JPH0616775B2 - X-ray diagnostic device - Google Patents

X-ray diagnostic device

Info

Publication number
JPH0616775B2
JPH0616775B2 JP60084414A JP8441485A JPH0616775B2 JP H0616775 B2 JPH0616775 B2 JP H0616775B2 JP 60084414 A JP60084414 A JP 60084414A JP 8441485 A JP8441485 A JP 8441485A JP H0616775 B2 JPH0616775 B2 JP H0616775B2
Authority
JP
Japan
Prior art keywords
image
diagnostic apparatus
ray diagnostic
ray
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60084414A
Other languages
Japanese (ja)
Other versions
JPS61244329A (en
Inventor
雅行 西木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP60084414A priority Critical patent/JPH0616775B2/en
Priority to US06/771,033 priority patent/US4689487A/en
Priority to DE19853531448 priority patent/DE3531448A1/en
Publication of JPS61244329A publication Critical patent/JPS61244329A/en
Publication of JPH0616775B2 publication Critical patent/JPH0616775B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、被検体にX線を曝射し、被検体のX線透過像
を検出するX線診断装置に関する。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to an X-ray diagnostic apparatus for irradiating a subject with X-rays and detecting an X-ray transmission image of the subject.

[発明の技術的背景] 第5図は、イメージインテンシファイヤ(以下I.I.
と称す。)と撮像管とにより放射線像を検出する従来の
デジタルラジオグラフィ装置の構成図である。即ち、X
線管1はX線制御部21によって制御され、被検体に向
けてX線を曝射する。被検体Pを透過したX線は放射線
像となってI.I.22に入射する。I.I.22はこ
の放射線像を増幅し、光学像として出力する。この光学
像は、光学系23を介してビジコン等の撮像管24に入
力される。撮像管24はこの光学像をアナログビデオ信
号に変換し、A/D変換器に供給する。A/D変換器27
はこのアナログビデオ信号をデジタルビデオ信号に変換
し、画像メモリ28に供給する。画像メモリ28はこの
デジタルビデオ信号を一旦蓄積する。画像メモリに蓄積
されたデジタルビデオ信号は画像処理部26においてデ
ジタルサブトラクション等のデジタル画像処理が行なわ
れる。このデジタル画像処理されたデジタル信号はD/
A変換器10に供給される。D/A変換器10はこのデ
ジタル信号をアナログ信号に変換して、TVモニター2
9上に表示する。
[Technical Background of the Invention] FIG. 5 shows an image intensifier (hereinafter referred to as I.I.
Called. ) And an image pickup tube are configuration diagrams of a conventional digital radiography device. That is, X
The X-ray control unit 21 controls the X-ray tube 1 to irradiate the subject with X-rays. The X-rays that have passed through the subject P become a radiation image I.I. I. It is incident on 22. I. I. 22 amplifies this radiation image and outputs it as an optical image. This optical image is input to the image pickup tube 24 such as a vidicon via the optical system 23. The image pickup tube 24 converts this optical image into an analog video signal and supplies it to the A / D converter. A / D converter 27
Converts the analog video signal into a digital video signal and supplies it to the image memory 28. The image memory 28 temporarily stores this digital video signal. The digital video signal stored in the image memory is subjected to digital image processing such as digital subtraction in the image processing unit 26. This digital image processed digital signal is D /
It is supplied to the A converter 10. The D / A converter 10 converts this digital signal into an analog signal, and the TV monitor 2
9 Display on top.

上記のようなI.I.と撮像管とを用いた従来のデジタ
ルラジオグラフィ装置では以下に列挙するような問題点
がある。
I. I. The conventional digital radiography apparatus using the image pickup tube and the image pickup tube has the following problems.

即ち、 I.I.は、電子レンズを内蔵する真空管であるた
め、その構造上視野を大きくすることには限度がある。
例えば、通常使用されているものは、12インチ(30
cm)φぐらいまでで、視野は円形である。
That is, I. I. Is a vacuum tube with a built-in electron lens, so there is a limit to increasing the visual field due to its structure.
For example, a commonly used one is 12 inches (30
cm) up to about φ, the field of view is circular.

I.I.は入力面が凸または凹形状の真空管であるた
めに、出力画像に糸まきひずみなどのひずみを生じる。
また、均一吸収物体を撮影しても、出力画像の濃度分布
が一様でなく、特に画像周辺部でいわゆるシェーディン
グを生じる。
I. I. Since the input surface is a vacuum tube having a convex or concave shape, distortion such as thread winding distortion occurs in the output image.
Further, even if a uniform absorbing object is photographed, the density distribution of the output image is not uniform, and so-called shading occurs especially in the peripheral portion of the image.

撮像管はダイナミックレンジが狭く、透視および撮影
の両方には使えない。
The image pickup tube has a narrow dynamic range and cannot be used for both fluoroscopy and photography.

[発明の目的] 本発明は上記事情に基づいてなされたもので、広いダイ
ナミックを有し、軽量・コンパクトにいて、大視野が確
保できて、出力画像にゆがみが生じないX線診断装置を
提供することを目的とする。
[Object of the Invention] The present invention has been made based on the above circumstances, and provides an X-ray diagnostic apparatus that has wide dynamic range, is lightweight and compact, can secure a large field of view, and does not cause distortion in an output image. The purpose is to do.

[発明の概要] この目的を達成するために本発明は、被検体にX線を曝
射するX線源と前記被検体を透過したX線透過像をほぼ
等倍の光像に変換する変換手段と、入射光量に応じた電
気信号を出力する複数の半導体受光部が、前記変換手段
の出力面とほぼ同じ面積に2次元配列され、前記光像を
電気信号に変換する受光手段と、前記半導体受光部それ
ぞれと並列に接続され、前記電気信号に応じた電荷を蓄
積する複数の蓄積部を備え、電荷分布像を作成する蓄積
手段と、前記電荷分布像を読み出す処理部と、を備えた
ことを特徴とするものである。
[Summary of the Invention] In order to achieve this object, the present invention provides an X-ray source that irradiates an object with X-rays and a conversion that converts an X-ray transmission image that has passed through the object into a light image of approximately equal magnification. Means and a plurality of semiconductor light receiving portions for outputting an electric signal according to the amount of incident light are two-dimensionally arranged in an area substantially the same as the output surface of the converting means, and the light receiving means for converting the optical image into an electric signal, The semiconductor light receiving unit includes a plurality of storage units that are connected in parallel to each other and store charges according to the electric signal, and a storage unit that creates a charge distribution image, and a processing unit that reads out the charge distribution image. It is characterized by that.

[発明の実施例] 以下本発明の一実施例を第5図と同一部分には同一符号
を付した第1図を参照しながら詳述する。
[Embodiment of the Invention] An embodiment of the present invention will be described in detail below with reference to FIG. 1 in which the same parts as those in FIG.

第5図の従来例と異なるところは、I.I.と撮影管と
を用いたX線/電気変換装置の構成を、大視野螢光体1
1(たとえば縦40cm×横40cm)と、これに順次密着
して設置された光増幅12と半導体光検出器13とから
なるものに代えたことである。
The difference from the conventional example shown in FIG. I. The construction of an X-ray / electric conversion device using
1 (for example, 40 cm in length × 40 cm in width), and an optical amplifier 12 and a semiconductor photodetector 13, which are installed in close contact with this, are replaced.

上記において螢光体11としは、例えば、粉末螢光体を
接着剤で固めた所謂増感紙、単結晶シンチレータ(例え
ばCI:Tl)の柱状配列等を用いる。
Phosphor 11 cities in the above description, for example, a so-called intensifying screen the powdered fluorescent bodies solidified with an adhesive, the single crystal scintillator (e.g. C S I: Tl) is used columnar array or the like.

螢光体11の出力面の大部分を密着して覆う大視野の光
増幅感12としては、例えば、平行平板型イメージイン
テンシファイヤ,マイクロチャンネルプレート(MC
P)を使用することができる。上記大視野蛍光体11と
光増幅器12とにより変換手段が構成される。
Examples of the large-field optical amplification feeling 12 that closely covers most of the output surface of the fluorescent body 11 include, for example, a parallel plate image intensifier, a microchannel plate (MC
P) can be used. The large-field phosphor 11 and the optical amplifier 12 constitute a conversion means.

さらに光増幅器12の出力面の大部分を密着して覆う大
視野の半導体光検出器13としては、例えば以下のよう
な構成のものを使うことができる。即ち、単結晶材料で
は視野40cm×40cm程度の大面積を実現するのは、不
可能なので、例えばアモルファスシリコン材料を用い
る。
Further, as the large-field semiconductor photodetector 13 that closely covers most of the output surface of the optical amplifier 12, for example, one having the following configuration can be used. That is, it is impossible to realize a large area of about 40 cm × 40 cm with a single crystal material, and therefore an amorphous silicon material is used, for example.

次に第2図の断面図を参照しながら光増幅器12として
平行平板型I.I.を用いた場合の第1の実施例を説明
する。被検体を透過したX線透過像は真空容器26のガ
ラス面を通り螢光体11の入射面に当る。螢光体11は
入射したX線透過像をその強度に応じた強さの光像に変
換する。螢光体11の出力面から発生した光像は、螢光
体11の出力面側に密着して設置された光電面18で電
子の像に変換される。電源20は光電面18と出力螢光
面19間に直流高電圧を印加し、両面の間で電解を形成
する。この電界により光電面18で変換された電子の像
は加速され出力螢光面19に衝突する。この衝突によ
り、増幅された螢光像として出力螢光面19より出力さ
れる。この第1実施例では光像を集束するための電子レ
ンズを用いなくてもよいために増幅器12は薄くて済
む。また印加電圧を可変により出力螢光像の強度を制御
することができる。
Next, referring to the sectional view of FIG. I. A first embodiment in which is used will be described. The X-ray transmission image transmitted through the subject passes through the glass surface of the vacuum container 26 and strikes the incident surface of the fluorescent body 11. The fluorescent body 11 converts the incident X-ray transmission image into a light image having an intensity corresponding to the intensity. The optical image generated from the output surface of the fluorescent body 11 is converted into an electron image by the photocathode 18 that is closely attached to the output surface side of the fluorescent body 11. The power supply 20 applies a high DC voltage between the photocathode 18 and the output fluorescent surface 19 to form an electrolysis between the two surfaces. Due to this electric field, the electron image converted on the photocathode 18 is accelerated and collides with the output fluorescent surface 19. Due to this collision, the output fluorescent surface 19 outputs the amplified fluorescent image. In the first embodiment, the amplifier 12 can be made thin because the electron lens for focusing the light image need not be used. Further, the intensity of the output fluorescent image can be controlled by changing the applied voltage.

次は第3図の断面図を参照しながら光増幅器12として
MCPを用いた場合の第2の実施例を説明する。
Next, a second embodiment in which an MCP is used as the optical amplifier 12 will be described with reference to the sectional view of FIG.

被検体に透過したX線透過像は螢光体11により同様に
光に変換される。この光は螢光体11の出力面側に密着
して設置された光電面18で電子の像に変換される。電
源25は光電面18と出力螢光面19に直流電圧を印加
する。この電子の像は光電面出力側に密着して設置され
たMCP23で電子増倍されて出力螢光面24に衝突し
た後、増倍された螢光像として出力される。MCP23
での増倍率は、電源25から印加する直流電圧を変える
ことにより制御することができる。
The X-ray transmission image transmitted through the subject is similarly converted into light by the fluorescent body 11. This light is converted into an electron image by the photocathode 18 which is closely attached to the output surface side of the fluorescent body 11. The power supply 25 applies a DC voltage to the photocathode 18 and the output fluorescent surface 19. The electron image is electron-multiplied by the MCP 23 closely attached to the output side of the photocathode, collides with the output fluorescent surface 24, and is then output as a multiplied fluorescent image. MCP23
The multiplication factor can be controlled by changing the DC voltage applied from the power supply 25.

次に半導体光検出部13の一部分の回路図を第4図に示
す。光増幅器12で増幅された螢光像は2次元配列の半
導体受光部としてのフォトセル14に入射し、その強度
に応じた電流に変換される。尚同図において、フォトセ
ル14は簡略のため1次元配列で示しているが、実際に
は2次元配列を用いる。各フォトセル14によって変換
された電流は、各フォトセル14と並列に設けられた蓄
積部としての容量15に流れる。容量15にはそれらの
一端と共通に接続された電源Eより、予め電荷が蓄積さ
れている。このフォトセル14から供給される電流はこ
の容量に蓄積されている電荷をその電流量分打ち消す。
すなわち、X線透過像はこの光検出部13において、各
容量15の電荷分布像に変換される。
Next, FIG. 4 shows a circuit diagram of a part of the semiconductor photodetecting section 13. The fluorescent image amplified by the optical amplifier 12 is incident on the photocell 14 as a semiconductor light receiving portion of the two-dimensional array, and is converted into a current according to its intensity. Although the photocells 14 are shown in a one-dimensional array for simplification in the figure, a two-dimensional array is actually used. The current converted by each photocell 14 flows through the capacitor 15 as a storage unit provided in parallel with each photocell 14. Electric charges are accumulated in advance in the capacitor 15 from a power source E commonly connected to one ends thereof. The current supplied from the photocell 14 cancels the charge accumulated in this capacitance by the amount of the current.
That is, the X-ray transmission image is converted into the charge distribution image of each capacitor 15 in the photodetector 13.

次に、この電荷分布像を読み出す処理部について説明す
る。容量15の他端はMOSスイッチ16を介して出力
端OUTと共通に接続されている。MOSスイッチ16
はシフトレジスタ17により順次閉じられる。スイッチ
16が閉じられると、容量15に打ち消された電荷に相
当する電流が電源Eにより供給される。この電源Eより
供給される電流が出力端OUTで検出される。このスイ
ッチ16が順次閉じられて、電荷分布像が読み出され
る。この読み出された電荷分布像は従来と同じくA/D
変換部5に供給され、処理される。
Next, a processing unit that reads out the charge distribution image will be described. The other end of the capacitor 15 is commonly connected to the output end OUT via the MOS switch 16. MOS switch 16
Are sequentially closed by the shift register 17. When the switch 16 is closed, the power supply E supplies a current corresponding to the charge canceled in the capacitor 15. The current supplied from the power source E is detected at the output terminal OUT. The switches 16 are sequentially closed and the charge distribution image is read out. This read charge distribution image is the same as the conventional A / D
It is supplied to the conversion unit 5 and processed.

X線管1は管電流が数 mAの透視用の連続X線と数10
0 mAの撮影用のパルスX線を曝射する。従って、容量
15は撮影用のX線が入射しても飽和しないような大き
さが望ましい。また透視の場合には、スイッチ16はシ
フトレジスタ17により周期的に開閉動作されて、時間
的に連続した画像が出力される。この実施例では現在約
80 dBのダイナミックレンジが得られたことが検証さ
れており、通常の撮像管の60 dBを大きく上回ってい
る。また、同一基板上に受光部(フォトセル14等)と
読み出し部(MOSスイッチ16等)とを形成すると、
受光部の面積を大きくできないので、TFT(薄膜トラ
ンジスタ)等を使用して、受光部と読み出し部を重畳し
た構造が高感度化のために望ましい。
The X-ray tube 1 is a continuous X-ray for fluoroscopy with a tube current of several mA and a few tens of X-rays.
A pulsed X-ray for imaging of 0 mA is exposed. Therefore, it is desirable that the capacitance 15 has a size that does not saturate even when X-rays for photographing are incident. In the case of see-through, the switch 16 is periodically opened / closed by the shift register 17 to output a temporally continuous image. In this embodiment, it has been verified that a dynamic range of about 80 dB is currently obtained, which is far higher than the ordinary pickup tube of 60 dB. Further, when the light receiving portion (photocell 14 or the like) and the reading portion (MOS switch 16 or the like) are formed on the same substrate,
Since the area of the light receiving portion cannot be increased, a structure in which the light receiving portion and the reading portion are superposed by using a TFT (thin film transistor) or the like is desirable for high sensitivity.

また図示しないが、必要に応じて螢光体と光増幅器の
間、または光増幅器と光検出器の間またはこれらの両方
にライトガイドを設置してもよい。
Although not shown, a light guide may be installed between the fluorescent body and the optical amplifier, or between the optical amplifier and the photodetector, or both of them, if necessary.

これらの実施例においては光検出器の前に増幅率可変の
光増幅器を設けているので、光検出器のダイナミックが
80 dBに制限されている場合でも、大線量での撮影か
ら小線量での透視までを一台の装置で行うことができ
る。即ち、撮影時間には増幅率を低く抑え、透視時には
増幅率を大きくすることにより、常に光検出器をそのダ
イナミックレンジの範囲内で使うことが可能になる。
In these embodiments, since an optical amplifier with variable amplification factor is provided in front of the photodetector, even if the dynamic of the photodetector is limited to 80 dB, it is possible to change from a large dose to a small dose. It is possible to perform fluoroscopy with a single device. That is, by suppressing the amplification factor to a low value during photographing time and increasing the amplification factor during fluoroscopy, it becomes possible to always use the photodetector within its dynamic range.

本発明は上記実施例に限定されずに、本発明の要旨を逸
脱しない範囲で種々変形して実施できる。
The present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the present invention.

[発明の効果] 以上のように本発明によれば、大視野のX線検出部を軽
量コンパクトに実現でき、また画像ひずみが無く、更に
広いダイナミックレンジを実現できるので、診断能の向
上に寄与し得るX線診断装置を提供することができる。
[Advantages of the Invention] As described above, according to the present invention, the X-ray detection unit with a large field of view can be realized in a lightweight and compact form, and further, a wide dynamic range can be realized without image distortion, which contributes to improvement in diagnostic ability. It is possible to provide a possible X-ray diagnostic apparatus.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明によるデジタルラジオグラフィ装置の一
実施例を示すブロック図、第2図は光増幅器の第1実施
例の断面図、第3図は光増幅器の第2の実施例の断面
図、第4図は半導体検出器の1部の回路図、第5図は
I.I.と撮像管とを用いた従来のX線診断装置を示す
ブロック図である。 11……螢光体、12……光増幅器 18と22……光電図、21と26……真空容器 20と25……電源、19と24……出力螢光体 23……MCP(マイクロスイッチチャンネルプレー
ト)
FIG. 1 is a block diagram showing an embodiment of a digital radiography apparatus according to the present invention, FIG. 2 is a sectional view of a first embodiment of an optical amplifier, and FIG. 3 is a sectional view of a second embodiment of an optical amplifier. , FIG. 4 is a circuit diagram of a part of the semiconductor detector, and FIG. I. FIG. 11 is a block diagram showing a conventional X-ray diagnostic apparatus using the image pickup tube and the image pickup tube. 11 ... Fluorescent substance, 12 ... Optical amplifier 18 and 22 ... Photoelectric diagram, 21 and 26 ... Vacuum container 20 and 25 ... Power supply, 19 and 24 ... Output fluorescent substance 23 ... MCP (micro switch) Channel plate)

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H04N 7/18 L Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display area H04N 7/18 L

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】被検体にX線を曝射するX線源と、 前記被検体を透過したX線透過像をほぼ等倍の光像に変
換する変換手段と、 入射光量に応じた電気信号を出力する複数の半導体受光
部が、前記変換手段の出力面とほぼ同じ面積に2次元配
列され、前記光像を電気信号に変換する受光手段と、 前記半導体受光部それぞれと並列に接続され、前記電気
信号に応じた電荷を蓄積する複数の蓄積部を備え、電荷
分布像を作成する蓄積手段と、 前記電荷分布像を読み出す処理部と、 を備えたことを特徴とするX線診断装置。
1. An X-ray source that irradiates an object with X-rays, a conversion unit that converts an X-ray transmission image that has passed through the object into a light image of approximately equal magnification, and an electrical signal according to the amount of incident light. A plurality of semiconductor light receiving units for outputting the two-dimensionally arranged in substantially the same area as the output surface of the conversion unit, the light receiving unit for converting the optical image into an electrical signal, and connected in parallel with each of the semiconductor light receiving unit, An X-ray diagnostic apparatus comprising: a plurality of storage units for storing electric charges according to the electric signal, and a storage unit for creating a charge distribution image; and a processing unit for reading out the charge distribution image.
【請求項2】前記変換手段は、X線透過像を光像に変換
する蛍光体と、この蛍光体とほぼ同じ面積を有し、この
蛍光体の裏面に密着して設けられ、所定の光量の光像に
増幅する光増幅器とを備えることを特徴とする特許請求
の範囲第1項記載のX線診断装置。
2. The conversion means has a phosphor for converting an X-ray transmission image into an optical image and has an area substantially the same as that of the phosphor, and is provided in close contact with the back surface of the phosphor and has a predetermined light amount. The X-ray diagnostic apparatus according to claim 1, further comprising: an optical amplifier that amplifies the optical image according to claim 1.
【請求項3】前記光増幅器は、平行平板型イメージイン
テンシファイアであることを特徴とする特許請求の範囲
第2項記載のX線診断装置。
3. The X-ray diagnostic apparatus according to claim 2, wherein the optical amplifier is a parallel plate type image intensifier.
【請求項4】前記光増幅器は、マイクロチャンネルプレ
ートを含むことを特徴とする特許請求の範囲第2項記載
のX線診断装置。
4. The X-ray diagnostic apparatus according to claim 2, wherein the optical amplifier includes a microchannel plate.
【請求項5】前記受光手段は、アモルファスシリコンを
含むことを特徴とする特許請求の範囲第1項記載のX線
診断装置。
5. The X-ray diagnostic apparatus according to claim 1, wherein the light receiving means includes amorphous silicon.
【請求項6】前記受光手段は、多結晶シリコンを含むこ
とを特徴とする特許請求の範囲第1項記載のX線診断装
置。
6. The X-ray diagnostic apparatus according to claim 1, wherein the light receiving means includes polycrystalline silicon.
JP60084414A 1984-09-03 1985-04-22 X-ray diagnostic device Expired - Lifetime JPH0616775B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60084414A JPH0616775B2 (en) 1985-04-22 1985-04-22 X-ray diagnostic device
US06/771,033 US4689487A (en) 1984-09-03 1985-08-30 Radiographic image detection apparatus
DE19853531448 DE3531448A1 (en) 1984-09-03 1985-09-03 ROENTGEN IMAGE DETECTION DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60084414A JPH0616775B2 (en) 1985-04-22 1985-04-22 X-ray diagnostic device

Publications (2)

Publication Number Publication Date
JPS61244329A JPS61244329A (en) 1986-10-30
JPH0616775B2 true JPH0616775B2 (en) 1994-03-09

Family

ID=13829924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60084414A Expired - Lifetime JPH0616775B2 (en) 1984-09-03 1985-04-22 X-ray diagnostic device

Country Status (1)

Country Link
JP (1) JPH0616775B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101788682A (en) * 2008-12-10 2010-07-28 东北大学 X-ray acquisition sensor and control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2798551B1 (en) * 1999-09-14 2001-11-30 Eppra RADIOLOGY DEVICE COMPRISING MEANS FOR ENLARGING IMPROVED IMAGES

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS521273A (en) * 1975-06-24 1977-01-07 Ito Kikai Seisakusho:Kk Stroke device
JPS5320836A (en) * 1976-08-11 1978-02-25 Epson Corp Integrated circuit having timer and computation performance
JPS5363859A (en) * 1976-11-12 1978-06-07 Diagnostic Inform Panel xxray picture intensifying tube and radiation photographic camera
JPS6011187A (en) * 1983-06-30 1985-01-21 Toshiba Corp Radiation detector
JPS6040041A (en) * 1983-07-27 1985-03-02 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン X-ray apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS521273A (en) * 1975-06-24 1977-01-07 Ito Kikai Seisakusho:Kk Stroke device
JPS5320836A (en) * 1976-08-11 1978-02-25 Epson Corp Integrated circuit having timer and computation performance
JPS5363859A (en) * 1976-11-12 1978-06-07 Diagnostic Inform Panel xxray picture intensifying tube and radiation photographic camera
JPS6011187A (en) * 1983-06-30 1985-01-21 Toshiba Corp Radiation detector
JPS6040041A (en) * 1983-07-27 1985-03-02 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン X-ray apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101788682A (en) * 2008-12-10 2010-07-28 东北大学 X-ray acquisition sensor and control method

Also Published As

Publication number Publication date
JPS61244329A (en) 1986-10-30

Similar Documents

Publication Publication Date Title
US4689487A (en) Radiographic image detection apparatus
US6292534B1 (en) X-ray examination apparatus
JP3415348B2 (en) X-ray imaging device
US6078643A (en) Photoconductor-photocathode imager
KR101232674B1 (en) Radiographic imaging system
NL7909037A (en) DEVICE FOR RADIOGRAPHY.
Koppel Direct soft x‐ray response of a charge‐coupled image sensor
EP0796549B1 (en) X-ray examination apparatus comprising an exposure-control system
US7135686B1 (en) Low noise x-ray detector for fluoroscopy
JP3683987B2 (en) X-ray flat panel detector
US5701011A (en) apparatus for picking up image by electromagnetic wave ray
US6828539B1 (en) Detection signal correction method and device as well as solid-state detector for use therewith
US5548122A (en) Radiation detector
Maidment et al. Scanned-slot digital mammography
Strauss et al. CCD-based synchrotron x-ray detector for protein crystallograph-performance projected from an experiment
JPH0616775B2 (en) X-ray diagnostic device
JPH0772252A (en) Image-signal reading method
JPH07294644A (en) Two-dimensional radiation detector
US6795527B2 (en) Apparatus and method for detection of radiation
Arndt et al. An image intensifier-television system for the direct recording of x-ray diffraction patterns
JPH076715A (en) Planar type picture amplifier
JP3313204B2 (en) Image signal readout method
JPH0654956B2 (en) Digital radiographic equipment
JP2003520345A (en) CCD array as multiple detector in optical imaging device
JP2000195451A (en) X-ray image detector

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term