JPH06143166A - Method for correcting displacement in position of articulated robot - Google Patents

Method for correcting displacement in position of articulated robot

Info

Publication number
JPH06143166A
JPH06143166A JP29689992A JP29689992A JPH06143166A JP H06143166 A JPH06143166 A JP H06143166A JP 29689992 A JP29689992 A JP 29689992A JP 29689992 A JP29689992 A JP 29689992A JP H06143166 A JPH06143166 A JP H06143166A
Authority
JP
Japan
Prior art keywords
articulated robot
joint
robot
reference plate
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29689992A
Other languages
Japanese (ja)
Inventor
Kiyohide Abe
清秀 阿部
Tsuneyoshi Takahashi
常悦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP29689992A priority Critical patent/JPH06143166A/en
Publication of JPH06143166A publication Critical patent/JPH06143166A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method through which displacement in a position is simply corrected without teaching again even when permanent deformation is left at each joint as a result of an articulated robot being brought into erroneous collision with a work. CONSTITUTION:A reference plate 14 is attached to the tip of an articulated robot and displacement sensors 5, 6, and 7 and industrial cameras 8 and 9 are mounted in the vicinity of the work region of the articulated robot when the articulated robot is brought into a reference posture. By detecting the position posture of the reference plate 14, a new reference origin is set.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多関節ロボットの位置
ずれ補正方法に関し、特に簡便に位置ずれを補正できる
ように改良したものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a displacement correction method for an articulated robot, and is improved so that the displacement can be corrected particularly easily.

【0002】[0002]

【従来の技術】産業界には多量の産業用ロボットが導入
されており、これにより多品種少量生産システムの効率
化や重労働作業からの開放が図られている。図1に、産
業用ロボットの一種である多関節ロボット1及びそのコ
ントローラ2を示す。
2. Description of the Related Art A large amount of industrial robots have been introduced into the industrial world, which has made it possible to improve the efficiency of a high-mix low-volume production system and free it from heavy labor work. FIG. 1 shows an articulated robot 1 which is a type of industrial robot and its controller 2.

【0003】この多関節ロボット1は、六つの関節1
a,1b,1c,1d,1e,1fを有し、六つの自由
度を持ち、本体旋回a、上腕傾動b、前腕傾動c、手首
上下曲げd、手首旋回e、保持部駆動fの6動作を行
う。
This multi-joint robot 1 has six joints 1.
a, 1b, 1c, 1d, 1e, 1f, which has six degrees of freedom, and has six movements: body rotation a, upper arm tilt b, forearm tilt c, wrist up / down bending d, wrist rotation e, and holding part drive f. I do.

【0004】上記多関節ロボット1に対してティーチン
グを行うとき、不注意又は錯誤により多関節ロボットを
ワークに衝突させることがある。また、プレイバック作
業の際にワークの寸法不良があると、多関節ロボット1
をワークに衝突させることがある。
When teaching the articulated robot 1, the articulated robot may collide with a work due to carelessness or error. In addition, if there is a dimensional defect of the work during playback work, the articulated robot 1
May collide with the work.

【0005】このように多関節ロボット1がワークと衝
突すると、関節の歯車やアームに永久変形が残り、アー
ムの位置がずれてしまうため、教示点との誤差を含むテ
ィーチングプログラムは使用できなくなる。斯かる事態
に対処するため、従来では次の二つの方策が採られてい
た。
When the articulated robot 1 collides with the work in this way, the gears and arms of the joints are permanently deformed and the positions of the arms are displaced, so that the teaching program including an error from the teaching point cannot be used. In order to deal with such a situation, conventionally, the following two measures have been taken.

【0006】(i)プログラム数が少ない場合には、再
度ティーチングを行って新たなティーチングプログラム
を作製し、この新たなティーチングプログラムを用いて
プレイバック作業を行う。
(I) When the number of programs is small, teaching is performed again to create a new teaching program, and a playback operation is performed using this new teaching program.

【0007】(ii)プログラム数が多い場合には、各関
節1a〜1fのずれ量を種々の方法で正確に測定し、こ
の測定量分だけ関節角パラメータを補正することで、全
プログラムの修正を行う。
(Ii) When the number of programs is large, the deviation amounts of the joints 1a to 1f are accurately measured by various methods, and the joint angle parameters are corrected by the measured amount to correct all programs. I do.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上述し
た(i)の方策では、再度ティーチングしなければなら
ないため、面倒であり、一方(ii)の方策では、関節角
のずれ角を正確に測定することが困難である為、プログ
ラム修正が正確に行えず、また、実際の製造ラインで
は、測定器を設置する余裕スペースがないとう問題もあ
る。
However, the method (i) described above is troublesome because the teaching must be performed again, while the method (ii) accurately measures the deviation angle of the joint angle. Since it is difficult to correct the program, there is also a problem that the program cannot be corrected accurately, and that there is no extra space for installing the measuring device in the actual manufacturing line.

【0009】本発明は、上記従来技術に鑑みてなされた
ものであり、多関節ロボットに基準板を取り付けて、多
関節ロボットの衝突前後の変位を修正することを目的と
するものである。
The present invention has been made in view of the above prior art, and an object of the present invention is to attach a reference plate to an articulated robot to correct the displacement before and after the collision of the articulated robot.

【0010】[0010]

【課題を解決するための手段】斯かる目的を達成する本
発明の構成は多関節ロボットを基準姿勢にしたときの各
関節の関節各を基準原点として、プログラムに従い各関
節を動作させる際に用いる位置ずれ補正方法において、
The configuration of the present invention which achieves such an object is used when operating each joint according to a program with each joint of each joint when the articulated robot is in the reference posture as a reference origin. In the misregistration correction method,

【0011】多関節ロボットの作業領域の近くに複数の
変位センサ、工業用カメラ(ITVカメラ)を取り付け
た補正装置を設置するとともに、多関節ロボットの先端
に基準点、例えば、穴や角を設けた基準板を取り付け、
補正装置と対面するように多関節ロボットを動かし、こ
のときの各関節の関節角、変位センサの出力、工業用カ
メラ内の基準点座標を記録しておく。基準板は変位セン
サから外れないように、また、基準点は工業用カメラか
ら外れないようにしておく。
A correction device equipped with a plurality of displacement sensors and an industrial camera (ITV camera) is installed near the work area of the articulated robot, and a reference point such as a hole or a corner is provided at the tip of the articulated robot. Attached reference plate,
The articulated robot is moved so as to face the correction device, and the joint angle of each joint at this time, the output of the displacement sensor, and the reference point coordinates in the industrial camera are recorded. Make sure that the reference plate does not come off the displacement sensor and that the reference point does not come off the industrial camera.

【0012】その後、多関節ロボットに衝撃等が加わる
ことにより、各関節に永久変位が生じた場合には、多関
節ロボットの先端に取り付けた基準板と、補正装置とを
上述したのと同じ状態で対面するように多関節ロボット
を動かし、このとき予め記録した変位センサの出力、工
業用カメラ内の座標を等しくするように移動する。変位
センサの出力、工業用カメラ内の基準点座標が等しくな
ったところで、各関節の関節角を予め記録した各関節と
の差をそれぞれ求め、この求めた差の分だけ各関節の基
準原点をずらすことを特徴とする。
After that, when a permanent displacement occurs in each joint due to impact or the like on the articulated robot, the reference plate attached to the tip of the articulated robot and the correction device are in the same state as described above. The multi-joint robot is moved so as to face each other, and at this time, the output of the displacement sensor and the coordinate in the industrial camera, which are recorded in advance, are moved to be equal. When the output of the displacement sensor and the reference point coordinates in the industrial camera become equal, the difference between each joint and the joint angle recorded in advance is calculated, and the reference origin of each joint is set by the calculated difference. It is characterized by shifting.

【0013】[0013]

【実施例】以下、図面に示す実施例を参照して詳細に説
明する。図1に示すように、多関節ロボット1には、一
つの基本姿勢が定められており、この基本姿勢をとった
ときの各関節1a〜1fの関節角を基準原点としてプロ
グラムに従い各関節1a〜1fが作動する。
Embodiments will be described in detail below with reference to the embodiments shown in the drawings. As shown in FIG. 1, the articulated robot 1 has one basic posture defined, and the joint angles of the joints 1a to 1f when this basic posture is taken are used as reference origins in accordance with the program to joints 1a to 1f. If is activated.

【0014】一方、図2に示すように、多関節ロボット
1の前方には、ワークを搬送するコンベア3が配置され
ており、多関節ロボット1の真正面が作業領域Aとなっ
ている。この作業領域Aの横で、コンベア3の上方でワ
ークの搬送の邪魔にならない位置に補正装置4が固定設
置されている。補正装置4は、コンベア3によりワーク
が搬送されても、その位置は変わらない。
On the other hand, as shown in FIG. 2, a conveyor 3 that conveys a work is arranged in front of the multi-joint robot 1, and the work area A is directly in front of the multi-joint robot 1. Next to the work area A, the correction device 4 is fixedly installed above the conveyor 3 at a position where it does not interfere with the conveyance of the work. The position of the correction device 4 does not change even if the work is conveyed by the conveyor 3.

【0015】補正装置4は、図3に示すように、3台の
変位センサ5,6,7、2台の工業用カメラ8,9、画
像処理部10、変位測定部11、情報処理部12及びデ
ィスプレイ13により構成されている。一方、多関節ロ
ボット1の先端には、図4に示す基準板14が取り付け
られている。基準板14には、基準点として2カ所に基
準穴15,16が設けられている。
As shown in FIG. 3, the correction device 4 includes three displacement sensors 5, 6, 7, two industrial cameras 8, 9, an image processing unit 10, a displacement measuring unit 11, and an information processing unit 12. And a display 13. On the other hand, a reference plate 14 shown in FIG. 4 is attached to the tip of the articulated robot 1. The reference plate 14 has two reference holes 15 and 16 as reference points.

【0016】この基準板14は、3台の変位センサ5,
6,7に対して、図4に示すように向かい合うように多
関節ロボットにより移動され、このとき、2台の工業用
カメラ8,9は、基準板14の基準穴15,16に向か
い合うことになる。尚、変位センサは、平面認識の為に
3個以上必要であり、また工業用カメラは、基準板上の
2カ所の基準点をそれぞれ撮影するため2個設けるのが
一般的であるが、一つのカメラ視野内に2カ所の基準点
が入る場合には1個の工業用カメラでも良い。
The reference plate 14 includes three displacement sensors 5,
4, 6 and 7 are moved by the articulated robot so as to face each other as shown in FIG. 4, and at this time, the two industrial cameras 8 and 9 face the reference holes 15 and 16 of the reference plate 14, respectively. Become. It should be noted that three or more displacement sensors are required for plane recognition, and two industrial cameras are generally provided to capture two reference points on the reference plate. When two reference points are included in the field of view of one camera, one industrial camera may be used.

【0017】また、基準穴15,16に代えて、LED
ライト、基準板の角等不変なものを用いることもでき
る。尚、基準穴15,16の場合は、穴の重心を基準点
として扱う。
Further, instead of the reference holes 15 and 16, LEDs are used.
An invariant one such as a light or a corner of a reference plate may be used. In the case of the reference holes 15 and 16, the center of gravity of the holes is treated as the reference point.

【0018】上記補正装置4による補正方法について、
作業手順に沿い説明する。 多関節ロボット1を基準姿勢にしたときの各関節角
は予め決まっている。つまり、基準原点となる各関節1
a,1b,1c,1d,1e,1fの関節角はθ a01
θb01,θc01,θd01,θe01,θf01となっている。 多関節ロボット1の先端に基準板14を取り付け
る。この状態で、多関節ロボット1をインチング操作
し、基準板14を補正装置4に対面させる。この時、基
準板14が変位センサ5〜7の計測エリアから外れない
ように、同様に、基準穴15,16が工業用カメラ8,
9の視野から外れないようにする。
Regarding the correction method by the correction device 4,
Explain along the work procedure. Each joint angle when the articulated robot 1 is in the reference posture
Is predetermined. That is, each joint 1 serving as the reference origin
The joint angles of a, 1b, 1c, 1d, 1e, 1f are θ a01
θb01, Θc01, Θd01, Θe01, Θf01Has become. Attach the reference plate 14 to the tip of the articulated robot 1.
It In this state, inching operation of the articulated robot 1 is performed.
Then, the reference plate 14 faces the correction device 4. At this time,
The quasi plate 14 does not come out of the measurement area of the displacement sensors 5 to 7.
Similarly, the reference holes 15 and 16 are similar to the industrial camera 8 and
Make sure you stay within the 9's field of view.

【0019】 上述したように、基準板14と補正装
置4を対面したら、コントローラ2の表示面2aに表示
されている各関節1a,1b,1c,1d,1e,1f
の関節角θa11,θb11,θc11,θd11,θe11,θ
f11と、変位センサ5〜7の出力値、工業用カメラ8,
9の視野上の基準点の座標を記録する。 記録が完了したら、基準板14を多関節ロボット1
から取外し、ティーチングや実作業を行う。
As described above, when the reference plate 14 and the correction device 4 face each other, the joints 1a, 1b, 1c, 1d, 1e, 1f displayed on the display surface 2a of the controller 2 are shown.
Joint angles θ a11 , θ b11 , θ c11 , θ d11 , θ e11 , θ
f11 , output values of displacement sensors 5 to 7, industrial camera 8,
Record the coordinates of the reference point on the 9 field of view. When the recording is completed, the reference plate 14 is attached to the articulated robot 1.
Remove from and perform teaching and actual work.

【0020】 ティーチングや実作業中に多関節ロボ
ット1に衝撃が加わり、関節に永久変形が生じた時に
は、基準板14を再び多関節ロボット1に取り付ける。
そして、と同様にして基準板14と補正装置4とを対
面させる。 その後、多関節ロボット1をインチング操作し、変
位センサ5〜7の出力値と工業用カメラ8,9の基準点
座標を、で記録しておいた値と一致するようにする。
一致したところで、表示面2aに表示されている各関節
角θa12,θb12,θc12,θd12,θe12,θf12を記録す
る。その後、下式に示すように、この関節角と衝突前の
関節角との差を求める。
When a shock is applied to the multi-joint robot 1 during teaching or actual work and the joint is permanently deformed, the reference plate 14 is attached to the multi-joint robot 1 again.
Then, the reference plate 14 and the correction device 4 are made to face each other in the same manner as. After that, the articulated robot 1 is operated by inching so that the output values of the displacement sensors 5 to 7 and the reference point coordinates of the industrial cameras 8 and 9 match the values recorded in.
When they match, the joint angles θ a12 , θ b12 , θ c12 , θ d12 , θ e12 , and θ f12 displayed on the display surface 2a are recorded. Then, as shown in the following formula, the difference between this joint angle and the joint angle before the collision is obtained.

【0021】Δθa=θa12−θa11 Δθb=θb12−θb11 Δθc=θc12−θc11 Δθd=θd12−θd11 Δθe=θe12−θe11 Δθf=θf12−θf11 Δθ a = θ a12 −θ a11 Δθ b = θ b12 −θ b11 Δθ c = θ c12 −θ c11 Δθ d = θ d12 −θ d11 Δθ e = θ e12 −θ e11 Δθ f = θ f12 −θ f11

【0022】 そして、次のように上記角度差の分だ
け各関節の基準原点をずらす。 θa01→θa01+Δθa=θa02 θb01→θb01+Δθb=θb02 θc01→θc01+Δθc=θc02 θd01→θd01+Δθd=θd02 θe01→θe01+Δθe=θe02 θf01→θf01+Δθf=θf02
Then, as described below, the reference origin of each joint is shifted by the above angle difference. θ a01 → θ a01 + Δθ a = θ a02 θ b01 → θ b01 + Δ θ b = θ b02 θ c01 → θ c01 + Δθ c = θ c02 θ d01 → θ d01 + Δθ d = θ d02 θ e01 → θ e01 + Δθ e = θ e02 θ f01 → θ f01 + Δθ f = θ f02

【0023】 その後は、このようにして求めた関節
角θa02,θb02,θc02,θd02,θe0 2,θf02を新たな
基準原点として、プログラムを実行する。この場合、多
関節ロボット1の変形は、プログラムの基準原点を変更
することにより補償されているため、プログラムを変更
することなく目的とすべき加工が実行できる。
[0023] After that, the joint angle theta a02 determined in this way, θ b02, θ c02, θ d02, θ e0 2, the theta f02 as a new reference origin, executes the program. In this case, since the deformation of the articulated robot 1 is compensated by changing the reference origin of the program, the desired machining can be executed without changing the program.

【0024】尚、上述した実施例では、6自由度の多関
節ロボットを補正したものであったが、本発明は他のタ
イプの自由度を持つ多関節ロボットに対しても同様に適
用できるものである。
In the above-mentioned embodiment, the articulated robot having 6 degrees of freedom is corrected, but the present invention can be similarly applied to the articulated robot having other types of degrees of freedom. Is.

【0025】[0025]

【発明の効果】以上、実施例に基づいて具体的に説明し
たように、本発明によれば次のような効果を奏する。 (1)基準原点をずらすことにより、多関節ロボットの
変形を補償しているため、プログラムを変更する必要が
ない。 (2)変位センサ、工業用カメラといった非接触の計測
機器を利用して作業者の意思の介在を排除しているた
め、作業者の個人差による補正誤差を回避することがで
きる。 (3)作業領域に近い位置で、補正作業する為、作業領
域内でのずれがほとんどなくなる。
As described above in detail with reference to the embodiments, the present invention has the following effects. (1) Since the deformation of the articulated robot is compensated by shifting the reference origin, it is not necessary to change the program. (2) Since a non-contact measuring device such as a displacement sensor or an industrial camera is used to eliminate the intervention of the operator's intention, it is possible to avoid the correction error due to the individual difference of the operator. (3) Since the correction work is performed at a position close to the work area, there is almost no deviation in the work area.

【図面の簡単な説明】[Brief description of drawings]

【図1】多関節ロボットを示す斜視図である。FIG. 1 is a perspective view showing an articulated robot.

【図2】多関節ロボットの配置を示す平面図である。FIG. 2 is a plan view showing an arrangement of an articulated robot.

【図3】補正装置の構成を示す概念図である。FIG. 3 is a conceptual diagram showing a configuration of a correction device.

【図4】基準板の斜視図である。FIG. 4 is a perspective view of a reference plate.

【符号の説明】[Explanation of symbols]

1a,1b,1c,1d,1e,1f 関節 2 コントローラ 3 コンベア 4 補正装置 5,6,7 変位センサ 8,9 工業用カメラ 10 画像処理部 11 変位計測部 12 情報処理部 13 ディスプレイ 14 基準板 1a, 1b, 1c, 1d, 1e, 1f Joints 2 Controller 3 Conveyor 4 Correction device 5, 6, 7 Displacement sensor 8, 9 Industrial camera 10 Image processing unit 11 Displacement measurement unit 12 Information processing unit 13 Display 14 Reference plate

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // B25J 9/06 A 8611−3F ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location // B25J 9/06 A 8611-3F

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 多関節ロボットを基準姿勢にした時の各
関節角を基準原点としてプログラムに従い各関節を作動
させる際に用いる位置ずれ補正方法において、多関節ロ
ボットの作業領域の近くに複数の変位センサ、工業用カ
メラ及び画像処理装置を含む補正装置を配置すると共に
基準板を前記多関節ロボットの先端に取り付け、前記基
準板を前記補正装置に対面させた時の各関節角の関節
角、前記変位センサの出力及び前記工業用カメラの視野
内の二つ以上の基準点の座標を予め記録しておき、その
後、前記多関節ロボットの作動中に位置ずれが発生した
場合には前記多関節ロボットの先端に取り付けた前記基
準板を前記補正装置に対面させるように前記多関節ロボ
ットを動かし、この時の各関節の関節角と予め求めた前
記関節角との差をそれぞれ求め、この差の分だけ各関節
の基準原点をずらすことを特徴とする多関節ロボットの
位置ずれ補正方法。
1. A displacement correction method used when operating each joint according to a program, using each joint angle as a reference origin when the articulated robot is in a reference posture, and a plurality of displacements near a work area of the articulated robot. A correction device including a sensor, an industrial camera, and an image processing device is arranged, and a reference plate is attached to the tip of the articulated robot, and the joint angle of each joint angle when the reference plate is faced to the correction device, The output of the displacement sensor and the coordinates of two or more reference points in the field of view of the industrial camera are recorded in advance, and then, if a position shift occurs during the operation of the articulated robot, the articulated robot The multi-joint robot is moved so that the reference plate attached to the end of the joint faces the correction device, and the difference between the joint angle of each joint at this time and the joint angle obtained in advance is calculated. A method for correcting misalignment of a multi-joint robot, characterized in that the reference origin of each joint is shifted by this difference.
JP29689992A 1992-11-06 1992-11-06 Method for correcting displacement in position of articulated robot Pending JPH06143166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29689992A JPH06143166A (en) 1992-11-06 1992-11-06 Method for correcting displacement in position of articulated robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29689992A JPH06143166A (en) 1992-11-06 1992-11-06 Method for correcting displacement in position of articulated robot

Publications (1)

Publication Number Publication Date
JPH06143166A true JPH06143166A (en) 1994-05-24

Family

ID=17839608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29689992A Pending JPH06143166A (en) 1992-11-06 1992-11-06 Method for correcting displacement in position of articulated robot

Country Status (1)

Country Link
JP (1) JPH06143166A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997009154A1 (en) * 1995-09-06 1997-03-13 Fanuc Ltd Apparatus and method for correcting a travelling route for a robot
CN104245243A (en) * 2012-04-25 2014-12-24 松下知识产权经营株式会社 Method for correcting mechanism error of articulated robot
CN104483898A (en) * 2014-10-29 2015-04-01 西南科技大学 Method for searching Delta robot inscribed cylinder expected work space
JP2020146808A (en) * 2019-03-14 2020-09-17 オムロン株式会社 Measurement system and measurement method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997009154A1 (en) * 1995-09-06 1997-03-13 Fanuc Ltd Apparatus and method for correcting a travelling route for a robot
US6414711B2 (en) 1995-09-06 2002-07-02 Fanuc Ltd. Apparatus for correcting movement path of a robot and a method therefor
CN104245243A (en) * 2012-04-25 2014-12-24 松下知识产权经营株式会社 Method for correcting mechanism error of articulated robot
CN104483898A (en) * 2014-10-29 2015-04-01 西南科技大学 Method for searching Delta robot inscribed cylinder expected work space
JP2020146808A (en) * 2019-03-14 2020-09-17 オムロン株式会社 Measurement system and measurement method
WO2020184575A1 (en) * 2019-03-14 2020-09-17 オムロン株式会社 Measurement system and measurement method

Similar Documents

Publication Publication Date Title
JP3733364B2 (en) Teaching position correction method
US9782896B2 (en) Robot system and control method for robot system
US20180117766A1 (en) Device, method, program and recording medium, for simulation of article arraying operation performed by robot
JP6661028B2 (en) Work position correction method
JP4287788B2 (en) Self-propelled robotic hand
JP2015199192A (en) Control method of robot system, program, recording medium, and robot system
JP2019014011A (en) Method of correcting teaching position of robot
JP2006082171A (en) Tool location correcting method for articulated robot
JP2012230041A (en) Position detection method, position detector and robot system
JP7281910B2 (en) robot control system
JPH11156764A (en) Locomotive robot device
JP2017124468A (en) Method of controlling robot, method of manufacturing component, robot device, program, and recording medium
JPH06143166A (en) Method for correcting displacement in position of articulated robot
JP3651026B2 (en) Method for teaching robot for stocker
JP5298919B2 (en) Robot hand position correction method, robot hand, robot
JPH10240323A (en) Abnormal operation prevention method for moving robot
JPH1011146A (en) Device for correcting stop posture of mobile object
JP2009125839A (en) Weld teaching position correction system
JP3562096B2 (en) Position detection method
JP7112528B2 (en) Work coordinate creation device
JP7105223B2 (en) robot system
WO2021009800A1 (en) Robot control system and robot control method
JPH04100573A (en) Correction method of shifting of camera coordinate system
TWI832052B (en) Method of teaching and correcting for robotic arm
TW202243833A (en) Method of teaching and correcting for robotic arm

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010321