufacturing a grain-oriented electrical steel sheet to be annealed, joining of a sheet bar roughly rolled at the time of hot rolling or a sheet bar cast to a thickness equal to the rough bar thickness by rapid solidification and a sheet bar during finish rolling Is completed in a temperature range where MnSe does not precipitate, and the sheet portion before entering the continuous finishing hot rolling machine is heated to 1050 ° C.
The manufacturing method of the grain-oriented electrical steel sheet characterized by holding | maintaining in the temperature range of -1250 degreeC, and performing finish rolling continuously at 950 degreeC or more.
JP17721192A 1992-07-03 1992-07-03 Production of grain-oriented silicon steel sheet having uniform magnetism even in the case of heavy weight coil Pending JPH0617133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17721192A JPH0617133A (en) 1992-07-03 1992-07-03 Production of grain-oriented silicon steel sheet having uniform magnetism even in the case of heavy weight coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17721192A JPH0617133A (en) 1992-07-03 1992-07-03 Production of grain-oriented silicon steel sheet having uniform magnetism even in the case of heavy weight coil

Publications (1)

Publication Number Publication Date
JPH0617133A true JPH0617133A (en) 1994-01-25

Family

ID=16027116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17721192A Pending JPH0617133A (en) 1992-07-03 1992-07-03 Production of grain-oriented silicon steel sheet having uniform magnetism even in the case of heavy weight coil

Country Status (1)

Country Link
JP (1) JPH0617133A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299245A (en) * 1993-04-12 1994-10-25 Nippon Steel Corp Production of grain-oriented silicon steel sheet having uniform high magnetic flux density in longitudinal direction of coil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512290A (en) * 1974-06-26 1976-01-09 Matsushita Electric Ind Co Ltd IDOSHIKITOSHISOCHI
JPS5813606A (en) * 1981-07-17 1983-01-26 Nippon Ii P Rubber Kk Preparation of olefin copolymer rubber
JPS61259804A (en) * 1985-05-11 1986-11-18 エスエムエス シユレ−マン・ジ−マグ アクチエンゲゼルシヤフト Method and device for rolling band material before finishingto hot wide band material
JPS6248725A (en) * 1985-08-26 1987-03-03 Agency Of Ind Science & Technol Novel chelate resin and production thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512290A (en) * 1974-06-26 1976-01-09 Matsushita Electric Ind Co Ltd IDOSHIKITOSHISOCHI
JPS5813606A (en) * 1981-07-17 1983-01-26 Nippon Ii P Rubber Kk Preparation of olefin copolymer rubber
JPS61259804A (en) * 1985-05-11 1986-11-18 エスエムエス シユレ−マン・ジ−マグ アクチエンゲゼルシヤフト Method and device for rolling band material before finishingto hot wide band material
JPS6248725A (en) * 1985-08-26 1987-03-03 Agency Of Ind Science & Technol Novel chelate resin and production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299245A (en) * 1993-04-12 1994-10-25 Nippon Steel Corp Production of grain-oriented silicon steel sheet having uniform high magnetic flux density in longitudinal direction of coil

Similar Documents

Publication Publication Date Title
JPH0567683B2 (en)
JP3531996B2 (en) Method of manufacturing unidirectional electromagnetic steel strip
JPH0617133A (en) Production of grain-oriented silicon steel sheet having uniform magnetism even in the case of heavy weight coil
JP4206538B2 (en) Method for producing grain-oriented electrical steel sheet
JP2580403B2 (en) Hot rolling method for continuous cast slab for unidirectional electrical steel sheet.
JP3336172B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JP3849310B2 (en) Method for producing grain-oriented electrical steel sheet without ear cracks
JP2688146B2 (en) Method for producing unidirectional electrical steel sheet having high magnetic flux density
JPH08157963A (en) Production of grain oriented silicon steel sheet
JP2514279B2 (en) Method for producing grain-oriented electrical steel sheet using continuous cast slab with high productivity
JPH0798976B2 (en) Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss
JP3451652B2 (en) Method for producing unidirectional silicon steel sheet
JPS643564B2 (en)
JPH02263924A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH0663031B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties with little edge cracking in hot rolling
JP3369371B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JPH0742504B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH08253815A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JP3527276B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH086139B2 (en) Method for manufacturing thick unidirectional electrical steel sheet with excellent magnetic properties
JPS6346130B2 (en)
JPH075976B2 (en) Hot Rolling Method for Continuously Cast Slabs for Unidirectional Electrical Steel Sheets
JPH1150153A (en) Production of grain oriented silicon steel sheet with extremely high magnetic flux density
JPH0288717A (en) Manufacture of grain-oriented electrical steel sheet by continuous casting and direct hot rolling