JPH0613320A - Organic metal vapor phase epitaxy method - Google Patents

Organic metal vapor phase epitaxy method

Info

Publication number
JPH0613320A
JPH0613320A JP19307192A JP19307192A JPH0613320A JP H0613320 A JPH0613320 A JP H0613320A JP 19307192 A JP19307192 A JP 19307192A JP 19307192 A JP19307192 A JP 19307192A JP H0613320 A JPH0613320 A JP H0613320A
Authority
JP
Japan
Prior art keywords
susceptor
wafer
wafers
film thickness
thickness distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19307192A
Other languages
Japanese (ja)
Inventor
Sadahiro Katou
▲禎▼宏 加藤
Kazunari Kitamura
和成 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP19307192A priority Critical patent/JPH0613320A/en
Publication of JPH0613320A publication Critical patent/JPH0613320A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To minimize the variation of film thickness distribution in the rotational direction between wafers in a vapor phase epitaxy method using a barrel type susceptor by limiting the number of revolution of the susceptor below a specified value. CONSTITUTION:A barrel type susceptor 2 of a truncated pyramid shape is provided in a reactor 1, a sheet of wafer 3 is placed on each surface. The susceptor 2 and wafer 3 are heated to a specified temperature through the high frequency induction using an external RF filter 4. Then raw gas together with carrier gas is introduced through a gas introduction inlet 5 to cause thermochemical reaction near the heated wafer 3, so that a thin film crystal is grown on the wafer 3. At that time, the speed of revolution of the susceptor 2 during crystal growth is limited below 0.8rpm. Thus, the revolution speed of the susceptor can be lowered for smaller variation of gas flow speed distribution between wafers, resulting in the smaller variation of film thickness distribution between wafers.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体基板上に単結晶
薄膜を成長させる有機金属気相成長法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal organic chemical vapor deposition method for growing a single crystal thin film on a semiconductor substrate.

【0002】[0002]

【従来の技術】有機金属気相成長法(MOVPE法)
は、有機金属の熱分解による化学反応を利用して半導体
基板上に薄膜結晶を成長させる気相成長法の一種で、G
aAs やAlGaAs などの結晶成長に用いられてい
る。
2. Description of the Related Art Metalorganic vapor phase epitaxy (MOVPE method)
Is a type of vapor phase growth method in which a thin film crystal is grown on a semiconductor substrate by utilizing a chemical reaction due to thermal decomposition of an organic metal.
It is used for crystal growth of aAs and AlGaAs.

【0003】この方法は、いわゆるバレル型サセプタの
各面上に複数の半導体基板(以下、ウェーハ、という)
を載置し、ガス導入口から原料ガスをキャリアガスと共
に導入し、外部の高周波誘導加熱コイル(以下、RFコ
イル、という)でウェーハおよび原料ガスを加熱して熱
分解反応を起こし、高温に保たれたウェーハ上に原子を
堆積させて単結晶層を形成するものである。結晶成長中
は各ウェーハのキャリア濃度や膜厚の均一化を図るため
にサセプタを回転させる必要がある。
According to this method, a plurality of semiconductor substrates (hereinafter referred to as wafers) are formed on each surface of a so-called barrel type susceptor.
Place the raw material gas together with the carrier gas from the gas inlet, and heat the wafer and the raw material gas with an external high frequency induction heating coil (hereinafter referred to as RF coil) to cause a thermal decomposition reaction and keep the temperature at a high temperature. A single crystal layer is formed by depositing atoms on a tumbled wafer. During crystal growth, it is necessary to rotate the susceptor in order to make the carrier concentration and film thickness of each wafer uniform.

【0004】[0004]

【発明が解決しようとする課題】前述のMOVPE法を
用い、トリメチルガリウム(Ga(CH3)3 ) およびアル
シン(As H3 )を原料ガスとし、水素(H2 )をキャ
リアガスとしてGaAsの成長を行った。成長条件とし
ては、ウェーハ温度を650℃、サセプタの回転数を右
方向に3.0rpm とした。また、サセプタの形状は六面角
錐台形で各面に1枚の計6枚のウェーハを載置して同時
に成長を行った。
Using the above-mentioned MOVPE method, trimethylgallium (Ga (CH 3 ) 3 ) and arsine (As H 3 ) are used as source gases, and hydrogen (H 2 ) is used as a carrier gas to grow GaAs. I went. As the growth conditions, the wafer temperature was 650 ° C., and the rotation speed of the susceptor was 3.0 rpm in the right direction. The shape of the susceptor was a hexagonal pyramid, and a total of 6 wafers were placed on each surface, and growth was performed simultaneously.

【0005】その結果、6枚のウェーハ(面番号1〜
6)の回転方向の膜厚分布を調べると、図5に示すよう
に、各ウェーハの膜厚分布に差がみられ、膜厚均一性
も、図6に示すように、±3〜7%と差が生じた。
As a result, six wafers (surface numbers 1 to
When the film thickness distribution in the rotation direction of 6) is examined, as shown in FIG. 5, there is a difference in the film thickness distribution of each wafer, and the film thickness uniformity is ± 3 to 7% as shown in FIG. Made a difference.

【0006】一般に、膜厚分布が下に凸形のウェーハ
(例えば、面番号4のウェーハ)に対しては、成長時の
ガス導入量を減少させることによって両端の膜厚を薄く
することができ、膜厚均一性を改善することが可能とな
る。ところが、ガス導入量を減少させると、片端の下が
った膜厚分布を有するウェーハ(例えば、面番号1のウ
ェーハ)では、下がった部分の膜厚がさらに薄くなり、
均一性がさらに悪化してしまうという不都合が生じる。
Generally, for a wafer having a downwardly convex film thickness distribution (for example, a wafer having a surface number of 4), the film thickness at both ends can be reduced by reducing the gas introduction amount during growth. It is possible to improve the film thickness uniformity. However, when the gas introduction amount is reduced, in a wafer having a lowered film thickness distribution on one end (for example, a wafer having a surface number 1), the film thickness of the lowered portion becomes thinner,
There is an inconvenience that the uniformity is further deteriorated.

【0007】逆に、ガス導入量を増加させると、逆の理
由で面番号1のウェーハの膜厚分布は改善されるが、面
番号4のウェーハの膜厚分布が悪化してしまうという不
都合が生じる。このように、従来の方法ではウェーハ間
の回転方向の膜厚分布に差が生じ、膜厚均一性の高いウ
ェーハを量産的に成長させることが出来なかった。
On the contrary, when the gas introduction amount is increased, the film thickness distribution of the wafer of surface number 1 is improved for the opposite reason, but the film thickness distribution of the wafer of surface number 4 is deteriorated. Occurs. As described above, according to the conventional method, a difference occurs in the film thickness distribution in the rotational direction between the wafers, so that it is not possible to mass-produce a wafer having high film thickness uniformity.

【0008】本発明は、ウェーハ間の回転方向の膜厚分
布の差を小さくし、膜厚均一性の高いウェーハを量産的
に成長させる方法を提供することを目的とする。
An object of the present invention is to provide a method for reducing the difference in film thickness distribution in the direction of rotation between wafers and for mass-producing wafers with high film thickness uniformity.

【0009】[0009]

【課題を解決するための手段】本発明による有機金属気
相成長法は、バレル型サセプタを用いた気相成長法にお
いて、サセプタの回転数を、0.8rpm 以下とすることを
特徴とする。
The metal-organic vapor phase epitaxy method according to the present invention is characterized in that in the vapor phase epitaxy method using a barrel type susceptor, the rotation speed of the susceptor is 0.8 rpm or less.

【0010】[0010]

【作用】本発明は、サセプタの回転数を0.8rpm 以下と
してウェーハ上に薄膜を気相成長させることにより、ウ
ェーハ間の回転方向の膜厚分布の差を面内の均一性で±
1%以下と小さくすることができ、また、ウェーハ間の
膜厚分布の差を小さくした後に成長時のガス導入量の最
適化を図ることによって、膜厚均一性の高いウェーハが
量産的に成長できるようになった。
According to the present invention, the difference in the film thickness distribution in the rotational direction between wafers can be controlled within the in-plane uniformity by vapor-depositing a thin film on the wafer with the rotation speed of the susceptor being 0.8 rpm or less.
It can be reduced to 1% or less, and by optimizing the gas introduction amount during growth after reducing the difference in film thickness distribution between wafers, wafers with high film thickness uniformity can be grown in mass production. I can do it now.

【0011】[0011]

【実施例】図1は、本発明による有機金属気相成長法を
実施するためのMOVPE装置の一例を示す概略的構成
図である。この装置は、リアクタ1内にカーボン製の六
角錐台形状のバレル型サセプタ2を設置し、各面に1枚
ずつ計6枚の半導体基板(ウェーハ)3を載置する。そ
して、外部の高周波誘導加熱コイル(RFフィルタ)4
による高周波誘導によりサセプタ2およびウェーハ3を
所定の温度に加熱する。
FIG. 1 is a schematic configuration diagram showing an example of a MOVPE apparatus for carrying out the metal organic chemical vapor deposition method according to the present invention. In this apparatus, a hexagonal pyramid-shaped barrel-shaped susceptor 2 made of carbon is installed in a reactor 1, and a total of 6 semiconductor substrates (wafers) 3 are placed on each surface. And an external high frequency induction heating coil (RF filter) 4
The susceptor 2 and the wafer 3 are heated to a predetermined temperature by high frequency induction by.

【0012】原料ガスはキャリアガスと共にリアクタ1
のガス導入口5から導入し、加熱したウェーハ3の近傍
で熱化学反応を起こさせてウェーハ3上に薄膜結晶を成
長させ、ガス排気口6から排気する。結晶成長中は複数
個のウェーハ3間の差を平均化する目的でシャフト7に
よってサセプタ2を回転させる。
The source gas and the carrier gas together with the reactor 1
The gas is introduced through the gas introduction port 5 to cause a thermochemical reaction in the vicinity of the heated wafer 3 to grow a thin film crystal on the wafer 3, and the gas is exhausted from the gas exhaust port 6. During crystal growth, the susceptor 2 is rotated by the shaft 7 for the purpose of averaging the differences among the plurality of wafers 3.

【0013】リアクタ1の外側には、RFコイル4の内
側に当たる部分に冷却ジョケット8が形成されている。
冷却水入口9から供給された冷却水はジャケット8内を
循環して冷却水出口10から排出される。リアクタ1に
は、この他にもゲートバルブ11、プレチャンバ12、
ガス導入路13、ウェーハ取り出し口14がそれぞれ設
けてある。
On the outside of the reactor 1, a cooling jocket 8 is formed at a portion which contacts the inside of the RF coil 4.
The cooling water supplied from the cooling water inlet 9 circulates in the jacket 8 and is discharged from the cooling water outlet 10. In addition to this, the reactor 1 includes a gate valve 11, a prechamber 12,
A gas introduction path 13 and a wafer outlet 14 are provided respectively.

【0014】本発明は、この装置を用いて前述と同一の
条件下、すなわち原料ガスとしてトリメチルガリウム
(Ga(CH3)3 ) およびアルシン(As H3 )を用い、
キャリアガスとして水素(H2 )を使用し、ウェーハ温
度650℃でGaAs の成長を行った。ただし、サセプ
タ2の回転数は0.8rpm とし、成長時のガス導入量は5
0リットル/min とした。
The present invention uses this apparatus under the same conditions as described above, that is, using trimethylgallium (Ga (CH 3 ) 3 ) and arsine (As H 3 ) as source gases.
Hydrogen (H 2 ) was used as a carrier gas, and GaAs was grown at a wafer temperature of 650 ° C. However, the rotation speed of the susceptor 2 was 0.8 rpm, and the amount of gas introduced during growth was 5
It was set to 0 liter / min.

【0015】その結果、6枚のウェーハの膜厚分布は、
図2に示すように、両端の厚さに違いはあるものの全て
下側に凸の分布形状になった。また、図3に示すよう
に、面内の膜厚均一性が6枚全てのウェーハで±4〜5
%と±1%以内に入り、ウェーハ間の膜厚分布の差が減
少した。
As a result, the film thickness distribution of the six wafers is
As shown in FIG. 2, although there was a difference in thickness at both ends, the distribution shape was convex downward. Further, as shown in FIG. 3, the in-plane film thickness uniformity is ± 4 to 5 for all six wafers.
% And within ± 1%, and the difference in the film thickness distribution between wafers decreased.

【0016】次に、サセプタ2の回転数を0.8rpm とし
た理由について説明する。本発明者は詳細な調査および
実験の結果、ウェーハ3間で回転方向の膜厚分布に差が
生じる理由は、第1にサセプタ2やリアクタ1の非対称
性により反応炉内のガス流速に違いが生じること、第2
にサセプタ2の回転によるガスの圧縮・拡散によりウェ
ーハ3間のガス流速分布に差が生じることにあると突き
止めた。そして、さらに実験を重ねたところ、前述の2
要因のうち1要因を改善することでウェーハ3間の回転
方向の膜厚分布の差が小さくなることを解明した。
Next, the reason why the rotation speed of the susceptor 2 is set to 0.8 rpm will be described. As a result of detailed investigations and experiments, the present inventor has found that the difference in the film thickness distribution in the rotational direction between the wafers 3 is due to the difference in the gas flow rate in the reactor due to the asymmetry of the susceptor 2 and the reactor 1. What happens, the second
It was found that there is a difference in the gas flow velocity distribution between the wafers 3 due to gas compression / diffusion caused by the rotation of the susceptor 2. After further experimentation, the above 2
It was clarified that the difference in the film thickness distribution in the rotation direction between the wafers 3 becomes smaller by improving one of the factors.

【0017】そこで、まずサセプタ2やリアクタ1の対
称性を向上させることを試みたが、RFコイル4によっ
て外部から加熱する方式では、サセプタ2やリアクタ1
の材質がカーボンや石英等の寸法精度を出しにくい材料
であるため、常時良好な対称性を保つことは非常に困難
であった。
Therefore, an attempt was first made to improve the symmetry of the susceptor 2 and the reactor 1. However, in the method of heating from the outside by the RF coil 4, the susceptor 2 and the reactor 1 are heated.
It is very difficult to maintain good symmetry at all times because the material is a material such as carbon or quartz that is difficult to achieve dimensional accuracy.

【0018】そこで、次にサセプタ2の回転数を小さく
したところ、ウェーハ3間の回転方向の膜厚分布の差が
減少し、とくにサセプタ2の回転数が0.8rpm 以下では
膜厚均一性の差が±1%以下になることが分かった。
Then, when the rotational speed of the susceptor 2 is reduced next, the difference in the film thickness distribution in the rotational direction between the wafers 3 is reduced, and especially when the rotational speed of the susceptor 2 is 0.8 rpm or less, the film thickness uniformity is reduced. It was found that the difference was ± 1% or less.

【0019】ところで、ウェーハ3間の回転方向の膜厚
分布が下に凸形である場合、この均一性を改善するに
は、前述したように成長時のガス導入量を減少させるこ
とが有効である。そこで、成長時のガス導入量の最適化
を図るために、ガス導入量を前述の50リットル/min から
40リットル/min に減少させて膜厚分布を調査した。その
結果、図4に示すように、6枚全てのウェーハで膜厚均
一性が±2〜3%となり、各ウェーハの面内膜厚均一性
が大きく改善された。
By the way, when the film thickness distribution in the rotational direction between the wafers 3 is downwardly convex, it is effective to reduce the gas introduction amount during the growth as described above in order to improve the uniformity. is there. Therefore, in order to optimize the gas introduction amount during the growth, the gas introduction amount was reduced from 50 liters / min to 40 liters / min, and the film thickness distribution was investigated. As a result, as shown in FIG. 4, the film thickness uniformity of all six wafers was ± 2 to 3%, and the in-plane film thickness uniformity of each wafer was greatly improved.

【0020】[0020]

【発明の効果】本発明によれば、サセプタの回転数を小
さくすることによってウェーハ間のガス流速分布の差を
小さくでき、それによってウェーハ間の膜厚分布の差を
小さくすることが可能となった。また、その後、ガス導
入量の最適化を図ることによって高均一な膜厚分布を有
するウェーハを量産的に成長させることが可能となっ
た。
According to the present invention, the difference in gas flow velocity distribution between wafers can be reduced by reducing the rotational speed of the susceptor, and thereby the difference in film thickness distribution between wafers can be reduced. It was Further, thereafter, by optimizing the gas introduction amount, it becomes possible to mass-produce a wafer having a highly uniform film thickness distribution.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施するためのMOVPE装置の一例
を示す概略的構成図である。
FIG. 1 is a schematic configuration diagram showing an example of a MOVPE device for carrying out the present invention.

【図2】本発明により得た6枚のウェーハの膜厚分布を
示すグラフである。
FIG. 2 is a graph showing a film thickness distribution of six wafers obtained according to the present invention.

【図3】本発明により得た6枚のウェーハの膜厚均一性
を示すグラフである。
FIG. 3 is a graph showing the film thickness uniformity of six wafers obtained according to the present invention.

【図4】本発明により得た6枚のウェーハの膜厚均一性
を示すグラフである。
FIG. 4 is a graph showing the film thickness uniformity of six wafers obtained according to the present invention.

【図5】従来方法により得た6枚のウェーハの膜厚分布
を示すグラフである。
FIG. 5 is a graph showing a film thickness distribution of six wafers obtained by a conventional method.

【図6】従来方法により得た6枚のウェーハの膜厚均一
性を示すグラフである。
FIG. 6 is a graph showing the film thickness uniformity of six wafers obtained by a conventional method.

【符号の簡単な説明】1 リアクタ 2 サセプタ 3 半導体基板(ウェーハ) 4 RFコイル 5 ガス導入口 6 排気口 7 シャフト 8 冷却ジャケット 9 冷却水入口 10 冷却水出口[Brief description of reference numerals] 1 reactor 2 susceptor 3 semiconductor substrate (wafer) 4 RF coil 5 gas inlet 6 exhaust port 7 shaft 8 cooling jacket 9 cooling water inlet 10 cooling water outlet

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 バレル型サセプタを用いた気相成長法に
おいて、前記サセプタの回転数を、0.8rpm 以下とする
ことを特徴とする有機金属気相成長法。
1. A vapor phase epitaxy method using a barrel type susceptor, wherein the number of revolutions of the susceptor is 0.8 rpm or less.
JP19307192A 1992-06-26 1992-06-26 Organic metal vapor phase epitaxy method Pending JPH0613320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19307192A JPH0613320A (en) 1992-06-26 1992-06-26 Organic metal vapor phase epitaxy method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19307192A JPH0613320A (en) 1992-06-26 1992-06-26 Organic metal vapor phase epitaxy method

Publications (1)

Publication Number Publication Date
JPH0613320A true JPH0613320A (en) 1994-01-21

Family

ID=16301726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19307192A Pending JPH0613320A (en) 1992-06-26 1992-06-26 Organic metal vapor phase epitaxy method

Country Status (1)

Country Link
JP (1) JPH0613320A (en)

Similar Documents

Publication Publication Date Title
JP2668687B2 (en) CVD device
US5036022A (en) Metal organic vapor phase epitaxial growth of group III-V semiconductor materials
JPH0786173A (en) Film deposition
US4661199A (en) Method to inhibit autodoping in epitaxial layers from heavily doped substrates in CVD processing
JPS6090894A (en) Vapor phase growing apparatus
US4705700A (en) Chemical vapor deposition method for the thin film of semiconductor
JPH0613320A (en) Organic metal vapor phase epitaxy method
JP3772621B2 (en) Vapor phase growth method and vapor phase growth apparatus
JP2000031064A (en) Method and device for horizontal vapor phase epitaxial growth
JPS58151397A (en) Production of vapor phase epitaxial crystal
CA1313343C (en) Metal organic vapor phase epitaxial growth of group iii-v semiconductor materials
JPH0547674A (en) Apparatus and method for vapor growth
JPH03137093A (en) Vapor growth method for organic metal
JPS61179527A (en) Growth method of compound semiconductor single crystal film and equipment therefor
JP3071591U (en) Vapor phase epitaxial growth equipment
JPH11214314A (en) Method and apparatus for vapor-phase epitaxial growth
JPH0235814Y2 (en)
JPS6117493A (en) Vapor-phase treatment of plate articles
JPH04280418A (en) Vapor growth device
JPH02297924A (en) Metal organic vapor growth method for compound semiconductor
JP2002124475A (en) Vapor-phase epitaxial growing method and device thereof
CN117867652A (en) Control method of silicon carbide epitaxial equipment
JPH06302516A (en) Vapor growth method
JPH03129723A (en) Vapor growth apparatus
JPH02152224A (en) Vapor growth apparatus