JPH0613632A - Solar cell and its manufacture - Google Patents

Solar cell and its manufacture

Info

Publication number
JPH0613632A
JPH0613632A JP4167656A JP16765692A JPH0613632A JP H0613632 A JPH0613632 A JP H0613632A JP 4167656 A JP4167656 A JP 4167656A JP 16765692 A JP16765692 A JP 16765692A JP H0613632 A JPH0613632 A JP H0613632A
Authority
JP
Japan
Prior art keywords
solar cell
silicon substrate
shaped groove
junction
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4167656A
Other languages
Japanese (ja)
Other versions
JP3195424B2 (en
Inventor
Kazutaka Nakajima
一孝 中嶋
Sota Moriuchi
荘太 森内
Tetsuhiro Okuno
哲啓 奥野
Koji Okamoto
浩二 岡本
Yuji Yokozawa
雄二 横沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP16765692A priority Critical patent/JP3195424B2/en
Publication of JPH0613632A publication Critical patent/JPH0613632A/en
Application granted granted Critical
Publication of JP3195424B2 publication Critical patent/JP3195424B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Abstract

PURPOSE:To form V-shaped trenches on the surface of a silicon substrate and, continuously, form P-N junctions at the bottom parts of the V-shaped trenches. CONSTITUTION:V-shaped trenches 2 are formed on the surface of a P-type silicon substrate 1 by changing the width of a laser beam successively. The laser beam is applied to the bottom parts of the V-shaped trenches 2 with the energy density changed in a suitable atmosphere to form N-type diffused layers 3. Thus local P-N junctions between the N-type diffused layers 3 and the P-type silicon substrate 1 are continuously formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、表面に凹凸を有する太
陽電池およびその製造方法の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell having an uneven surface and a method for manufacturing the same.

【0002】[0002]

【従来の技術】一般に、シリコン基板を用いた表面に凹
凸を有する太陽電池の基本的な製造方法は、まず光入射
側であるシリコン基板の表面に、表面反射を低減するた
めの凹凸を形成し、その後、PN接合を形成するための
ドープ層を形成し、最後に表面および裏面の電極を形成
するものであった。
2. Description of the Related Art Generally, a basic method of manufacturing a solar cell using a silicon substrate and having irregularities on the surface is to first form irregularities for reducing surface reflection on the surface of the silicon substrate which is the light incident side. After that, a doped layer for forming a PN junction is formed, and finally electrodes on the front surface and the back surface are formed.

【0003】単結晶太陽電池の表面に凹凸を設けるテク
スチャ処理は、(100)の面方位の基板に対しては、
NaOHあるいはKOHなどのアルカリの水溶液中で、
(100)方向と(111)方向の異方性のエッチング
を行ない、基板上にピラミッド型の凹凸を形成してい
る。
The texture treatment for forming irregularities on the surface of a single crystal solar cell is performed for a substrate having a (100) plane orientation.
In an alkaline aqueous solution such as NaOH or KOH,
Anisotropic etching in the (100) direction and the (111) direction is performed to form pyramid-shaped irregularities on the substrate.

【0004】同様に、多結晶太陽電池においても、アル
カリ水溶液による異方性エッチングを行なっているが、
平坦な表面に比較して反射率が低下するものの、単結晶
基板のテクスチャ処理ほどの効果は得られない。このこ
とは、多結晶基板内に存在する各結晶粒の面方位が一様
でなく、(100)以外の面指数のところでは、ピラミ
ッドが形成されないことが原因である。
Similarly, even in a polycrystalline solar cell, anisotropic etching with an alkaline aqueous solution is performed.
Although the reflectance is lower than that of a flat surface, it is not as effective as the texture treatment of a single crystal substrate. This is because the plane orientation of each crystal grain existing in the polycrystalline substrate is not uniform, and pyramids are not formed at plane indices other than (100).

【0005】そのため、多結晶太陽電池では、フォトリ
ソグラフィを使った等方性エッチングやレーザ、ダイサ
などを用いた機械的加工により、V字型の溝(グルー
ブ)を形成することで表面反射を低減しているのが現状
である。
Therefore, in a polycrystalline solar cell, surface reflection is reduced by forming a V-shaped groove by isotropic etching using photolithography or mechanical processing using a laser, a dicer, or the like. It is the current situation.

【0006】基板表面に溝を形成すると、表面反射を低
減することができるが、たとえば、PN接合を通常よく
用いられているPOCl3 を不純物とし、熱拡散法によ
り形成した場合には、基板の全面に拡散されてしまい、
平坦な表面に比べて凹凸がある分、接合面積が増えてし
まう。この接合面積の増加は、漏れ電流の増大を引起し
開放電圧の低下をもたらしてしまう。
When grooves are formed on the surface of the substrate, surface reflection can be reduced. For example, when the PN junction is formed by the thermal diffusion method using POCl 3 which is commonly used as an impurity, the It has been spread over the entire surface,
As compared with a flat surface, the unevenness increases the bonding area. This increase in the junction area causes an increase in leakage current and a decrease in open circuit voltage.

【0007】このため、ポイントジャンクションと称す
るPN接合の面積の低減を図った取組がいろいろとなさ
れているが、いわゆるLSIプロセスでよく用いられる
フォトリソグラフィにより、SiO2 膜をパターニング
し、それを拡散バリア層にしてドープ層を形成したもの
しかないのが現状である。
For this reason, various efforts have been made to reduce the area of the PN junction called a point junction, but the SiO 2 film is patterned by photolithography which is often used in a so-called LSI process, and the diffusion barrier is used. The present situation is that only a layer having a doped layer is formed.

【0008】[0008]

【発明が解決しようとする課題】前述のフォトリソグラ
フィでは、表面に凹凸がある場合、パターニング精度が
悪かったり、信頼性に問題が生じやすい欠点があった。
また、凹凸を形成して表面反射率を低減させるととも
に、部分的なPN接合を形成するためには、フォトリソ
グラフィなどの複雑な工程を含む複数回の工程が必要で
あり、実用化,低価格化という意味では非常に問題があ
った。本発明の目的は、表面反射率の低減のための溝の
作成と部分的なPN接合の形成を連続したレーザ加工処
理によって行なうことによって、製造工程を簡素化し、
高効率で安価な太陽電池を得ることにある。
In the photolithography described above, when the surface has irregularities, there are drawbacks that the patterning accuracy is poor and the reliability tends to be a problem.
Further, in order to form unevenness to reduce the surface reflectance and to form a partial PN junction, a plurality of steps including complicated steps such as photolithography are required, which makes it practical and low cost. There was a big problem in terms of conversion. An object of the present invention is to simplify the manufacturing process by forming a groove for reducing the surface reflectance and forming a partial PN junction by continuous laser processing.
To obtain a highly efficient and inexpensive solar cell.

【0009】[0009]

【課題を解決するための手段】本発明においては、レー
ザ光により、シリコン基板の表面にV字型溝の形成とV
字型溝の底部のPN接合の形成を連続して行なうように
した。
According to the present invention, a V-shaped groove and a V-shaped groove are formed on the surface of a silicon substrate by laser light.
The PN junction at the bottom of the V-shaped groove was continuously formed.

【0010】[0010]

【作用】V字型溝の底部のみにPN接合を形成すること
により、接合部の面積が低減され、その結果、漏れ電流
が減少し開放電圧が向上する。
By forming the PN junction only on the bottom of the V-shaped groove, the area of the junction is reduced, and as a result, the leakage current is reduced and the open circuit voltage is improved.

【0011】[0011]

【実施例】図1(a)は本発明による多結晶太陽電池の
略断面図であり、同図(b)はその斜視図である。
EXAMPLE FIG. 1 (a) is a schematic sectional view of a polycrystalline solar cell according to the present invention, and FIG. 1 (b) is a perspective view thereof.

【0012】P型シリコン基板1の表面(受光面側)に
は、多数のV字型溝2,2,…が形成されており、その
底部にはN型拡散層3,3,…が形成されている。表面
には、パッシベーション膜となるSiO2 膜4および導
電性反射防止膜8が積層されている。導電性反射防止膜
8は、SiO2 膜4の孔を介して受光面電極5,5,…
によりN型拡散層3,3,…と接続されている。裏面に
はBSF層6および裏面電極7が形成されている。以上
のようにして得られたセルの表面の一端には電流取出し
部5−1が設けられている。
A large number of V-shaped grooves 2, 2, ... Are formed on the surface (light-receiving surface side) of the P-type silicon substrate 1, and N-type diffusion layers 3, 3 ,. Has been done. A SiO 2 film 4 serving as a passivation film and a conductive antireflection film 8 are laminated on the surface. The conductive antireflection film 8 is provided with the light-receiving surface electrodes 5, 5, ... Through the holes of the SiO 2 film 4.
Are connected to the N type diffusion layers 3, 3 ,. A BSF layer 6 and a back surface electrode 7 are formed on the back surface. A current extraction part 5-1 is provided at one end of the surface of the cell obtained as described above.

【0013】以下に、多結晶P型シリコン基板1を用
い、レーザ光としてはXeCl3 エキシマレーザを用い
た場合の製法の一例を図面に従って説明する。
An example of a manufacturing method in which the polycrystalline P-type silicon substrate 1 is used and the laser light is the XeCl 3 excimer laser will be described below with reference to the drawings.

【0014】まず、V字型溝の形成について説明する。
図2(a)〜(d)は、レーザ光によるV字型溝2,
2,…加工の原理を示す。P型シリコン基板1の表面に
レーザ光を照射すると、照射面においては、シリコンが
溶融,蒸発する。たとえば、P型シリコン基板1を移動
スピードが可変で、基板温度を上昇させることのできる
ステージ上に吸着し、エネルギー密度を、23.6J/
cm2 とし、発振周波数100Hzで連続照射すると、
常温で400μm厚さの多結晶シリコン基板を約30秒
で貫通することがわかっている。したがって、図2
(a)〜(d)に示すように、加工深さに応じて、最初
は照射範囲を広く逐次照射形状を小さくしていくことに
より、V字型の加工形状を得ることができる。斜線を施
した部分は溶融蒸発層1−1である。図2(d)におい
てV字型溝2の斜面は直線になっているが、実際は多数
の段によって構成されている。
First, the formation of the V-shaped groove will be described.
2A to 2D show a V-shaped groove 2 formed by laser light 2.
2, ... Indicates the principle of processing. When the surface of the P-type silicon substrate 1 is irradiated with laser light, silicon is melted and evaporated on the irradiation surface. For example, the P-type silicon substrate 1 is adsorbed on a stage whose moving speed is variable and which can raise the substrate temperature, and the energy density is 23.6 J /
cm 2 and continuous irradiation with an oscillation frequency of 100 Hz,
It has been found that it penetrates a polycrystalline silicon substrate having a thickness of 400 μm at room temperature in about 30 seconds. Therefore, FIG.
As shown in (a) to (d), a V-shaped processed shape can be obtained by initially widening the irradiation range and decreasing the irradiation shape in accordance with the processing depth. The shaded portion is the melt evaporation layer 1-1. Although the slope of the V-shaped groove 2 is a straight line in FIG. 2D, it is actually composed of a number of steps.

【0015】上記の加工実験の結果から、23.6J/
cm2 のエネルギー密度で、約8回の照射で基板を深さ
方向に1μm加工できることがわかった。
From the results of the above processing experiment, 23.6 J /
It was found that with the energy density of cm 2 , the substrate can be processed in the depth direction by 1 μm by irradiation of about 8 times.

【0016】図3には、本発明により形成したV字型溝
2の加工の例を示す。V字型溝2はレーザ光の照射形状
をまず50×50μmの正方形にしておき、1照射ごと
に6μmのステップでX方向にステージを動かし、P型
シリコン基板1の端部まで照射位置が移動したところ
で、Y軸スリットにより照射形状を小さくし、さらに逆
のX方向にステージを動かす操作を繰返すことによっ
て、深さ方向に約1μmずつの段差を有する、幅が50
μmで、深さが約45μmのV字状に形成され、さらに
Y方向にステージを順次動かすことによって、基板全面
にV字型溝2,2,…を形成する。
FIG. 3 shows an example of processing the V-shaped groove 2 formed according to the present invention. The V-shaped groove 2 has a laser beam irradiation shape of 50 × 50 μm square, and the stage is moved in the X direction in steps of 6 μm for each irradiation so that the irradiation position moves to the end of the P-type silicon substrate 1. Then, the irradiation shape is reduced by the Y-axis slit, and the operation of moving the stage in the opposite X direction is repeated, so that there is a step of about 1 μm in the depth direction and a width of 50 μm.
V-shaped grooves 2, 2, ... Are formed on the entire surface of the substrate by moving the stage sequentially in the Y direction.

【0017】次に、V字型溝2の底部にPN接合を形成
することについて説明する。
Next, the formation of a PN junction at the bottom of the V-shaped groove 2 will be described.

【0018】図4は、レーザ光のスポットサイズを2×
2μmとし、PCl3 ガス雰囲気中でエネルギー密度を
変化させて、拡散層面抵抗を調べた結果であるが、0.
7J/cm2 で約1000Ω/sq、0.8J/cm2
で100Ω/sq、1J/cm2 を超えると20〜30
Ω/sqの値となる。この結果をもとに、エネルギー密
度を0.8J/cm2 として、V字型溝2の底部のみに
レーザ光を照射して、N型拡散層3,3,…を形成し
て、V字型溝2の底部のみにPN接合を形成した。な
お、この程度のエネルギー密度では、V字型溝形状はほ
とんど変化しないことは確認できている。さらに、接合
部分のピッチは50μmで通常の結晶基板における少数
キャリアの拡散長である150〜300μmより小さい
ため、バルク内で少数キャリアが再結合して消滅してし
まうことはない。
FIG. 4 shows a laser beam spot size of 2 ×.
2 μm, the energy density was changed in a PCl 3 gas atmosphere, and the surface resistance of the diffusion layer was examined.
About 1000Ω / sq in 7J / cm 2, 0.8J / cm 2
At 100 Ω / sq and 1 J / cm 2 more than 20-30
It becomes the value of Ω / sq. Based on this result, the energy density was set to 0.8 J / cm 2 , and only the bottom of the V-shaped groove 2 was irradiated with laser light to form the N-type diffusion layers 3, 3 ,. A PN junction was formed only on the bottom of the mold groove 2. It has been confirmed that the V-shaped groove shape hardly changes at such an energy density. Further, since the pitch of the joint portion is 50 μm, which is smaller than the diffusion length of the minority carriers of 150 to 300 μm in a normal crystal substrate, the minority carriers are not recombined and disappeared in the bulk.

【0019】次に、受光面側および裏面の処理について
説明する。パッシベーション膜としては、SiH4 とN
2 Oの混合ガス雰囲気中で、基板を400〜500℃に
加熱することにより、150ÅのSiO2 膜4を形成し
た。表面に200Å程度のSiO2 膜4を形成する表面
パッシベーション効果は、ドープ層に対してよりもドー
プ層がない領域に対する方が大きいため、光電変換素子
の表面で起こる光生成キャリアの再結合を低減させる効
果を増大させることができる。
Next, the processing on the light receiving surface side and the back surface will be described. As a passivation film, SiH 4 and N
By heating the substrate to 400 to 500 ° C. in a mixed gas atmosphere of 2 O, a 150 Å SiO 2 film 4 was formed. Since the surface passivation effect of forming the SiO 2 film 4 of about 200 Å on the surface is larger in the region without the doped layer than in the doped layer, recombination of photogenerated carriers occurring on the surface of the photoelectric conversion element is reduced. It is possible to increase the effect.

【0020】その後、Al(CH3 3 ガス雰囲気中
で、レーザ光のスポットサイズを1×1μmとし、エネ
ルギー密度を0.1〜0.5J/cm2 として、PN接
合が形成されたV字型溝2の底部のみに、レーザ光を照
射することにより、薄いSiO 2 膜が除去されると同時
に、Al(CH3 3 が光分解し、Alを約5μm析出
させ、受光面電極5,5,…を形成した。
After that, Al (CH3)3In a gas atmosphere
And set the spot size of the laser light to 1 x 1 μm, and
Lugie density of 0.1-0.5 J / cm2As a PN connection
Only the bottom of the V-shaped groove 2 where the gap is formed is irradiated with laser light.
Thin SiO by irradiation 2At the same time the membrane is removed
, Al (CH3)3Photodecomposes and deposits Al about 5 μm
Then, the light-receiving surface electrodes 5, 5, ... Are formed.

【0021】次に、導電性反射防止膜8として、常圧C
VD法によって導電性のSnO2 膜を形成した。
Next, as the conductive antireflection film 8, a normal pressure C
A conductive SnO 2 film was formed by the VD method.

【0022】また、基板の裏面にBSF層6および裏面
電極7をAlペーストを印刷,焼成することにより形成
し、太陽電池が完成する。
Further, the BSF layer 6 and the back surface electrode 7 are formed on the back surface of the substrate by printing and firing an Al paste to complete the solar cell.

【0023】本発明による太陽電池の光電変換特性と、
従来のテクスチャ表面でPOCl3で接合形成を行なっ
た太陽電池の特性との比較を下記の表1に示す。
Photoelectric conversion characteristics of the solar cell according to the present invention,
Table 1 below shows a comparison with the characteristics of a solar cell in which a junction was formed with POCl 3 on a conventional textured surface.

【0024】[0024]

【表1】 本発明による太陽電池は従来の太陽電池に比べ、開放電
圧,短絡電流ともに向上しており、少数キャリアの再結
合が低減されたことがわかる。また、レーザを使用する
ことにより、スポットサイズを光学系によって1μm程
度まで任意の大きさに設定でき、従来のフォトエッチン
グと同等の加工精度を、直描によるパターニングででき
るため、従来のような複雑なプロセスを行なわなくて
も、一連のプロセスでV字溝加工および拡散が可能とな
る。レーザ光としては、XeCl3の他のArF,Kr
Fなどのエキシマレーザを用いることもできる。レーザ
光の波長については、350nm以下の紫外光を選択す
れば、シリコン基板への侵入深さが非常に浅く、熱によ
る基板へのダメージが少ないため、高温処理で太陽電池
の特性が悪化することもない。
[Table 1] It is understood that the solar cell according to the present invention has improved open circuit voltage and short-circuit current as compared with the conventional solar cell, and the recombination of minority carriers is reduced. Further, by using a laser, the spot size can be set to an arbitrary size up to about 1 μm by the optical system, and the processing accuracy equivalent to that of conventional photoetching can be obtained by patterning by direct drawing, which is complicated as before. V-groove processing and diffusion can be performed by a series of processes without performing any process. As the laser light, other ArF or Kr of XeCl 3 is used.
An excimer laser such as F can also be used. As for the wavelength of the laser light, if ultraviolet light of 350 nm or less is selected, the penetration depth into the silicon substrate is very shallow, and the damage to the substrate due to heat is small, so that the characteristics of the solar cell are deteriorated by the high temperature treatment. Nor.

【0025】本発明は単結晶シリコン基板に対しても応
用できる。
The present invention can also be applied to a single crystal silicon substrate.

【0026】[0026]

【発明の効果】本発明によれば、簡単な設備により、一
連のレーザ加工プロセスでシリコン基板の表面にV字型
溝とV字型溝の底部のPN接合が連続して形成でき、従
来の太陽電池に比べ高効率で安価な太陽電池を得ること
ができる。
According to the present invention, the V-shaped groove and the PN junction at the bottom of the V-shaped groove can be continuously formed on the surface of the silicon substrate by a series of laser processing processes with simple equipment. It is possible to obtain a solar cell that is more efficient and less expensive than a solar cell.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)および(b)は、それぞれ本発明による
太陽電池の略断面図および斜視図を示す。
1 (a) and 1 (b) show a schematic sectional view and a perspective view of a solar cell according to the present invention, respectively.

【図2】(a)〜(d)は、V字型溝加工の工程を示
す。
2A to 2D show a V-shaped groove processing step.

【図3】レーザ光とV字型溝加工の関係を示す説明図で
ある。
FIG. 3 is an explanatory diagram showing a relationship between laser light and V-shaped groove processing.

【図4】レーザのエネルギー密度と拡散層面抵抗の関係
を示すグラフである。
FIG. 4 is a graph showing a relationship between laser energy density and diffusion layer surface resistance.

【符号の説明】 1 P型シリコン基板 2 V字型溝 3 N型拡散層 4 SiO2 膜 5 受光面電極 6 BSF層 7 裏面電極 8 導電性反射防止膜[Explanation of Codes] 1 P-type silicon substrate 2 V-shaped groove 3 N-type diffusion layer 4 SiO 2 film 5 Light-receiving surface electrode 6 BSF layer 7 Backside electrode 8 Conductive antireflection film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡本 浩二 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 横沢 雄二 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Koji Okamoto 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Within Sharp Corporation (72) Yuji Yokozawa 22-22 Nagaike-cho, Abeno-ku, Osaka, Osaka Within the corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 シリコン基板の表面に形成されたV字型
溝の底部のみにPN接合を形成したことを特徴とする太
陽電池。
1. A solar cell in which a PN junction is formed only on the bottom of a V-shaped groove formed on the surface of a silicon substrate.
【請求項2】 レーザ光により、シリコン基板の表面に
V字型溝の形成とV字型溝の底部のPN接合の形成を連
続して行なうことを特徴とする太陽電池の製造方法。
2. A method of manufacturing a solar cell, which comprises continuously forming a V-shaped groove on the surface of a silicon substrate and forming a PN junction at the bottom of the V-shaped groove by laser light.
JP16765692A 1992-06-25 1992-06-25 Solar cell and method of manufacturing the same Expired - Lifetime JP3195424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16765692A JP3195424B2 (en) 1992-06-25 1992-06-25 Solar cell and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16765692A JP3195424B2 (en) 1992-06-25 1992-06-25 Solar cell and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0613632A true JPH0613632A (en) 1994-01-21
JP3195424B2 JP3195424B2 (en) 2001-08-06

Family

ID=15853804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16765692A Expired - Lifetime JP3195424B2 (en) 1992-06-25 1992-06-25 Solar cell and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3195424B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100448665B1 (en) * 2002-06-21 2004-09-13 한국과학기술원 Light bonding method using multiple reflection
JP2008532311A (en) * 2005-03-03 2008-08-14 サンパワー コーポレイション Prevention of harmful polarization in solar cells

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100448665B1 (en) * 2002-06-21 2004-09-13 한국과학기술원 Light bonding method using multiple reflection
JP2008532311A (en) * 2005-03-03 2008-08-14 サンパワー コーポレイション Prevention of harmful polarization in solar cells
JP2011097078A (en) * 2005-03-03 2011-05-12 Sunpower Corp Preventing harmful polarization of solar cell
JP2012054600A (en) * 2005-03-03 2012-03-15 Sunpower Corp Prevention of harmful polarization in solar cell
JP2014140064A (en) * 2005-03-03 2014-07-31 Sunpower Corp Preventing harmful polarization of solar cells
US9035167B2 (en) 2005-03-03 2015-05-19 Sunpower Corporation Preventing harmful polarization of solar cells

Also Published As

Publication number Publication date
JP3195424B2 (en) 2001-08-06

Similar Documents

Publication Publication Date Title
US7875794B2 (en) Semiconductor wafer processing to increase the usable planar surface area
US4838952A (en) Controlled reflectance solar cell
US9583653B2 (en) Solar cell and fabrication method thereof
JP5025184B2 (en) Solar cell element, solar cell module using the same, and manufacturing method thereof
US4726849A (en) Photovoltaic device and a method of manufacturing thereof
RU2555212C2 (en) Heterojunction photovoltaic cell having back contact
US20070295399A1 (en) Back-Contact Photovoltaic Cells
US4808242A (en) Photovoltaic device and a method of manufacturing thereof
JPH0472392B2 (en)
US8563352B2 (en) Creation and translation of low-relief texture for a photovoltaic cell
AU2002220348A1 (en) Semiconductor wafer processing to increase the usable planar surface area
KR20110097827A (en) Deep grooved rear contact photovoltaic solar cells
JP2008034543A (en) Photoelectric conversion element, and manufacturing method thereof
JP2001274447A (en) Method of manufacturing integrated thin film solar battery
US20090308429A1 (en) Thin-film solar module
JP5344872B2 (en) Photovoltaic device
JP3195424B2 (en) Solar cell and method of manufacturing the same
JPH0529638A (en) Manufacture of photoelectric transducer
JP2002076397A (en) Manufacturing method of photovoltaic device
JP2835415B2 (en) Photoelectric conversion element
JPS5935189B2 (en) Koden Henkan Soshinoseizouhouhou
JP3352586B2 (en) Method of manufacturing solar cell
AU2013201557A1 (en) Process for decreasing the reflectivity of a semiconductor material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010522

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090601

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 12