JPH06125921A - Orthodontic wire - Google Patents

Orthodontic wire

Info

Publication number
JPH06125921A
JPH06125921A JP12993892A JP12993892A JPH06125921A JP H06125921 A JPH06125921 A JP H06125921A JP 12993892 A JP12993892 A JP 12993892A JP 12993892 A JP12993892 A JP 12993892A JP H06125921 A JPH06125921 A JP H06125921A
Authority
JP
Japan
Prior art keywords
shape memory
orthodontic wire
alloy
wire
orthodontic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12993892A
Other languages
Japanese (ja)
Inventor
Yasubumi Furuya
泰文 古屋
Takeshi Masumoto
健 増本
Hidemi Ito
秀美 伊藤
Yoshikatsu Tanahashi
善克 棚橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Seiki Co Ltd
Original Assignee
Honda Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Seiki Co Ltd filed Critical Honda Seiki Co Ltd
Priority to JP12993892A priority Critical patent/JPH06125921A/en
Publication of JPH06125921A publication Critical patent/JPH06125921A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an orthodontic wire the final product of which is readily available with a very high superelastic function, made from a shape memory material that can be used over a long period of time in very strong acid and alkali extreme environments. CONSTITUTION:An orthodontic wire 12 is made from a shape memory material obtained by quench hardening of a molten alloy which exhibits a shape memory phenomenon, and since such a shape memory material has a very high superelastic function and is remarkably excellent in corrosion resistance, the orthodontic wire 12 is allowed to exhibit exceptionally excellent functions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、歯列に取り付けてこ
れを矯正するために用いられる歯列矯正ワイヤーに関す
るものであり、特に形状記憶材料を利用した歯列矯正ワ
イヤーに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an orthodontic wire used for attaching to an orthodontic column and correcting it, and more particularly to an orthodontic wire using a shape memory material.

【0002】従来から不正咬合など歯列矯正治療を行う
場合金属ワイヤーの弾性力を利用して矯正する方法が採
られている。従来矯正用金属ワイヤーとしてステンレス
鋼、CoCr合金ワイヤが用いられているが、これらの
材料は弾性率が高く弾性伸びが少ない欠点がある。した
がって僅かな変形で大きな矯正力が得られるという反
面、塑性変形しやすいため適正な矯正力を与えるために
ははじめ弓形に変形する必要があり、装着には熟練を必
要とする。
[0002] Conventionally, when performing orthodontic treatment such as malocclusion, a method of using the elastic force of a metal wire to correct it has been adopted. Conventionally, stainless steel or CoCr alloy wire has been used as a straightening metal wire, but these materials have the drawback of high elastic modulus and low elastic elongation. Therefore, a large correction force can be obtained with a slight deformation, but on the other hand, since plastic deformation is likely to occur, it is necessary to first transform into an arched shape in order to give an appropriate correction force, and skill is required for mounting.

【0003】そこでこの矯正用ワイヤに形状記憶合金の
超弾性機能を利用すれば10%にも及ぶひずみを与えて
も塑性変形が生じることがなく、しかも弾性率は応力誘
起マルテンサイト変態による非線形特性のためひずみが
大きくなっても矯正力の増加率は小さい。このため装着
の際に大きな変形を与えても適正な矯正力を保持したま
ま装着でき、装着操作が簡単になるばかりか治療効果も
大きく、患者の不快感を減少することができる。
Therefore, by utilizing the superelasticity function of the shape memory alloy for this straightening wire, plastic deformation does not occur even if a strain of up to 10% is applied, and the elastic modulus is a nonlinear characteristic due to stress-induced martensitic transformation. Therefore, even if the strain increases, the rate of increase in the correction force is small. Therefore, even if a large deformation is applied at the time of wearing, it can be worn while maintaining an appropriate correction force, and not only the wearing operation is simple but also the therapeutic effect is great and the discomfort of the patient can be reduced.

【0004】このように歯列矯正ワイヤーとして形状記
憶合金を用いた場合、一般材料を用いた場合の従来の問
題を解消することができることから、近時、形状記憶合
金よりなる歯列矯正ワイヤーを用いて歯列の矯正を行う
ことが行われている。
When a shape memory alloy is used as an orthodontic wire as described above, the conventional problems when using a general material can be solved. Therefore, an orthodontic wire made of a shape memory alloy has recently been used. It is performed to correct the dentition.

【0005】[0005]

【発明が解決しようとする課題】従来、歯列矯正ワイヤ
ーを形成する形状記憶合金は、溶解・熱間加工プロセス
により最終形状の製品素材を得るのが一般的であった。
Conventionally, a shape memory alloy forming an orthodontic wire is generally obtained by a melting / hot working process to obtain a product material having a final shape.

【0006】この溶解・熱間加工プロセスによれば、高
周波真空溶解、又はプラズマ溶解法等によって作られた
鋳塊をプレス、圧延、鍛造等の熱間加工手段により所要
の形状に加工して用いるものであった。
According to this melting / hot working process, an ingot produced by high-frequency vacuum melting, plasma melting or the like is processed into a required shape by hot working means such as pressing, rolling or forging. It was a thing.

【0007】しかし、この溶解・熱間加工プロセスによ
り例えばTi−Ni−Cu系等の形状記憶合金を得る場
合には、Ti−Ni合金は難加工性ゆえに、ワイヤを形
成するのは困難であり、特にCuが10at%以上にな
ると脆化し、極めて難加工性になるため最終製品を得る
のは困難であった。
However, when a shape memory alloy such as a Ti-Ni-Cu system is obtained by this melting / hot working process, it is difficult to form a wire because the Ti-Ni alloy is difficult to work. Especially, when Cu is 10 at% or more, it becomes brittle and extremely difficult to work, so that it is difficult to obtain a final product.

【0008】さらに、結晶組織が粗粒で、基地の転移密
度が小さいために、降伏応力が低く、そのため超弾性機
能が充分ではなく、また、耐食性についても、本来、T
iーNi系は良いのであるが、加工材料の粗結晶粒や表
面不均質のため極く強い酸性・アルカリ性極限環境下で
の長期使用には問題が残され、歯列矯正ワイヤーとして
の応用についてのひとつの障害となっていた。
Furthermore, since the crystal structure is coarse and the matrix has a low dislocation density, the yield stress is low, so the superelastic function is not sufficient, and the corrosion resistance is essentially T.
The i-Ni system is good, but due to the coarse crystal grains of the processing material and the non-uniformity of the surface, problems remain for long-term use in extremely strong acidic / alkaline extreme environments, and its application as an orthodontic wire. Was one of the obstacles.

【0009】従って、この発明は以上の従来の問題点に
鑑みてなされたものであり、最終製品を容易に得ること
ができ、極めて高い超弾性機能を有し、極く強い酸性・
アルカリ性極限環境下での長期使用が可能な形状記憶素
材からなる歯列矯正ワイヤーを提供することを目的とす
る。
Therefore, the present invention has been made in view of the above-mentioned conventional problems, and the final product can be easily obtained, has an extremely high superelastic function, and has extremely strong acidity.
An object of the present invention is to provide an orthodontic wire made of a shape memory material that can be used for a long period of time in an alkaline extreme environment.

【0010】[0010]

【課題を解決するための手段】以上の目的を達成するこ
とができる新素材開発のために、本発明者らは、形状記
憶現象を示す合金系溶湯をノズルから直接Cu冷却ロー
ルに射出して、最終薄板(約20〜300ミクロン厚
さ)を得る回転急冷凝固法(Melt−spinnin
g Technique)を採用し試みた。その結果、
かかる回転急冷凝固法による急冷効果により、均質で極
く微細な異方性(数ミクロン以下の柱状結晶)組織を得
ることができ、さらに、下部組織は高転移密度となって
いるため、降伏による塑性歪が生じ難く、相変態以外の
エネルギーロスがないために、超弾性機能、耐食性の向
上がはかられることを知見し、本発明をなすに至った。
In order to develop a new material capable of achieving the above object, the inventors of the present invention directly inject a molten alloy system showing a shape memory phenomenon from a nozzle to a Cu cooling roll. , A rapid quench solidification process (Melt-spinnin) to obtain the final sheet (about 20-300 microns thick)
g Technique) was adopted. as a result,
Due to the rapid cooling effect by the rotary rapid solidification method, a homogeneous and extremely fine anisotropic (columnar crystal of several microns or less) structure can be obtained, and the lower structure has a high dislocation density. The present invention has been completed based on the finding that superelasticity and corrosion resistance can be improved because plastic strain hardly occurs and energy loss other than phase transformation does not occur.

【0011】この目的に沿う本発明に係る歯列矯正ワイ
ヤーは、形状記憶現象を示す合金系溶湯を急冷凝固させ
て得られる形状記憶材料からなる。
The orthodontic wire according to the present invention for this purpose is made of a shape memory material obtained by rapidly solidifying an alloy-based molten metal showing a shape memory phenomenon.

【0012】ここにいう形状記憶現象を示す合金には例
えば表1及び表2に示すものがある。
Examples of alloys exhibiting the shape memory phenomenon here are shown in Tables 1 and 2.

【0013】[0013]

【表1】[Table 1]

【0014】[0014]

【表2】[Table 2]

【0015】形状記憶現象を示す合金系溶湯を急冷凝固
させるにあたり、その冷却速度は102〜106℃/sec
とするのが望ましい。冷却速度が適切でないと、耐疲労
性、耐腐食性が低下する。
Upon rapid solidification of the alloy-based molten metal exhibiting the shape memory phenomenon, the cooling rate is 10 2 to 10 6 ° C / sec.
Is desirable. If the cooling rate is not appropriate, fatigue resistance and corrosion resistance will decrease.

【0016】また、前記形状記憶素材としてはTi−N
i系合金溶湯を急冷凝固させて得られるTi−Ni系形
状記憶合金が適しており、さらには、この形状記憶素材
としては、Ti(50±y,y≦±2at%)−Ni
(50−y−x)−Cu(xat%)系合金溶湯を急冷
凝固させて得られるTi−Ni−Cu系形状記憶合金が
特に適している。これにより均質で極く微細な異方性
(数ミクロン以下の柱状結晶)組織を得ることができ
る。さらに、下部組織は高転移密度となるため、降伏に
よる塑性歪が生じ難く、相変態以外のエネルギーロスが
ないために、極めて高い超弾性機能が備わり、耐食性の
向上もはかられる。
Ti-N is used as the shape memory material.
A Ti-Ni-based shape memory alloy obtained by quenching and solidifying a molten i-based alloy is suitable, and Ti (50 ± y, y ≦ ± 2 at%)-Ni is suitable as the shape-memory material.
A Ti-Ni-Cu-based shape memory alloy obtained by rapidly solidifying a (50-y-x) -Cu (xat%)-based alloy melt is particularly suitable. As a result, a homogeneous and extremely fine anisotropic (columnar crystal of several microns or less) structure can be obtained. Furthermore, since the lower structure has a high dislocation density, plastic strain due to yielding is unlikely to occur, and there is no energy loss other than phase transformation, so an extremely high superelastic function is provided and corrosion resistance can be improved.

【0017】またこの発明の歯列矯正ワイヤーはTi
(50±y,y≦±2at%)−Ni(50−y−x)
−Cu(xat%)系合金溶湯を急冷凝固させるととも
にCuの含有量xが0<x≦20at%であるTi−N
iーCu系形状記憶合金とするのが良い。この領域は通
常の溶解・熱間加工プロセスでは材質脆化(粒界脆化な
ど)か起こり、大きな圧延加工は困難となる。
The orthodontic wire of the present invention is Ti
(50 ± y, y ≦ ± 2 at%)-Ni (50-y-x)
-Cu (xat%)-based alloy molten metal is rapidly solidified, and Cu content x is Ti-N with 0 <x≤20at%
It is preferable to use an i-Cu-based shape memory alloy. In this area, material embrittlement (grain boundary embrittlement, etc.) occurs in a normal melting / hot working process, making large rolling difficult.

【0018】さらにこの発明の歯列矯正ワイヤーは、T
i(50±y,y≦±2at%)−Ni(50−y−
x)−Cu(xat%)系合金溶湯を急冷凝固させると
ともにCu含有量xが11.0〜16.0at%となる
ようにするのが良く、最も好ましくは12.0〜14.
0at%とするのが良い。
Further, the orthodontic wire of the present invention has a T
i (50 ± y, y ≦ ± 2 at%)-Ni (50-y-
x) -Cu (xat%)-based alloy melt is rapidly solidified and the Cu content x is preferably set to 11.0 to 16.0 at%, most preferably 12.0 to 14.
It is good to set it to 0 at%.

【0019】この発明において用いられる急冷凝固法と
しては、例えば溶湯を直接Cu冷却板などに吹き付け急
冷し小試験片を作成するガン法、連続薄板作成用の回転
ロール(単、双ロール)法、細線作製に適する回転液中
紡糸法、急冷粉末を作るスプレー法等がある。
Examples of the rapid solidification method used in the present invention include, for example, a gun method in which a molten metal is directly sprayed onto a Cu cooling plate or the like to be rapidly cooled to produce a small test piece, a rotary roll (single or twin roll) method for producing a continuous thin plate, There are a spinning submerged spinning method suitable for producing fine wires, a spray method for producing a quenched powder, and the like.

【0020】以上の各急冷法の中で、回転ロール法(単
ロール)によって急冷凝固を行うときには、その冷却速
度は1〜50m/secとするのが良い。冷却速度が1
m/sec未満である場合には急冷金属組織(特に、結
晶粒径)が粗大化し、かつランダム方位化し、超弾性機
能、耐疲労劣化性、耐腐食性が低下してしまう。逆に冷
却速度が50m/secを越える場合には金属組織は非
晶質化(アモルファス)して超弾性機能は現れなくなり
好ましくない。
Among the above quenching methods, when the rapid solidification is performed by the rotating roll method (single roll), the cooling rate is preferably 1 to 50 m / sec. Cooling rate is 1
If it is less than m / sec, the quenched metal structure (particularly the crystal grain size) becomes coarse and random orientation occurs, and the superelastic function, fatigue deterioration resistance, and corrosion resistance deteriorate. On the contrary, when the cooling rate exceeds 50 m / sec, the metal structure becomes amorphous and the superelastic function does not appear, which is not preferable.

【0021】[0021]

【作用】一般に溶湯急冷凝固法により金属溶湯を急冷凝
固させる場合、図4に示されるように冷却速度(回転ロ
ール法においてはロール回転速度)を早くするに従っ
て、金属組織はデンドライト相から微細結晶化され、等
軸柱状結晶をへて超急冷速度(1×106℃/sec以
上)でアモルファスに変化する。例えばTi−Ni−C
u溶湯の急冷速度を40m/sec(1×106℃/s
ec)とすると、金属組織は板厚方向に結晶軸が揃った
微細柱状晶(結晶粒径が2〜3ミクロン)となる。この
点につきX線結晶構造解析を行っても結晶方向がそろっ
ていることが確認される。従ってこの急冷速度で冷却し
たTi−Ni−Cu系形状記憶合金は、このような金属
組織を有することから、次のような機能を有するに至
る。
In general, when the molten metal is rapidly solidified by the molten metal quench solidification method, the metal structure is finely crystallized from the dendrite phase as the cooling speed (roll rotation speed in the rotating roll method) is increased as shown in FIG. Then, the equiaxed columnar crystals are transformed into amorphous at a super-quenching rate (1 × 10 6 ° C / sec or more). For example Ti-Ni-C
The quenching rate of u melt is 40m / sec (1 × 10 6 ℃ / s
ec), the metal structure becomes fine columnar crystals (crystal grain size is 2 to 3 μm) in which crystal axes are aligned in the plate thickness direction. Even if X-ray crystal structure analysis is performed on this point, it is confirmed that the crystal directions are aligned. Therefore, the Ti-Ni-Cu-based shape memory alloy cooled at this quenching rate has such a metal structure, and thus has the following function.

【0022】柱状晶形成により、結晶方位がそろってい
るために、かかるTi−Ni−Cu系形状記憶合金で
は、全体として同時に均一な変態が生じ、微細結晶組織
であるため、材料降伏応力が高くなり、負荷応力安定性
が向上する。
Since the crystal orientations are aligned due to the formation of columnar crystals, the Ti-Ni-Cu-based shape memory alloy undergoes uniform transformation as a whole at the same time and has a fine crystal structure, so that the material yield stress is high. The load stress stability is improved.

【0023】さらに微細結晶で降伏応力が高く、かつ結
晶方位がそろっている結果として、繰り返し使用に対し
て、塑性歪・転移が導入されにくく、機能疲労劣化(記
憶ボケ)しにくくなる。
Further, as a result of the fine crystals having a high yield stress and a uniform crystal orientation, plastic strain / transition is less likely to be introduced and functional fatigue deterioration (memory blur) is less likely to occur during repeated use.

【0024】この発明に適用されるTi(50±y,y
≦±2at%)−Ni(50−y−x)−Cu(xat
%)系形状記憶合金で、Cuの添加量xを15at%程
度とすると、その付近では立方晶から斜方晶、さらに単
斜晶という経路をたどる。
Ti (50 ± y, y applied to the present invention
≦ ± 2 at%)-Ni (50-y-x) -Cu (xat
%) Type shape memory alloy, if the addition amount x of Cu is set to about 15 at%, in the vicinity thereof, a route from cubic crystal to orthorhombic crystal to monoclinic crystal is followed.

【0025】以上のように、この発明に適用される形状
記憶材料は、極めて高い超弾性機能を有し、かつ耐食性
も極めて優れることから歯列矯正ワイヤーとして用いた
場合は従来にない優れた機能を発揮する。
As described above, the shape memory material applied to the present invention has an extremely high superelastic function and extremely excellent corrosion resistance. Therefore, when it is used as an orthodontic wire, it has an unprecedented excellent function. Exert.

【0026】[0026]

【実施例】以下に、本発明に係る歯列矯正ワイヤーの望
ましい実施例を、図面を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the orthodontic wire according to the present invention will be described below with reference to the drawings.

【0027】図1は本発明の実施例の歯列矯正ワイヤー
を示し、歯列11に対し本発明の歯列矯正ワイヤー12
が装着されている。
FIG. 1 shows an orthodontic wire according to an embodiment of the present invention, in which an orthodontic wire 12 of the present invention is used with respect to an dentition 11.
Is installed.

【0028】従来、歯科矯正ワイヤーとしてはステンレ
ス鋼、CoーCr合金が用いられてきたがこれらは高剛
性で弾性ひずみ限度も一般の金属材料と変わらず、たか
だか1パーセント以内である。このため、口腔内への取
付が困難で熟練を必要とし、また、治療中に矯正力を調
整するためには何度もワイヤーを交換しなければなら
ず、かつ患者への不快感、ワイヤー装着時の違和感など
の欠点があった。そこで、この矯正ワイヤーとして本発
明者らが発見した急冷凝固形状記憶合金、特に、そのT
iNi系材料での大きな超弾性を利用した本発明実施例
の前記歯列矯正ワイヤー12を用いれば、高強度でかつ
しなやかさがあるので装着操作が簡単で、ワイヤー交換
も少なくてすみ、患者の不快感も低減され、治療効果が
大きい。
Conventionally, stainless steel and Co-Cr alloy have been used as orthodontic wires, but these are highly rigid and have an elastic strain limit which is the same as that of general metal materials and is within 1% at most. For this reason, it is difficult to install in the oral cavity and requires skill, and the wire must be exchanged many times to adjust the correction force during treatment, and the patient feels discomfort and wears the wire. There was a defect such as a feeling of strangeness at the time. Therefore, as this straightening wire, the rapidly solidified shape memory alloy discovered by the present inventors, particularly the T
If the orthodontic wire 12 of the embodiment of the present invention utilizing the great superelasticity of the iNi-based material is used, it has high strength and is supple, so that the mounting operation is easy and the wire replacement is small, so that the Discomfort is reduced and the therapeutic effect is great.

【0029】以上の実施例に適用した急冷凝固形状記憶
合金の一例を以下に示す。以下の例では形状記憶合金溶
湯の急冷凝固法として、回転ロール法を用いた場合につ
いて説明する。
An example of the rapidly solidified shape memory alloy applied to the above examples is shown below. In the following example, a case where a rotating roll method is used as a rapid solidification method for a shape memory alloy melt will be described.

【0030】図2に示す回転急冷凝固装置を用い、Ar
雰囲気中でTiNiCuインゴット素材をアーク溶解し
て得た表3に示す組成のTi−Ni−Cu合金の溶湯1
を、高純度Ar雰囲気中で、試料誘導加熱用コイル1が
巻回された石英ノズル2から直接回転銅ロール3に溶射
して、溶湯接触部4において急速に冷却凝固させて急冷
凝固リボン5を得た。その際、冷却速度を1×104
1×106℃/secに設定し、ロール速度を1〜40
m/sec、冷却用の回転銅ロール(直径=200m
m)回転速度を2000〜4000rpmとした。得ら
れた歯列矯正ワイヤーとしてのTi−Ni−Cu系形状
記憶合金ワイヤにつき耐食性を評価した。
Using the rotary rapid solidification equipment shown in FIG.
Molten Ti-Ni-Cu alloy having the composition shown in Table 3 obtained by arc-melting a TiNiCu ingot material in an atmosphere 1
Is sprayed directly from a quartz nozzle 2 around which a coil 1 for sample induction heating is wound in a high-purity Ar atmosphere onto a rotating copper roll 3 to rapidly cool and solidify in a molten metal contact portion 4 to form a rapidly solidified ribbon 5. Obtained. At that time, the cooling rate is 1 × 10 4 to
Roll speed is set to 1 to 10 6 ℃ / sec
m / sec, rotating copper roll for cooling (diameter = 200m
m) The rotation speed was 2000 to 4000 rpm. The Ti-Ni-Cu-based shape memory alloy wire as the orthodontic wire thus obtained was evaluated for corrosion resistance.

【0031】[0031]

【表3】(合金化学組成) [Table 3] (Alloy chemical composition)

【0032】耐食性の評価結果につき、図3に示す。図
3は本実施例の歯列矯正ワイヤーとしての急冷凝固Ti
−Ni−Cu系形状記憶合金につき、塩酸(1N/HC
l)中での分局曲線を測定したものである。図に示され
るように各分曲曲線の最下点、いわゆる自然電極電位レ
ベルで比較しても従来の溶解加工材に比べて、耐食性は
100倍から1万倍程度の大幅な向上が可能なことがわ
かる。
The results of evaluation of corrosion resistance are shown in FIG. FIG. 3 shows the rapidly solidified Ti as the orthodontic wire of this embodiment.
-Ni-Cu system shape memory alloy, hydrochloric acid (1N / HC
It is a measurement of the curve of the division in 1). As shown in the figure, even if the lowest point of each bending curve, that is, the so-called natural electrode potential level is compared, the corrosion resistance can be greatly improved by 100 times to 10,000 times compared with the conventional melt processed material. I understand.

【0033】なお、以上の急冷凝固形状記憶合金は歯間
ブラシ、義歯床補強用複合材料(コンポジット)として
の適用が有効である。
The above rapidly solidified shape memory alloy is effectively applied as an interdental brush and a denture base reinforcing composite material (composite).

【0034】歯間ブラシ 歯と歯の間に食物かす(=歯垢)が溜まり、これらは虫
歯、歯肉炎、歯槽膿漏の原因となっている。その歯垢を
除去する器具として、図5に示される『歯間ブラシ』が
使用されているが、このワイヤー13部分には従来はス
テンレス細線が使用されていた。しかし、歯根部及び歯
と歯の間の隙間の肉部分は凹凸が大きいので、弾性ひず
みの小さいステンレスワイヤーでは十分に歯肉の曲線に
沿ったワイヤー接触が困難で歯垢除去が出来ない。その
点、この細線(ワイヤー)13部分に本発明の急冷凝固
TiNi系合金を用いると、その大きな超弾性のため
に、歯肉や歯の曲面部分に密着できて歯垢除去が良くで
きることになる。
Interdental brush Food residues (= plaque) are accumulated between the teeth, which cause caries, gingivitis, and alveolar pyorrhea. As an instrument for removing the plaque, an "interdental brush" shown in FIG. 5 is used, but a stainless thin wire has been conventionally used for the wire 13 portion. However, since the tooth root portion and the flesh portion of the gap between the teeth have large irregularities, it is difficult to contact the wire along the curve of the gingiva with a stainless wire having a small elastic strain, and plaque cannot be removed. On the other hand, when the rapidly solidified TiNi alloy of the present invention is used for the portion of the fine wire (wire) 13, due to its large superelasticity, it can be adhered to the gingiva and the curved surface portion of the tooth and the plaque can be removed well.

【0035】義歯床補強用複合材料(コンポジット) 義歯列14を安定に支持し、かつそしゃく時の歯から集
中的な力を分散させるために図6に示される様なクラス
ブ(=可撤式補綴物)15を両端に配置した義歯床用樹
脂(レジン)16が使用されているが、入歯患者の違和
感や不快感を減らし、なめらかな口腔内そしゃくと発声
運動をさせるためには強度が高くかつ柔軟性に富んだ義
歯床材料が要求される。そこで、急冷凝固形状記憶合
金、特にそのTiNi系ファイバーや薄板を網目状にレ
ジン内部に配列させ、複合強化と大きな合金の弾性変形
能を引き出して、しなやかで口腔内の筋肉運動にも十分
追従でき、患者の不快感も低減できる義歯床補強複合材
料ができる。
In order to stably support the denture base 14 for denture base reinforcement and to disperse the concentrated force from the teeth during chewing, the clasp (= removable prosthesis) as shown in FIG. (Resin) 16 for denture base having 15) disposed at both ends is used, but the strength is high in order to reduce discomfort and discomfort of the denture patient and to make smooth oral chewing and vocal movement. Flexible denture base materials are required. Therefore, the rapidly solidified shape memory alloy, especially its TiNi-based fibers and thin plates, are arranged inside the resin in a mesh shape to bring out the composite strengthening and elastic deformability of the large alloy, and it is supple and can sufficiently follow the muscle movement in the oral cavity. Thus, a denture base reinforced composite material that can reduce discomfort to the patient can be obtained.

【0036】なお、健康な歯を把持するための義歯床両
端のクラスブにも、形状記憶合金が使用できる。
The shape memory alloy can also be used for the clasps at both ends of the denture base for gripping healthy teeth.

【0037】[0037]

【発明の効果】以上説明したように、本発明に係る歯列
矯正ワイヤーによれば、つぎのような効果が得られる。
As described above, according to the orthodontic wire of the present invention, the following effects can be obtained.

【0038】歯列矯正ワイヤーを、例えばTi−Ni−
Cu系合金溶湯を急冷凝固させて得られる急冷凝固Ti
−Ni−Cu系形状記憶合金から構成したので、この発
明の歯列矯正ワイヤーによれば繰り返し使用に伴う機能
劣化(記憶ボケ)が大幅に減少(1/10程度)される
と共に極めて高い超弾性機能を有するという優れた効果
が奏される。
An orthodontic wire is, for example, Ti-Ni-
Rapid solidification Ti obtained by rapid solidification of Cu-based alloy melt
Since the orthodontic wire of the present invention is made of a -Ni-Cu type shape memory alloy, the functional deterioration (memory blur) due to repeated use is significantly reduced (about 1/10) and the superelasticity is extremely high. The excellent effect of having a function is exhibited.

【0039】またこの発明の歯列矯正ワイヤーによれ
ば、酸化雰囲気(1N−HCl)塩酸中での耐食性が大
幅に向上(100〜1万倍)されることから生体内での
発ガン物質の発生等が防止されるという優れた利点があ
る。
Further, according to the orthodontic wire of the present invention, the corrosion resistance in an oxidizing atmosphere (1N-HCl) hydrochloric acid is greatly improved (100 to 10,000 times), and therefore, the carcinogenic substance in vivo is prevented. There is an excellent advantage that the occurrence and the like are prevented.

【0040】[0040]

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例の歯列矯正ワイヤーを示す図
である。
FIG. 1 is a view showing an orthodontic wire according to an embodiment of the present invention.

【図2】 この発明の歯列矯正ワイヤーを得るために用
いられる急冷凝固装置の模式図である。
FIG. 2 is a schematic view of a rapid solidification apparatus used to obtain the orthodontic wire of the present invention.

【図3】 この発明の実施例の歯列矯正ワイヤーに適用
されるTi−Ni−Cu系形状記憶合金の塩酸(1N/
HCl)中での分極曲線を示す図である。
FIG. 3 is a Ti—Ni—Cu-based shape memory alloy hydrochloric acid (1 N / N applied to the orthodontic wire according to the embodiment of the present invention).
FIG. 3 shows a polarization curve in HCl).

【図4】 この発明の歯列矯正ワイヤーに適用されるT
i−Ni−Cu系形状記憶合金の冷却速度に伴う金属組
織の変化を示す図である。
FIG. 4 is a T applied to the orthodontic wire of the present invention.
It is a figure which shows the change of the metal structure with the cooling rate of i-Ni-Cu type shape memory alloy.

【図5】 この発明の実施例の歯列矯正ワイヤーを『歯
間ブラシ』のワイヤーに適用する状態を示す図である。
FIG. 5 is a diagram showing a state in which the orthodontic wire according to the embodiment of the present invention is applied to a wire of an “interdental brush”.

【図6】 この発明の実施例の歯列矯正ワイヤーを義歯
床用樹脂に適用する状態を示す図である。
FIG. 6 is a view showing a state in which the orthodontic wire according to the embodiment of the present invention is applied to the resin for denture base.

【符号の説明】[Explanation of symbols]

1 試料誘導加熱用コイル 2 石英ノズル 3 回転Cuロール 4 溶湯接触部 5 急冷凝固リボン 1 Sample induction heating coil 2 Quartz nozzle 3 Rotating Cu roll 4 Molten metal contact part 5 Rapid solidification ribbon

───────────────────────────────────────────────────── フロントページの続き (71)出願人 391063662 棚橋 善克 宮城県仙台市太白区八木山香澄町10−26 (72)発明者 古屋 泰文 宮城県仙台市青葉区三条町14−1−33 (72)発明者 増本 健 宮城県仙台市青葉区上杉三丁目8−22 (72)発明者 伊藤 秀美 宮城県仙台市若林区霞目2丁目17の11 (72)発明者 棚橋 善克 宮城県仙台市太白区八木山香澄町10−26 ─────────────────────────────────────────────────── ─── Continuation of front page (71) Applicant 391063662 Yoshikatsu Tanahashi 10-26 Yagiyama Kasumi-cho, Taishiro-ku, Sendai-shi, Miyagi Prefecture (72) Inventor Yasufumi Furuya 14-1-33 Sanjo-cho, Aoba-ku, Sendai City, Miyagi Prefecture ( 72) Inventor Ken Masumoto 3-8-22, Uesugi, Aoba-ku, Sendai-shi, Miyagi Prefecture 72-72 (72) Hidemi Ito 11-17-2, Kasumome, Wakabayashi-ku, Sendai City, Miyagi Prefecture (72) Inventor Yoshikatsu Tanahashi Sendai-shi, Miyagi Prefecture 10-26 Kasumi-cho, Yagiyama, Taishiro-ku

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 歯列に取り付けてこれを矯正するために
用いられる歯列矯正ワイヤーにおいて、形状記憶現象を
示す合金系溶湯を急冷凝固させて得られる形状記憶素材
を用いることを特徴とする歯列矯正ワイヤー。
1. An orthodontic wire used for mounting on an orthodontic column and straightening it, characterized by using a shape memory material obtained by rapid solidification of an alloy-based molten metal exhibiting a shape memory phenomenon. Row straightening wire.
【請求項2】 形状記憶現象を示す合金系溶湯を急冷凝
固させるにあたりその冷却速度を102〜106℃/se
cとする請求項1記載の歯列矯正ワイヤー。
2. A cooling rate of 10 2 to 10 6 ° C./se for rapid solidification of an alloy-based molten metal exhibiting a shape memory phenomenon.
The orthodontic wire according to claim 1, wherein the wire is c.
【請求項3】 歯列に取り付けてこれを矯正するために
用いられる歯列矯正ワイヤーにおいて、形状記憶素材と
してTi−Ni系合金溶湯を急冷凝固させて得られるT
i−Ni系形状記憶合金を用いる請求項1記載の歯列矯
正ワイヤー。
3. An orthodontic wire used for orthodontics attached to a dentition, which is obtained by rapidly solidifying molten Ti—Ni alloy as a shape memory material.
The orthodontic wire according to claim 1, wherein an i-Ni-based shape memory alloy is used.
【請求項4】 歯列に取り付けてこれを矯正するために
用いられる歯列矯正ワイヤーにおいて、Ti(50±
y,y≦±2at%)−Ni(50−y−x)−Cu
(xat%)系合金溶湯を急冷凝固させて得られるTi
−Ni−Cu系形状記憶合金を用いることを特徴とする
歯列矯正ワイヤー。
4. An orthodontic wire used for attaching to an orthodontics and correcting the same, comprising Ti (50 ±
y, y ≦ ± 2 at%)-Ni (50-y-x) -Cu
Ti obtained by rapidly solidifying molten alloy of (xat%) type
An orthodontic wire characterized by using a Ni-Cu type shape memory alloy.
【請求項5】 Cuの含有量xが0<x≦20at%で
ある請求項4に記載した歯列矯正ワイヤー。
5. The orthodontic wire according to claim 4, wherein the Cu content x is 0 <x ≦ 20 at%.
【請求項6】 Cuの含有量xが11.0〜16.0a
t%である請求項5に記載した歯列矯正ワイヤー。
6. The Cu content x is 11.0 to 16.0a.
The orthodontic wire according to claim 5, which is t%.
JP12993892A 1992-04-23 1992-04-23 Orthodontic wire Pending JPH06125921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12993892A JPH06125921A (en) 1992-04-23 1992-04-23 Orthodontic wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12993892A JPH06125921A (en) 1992-04-23 1992-04-23 Orthodontic wire

Publications (1)

Publication Number Publication Date
JPH06125921A true JPH06125921A (en) 1994-05-10

Family

ID=15022151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12993892A Pending JPH06125921A (en) 1992-04-23 1992-04-23 Orthodontic wire

Country Status (1)

Country Link
JP (1) JPH06125921A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003003935A1 (en) * 2001-07-02 2003-01-16 Young-Kyu Choi Orthodontic appliance by using a shape memory polymer
KR101251946B1 (en) * 2011-08-08 2013-04-08 경희대학교 산학협력단 Method For Manufacturing Orthodontic Kit And Orthodontic Kit Using The Same
JP2015512278A (en) * 2012-03-15 2015-04-27 デンツプライ インターナショナル インコーポレーテッド Medical device and manufacturing method made of single crystal shape memory alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003003935A1 (en) * 2001-07-02 2003-01-16 Young-Kyu Choi Orthodontic appliance by using a shape memory polymer
KR101251946B1 (en) * 2011-08-08 2013-04-08 경희대학교 산학협력단 Method For Manufacturing Orthodontic Kit And Orthodontic Kit Using The Same
JP2015512278A (en) * 2012-03-15 2015-04-27 デンツプライ インターナショナル インコーポレーテッド Medical device and manufacturing method made of single crystal shape memory alloy

Similar Documents

Publication Publication Date Title
Thompson An overview of nickel–titanium alloys used in dentistry
CN108486408B (en) Beta-type titanium alloy for filling teeth with low elastic modulus and manufacturing method thereof
EP0465836B1 (en) Orthodontic implement controllable of correction force
Kikuchi et al. Mechanical properties and grindability of dental cast Ti-Nb alloys
WO2005064026A1 (en) Super elasticity and low modulus ti alloy and its manufacture process
US20110272064A1 (en) Objects made of bulk-solidifying amorphous alloys and method of making same
JPH10501719A (en) Biocompatible, low modulus dental device
JP5005889B2 (en) High strength low Young&#39;s modulus titanium alloy and its manufacturing method
CN112251639A (en) High-strength antibacterial titanium alloy bar, high-strength antibacterial titanium alloy wire and preparation method of high-strength antibacterial titanium alloy bar
JP4152050B2 (en) Ti-Zr alloy
CN103060609B (en) Near-beta titanium alloy with low elastic modulus and high strength and preparation method of near-beta titanium alloy
JP4649238B2 (en) Orthodontic wire
JPH06125921A (en) Orthodontic wire
US6572815B1 (en) Titanium having improved castability
JP4547797B2 (en) Biomedical Ti alloy and method for producing the same
JP3401555B2 (en) Titanium-based amorphous alloy
JP3824754B2 (en) Method for producing shape memory alloy cast member
JP6497689B2 (en) Co-Cr-W base alloy hot-worked material, annealed material, cast material, homogenized heat treatment material, Co-Cr-W-based alloy hot-worked material manufacturing method, and annealed material manufacturing method
JPH01310664A (en) Surface treatment of ni-ti shape memory alloy implant for in-vivo implantation
CN1699610A (en) High elasticity beta titanium alloy and products made therefrom
CN105256172A (en) Improved medical low-modulus titanium alloy and preparation method thereof
JP2005113227A (en) Low young&#39;s modulus titanium alloy
JP2004197112A (en) Method of producing biological superelastic titanium alloy
JP4028022B2 (en) Casting clasp for partial denture base
JP2979420B2 (en) Orthodontic appliance