JPH06124803A - Conductive composite body - Google Patents

Conductive composite body

Info

Publication number
JPH06124803A
JPH06124803A JP27280492A JP27280492A JPH06124803A JP H06124803 A JPH06124803 A JP H06124803A JP 27280492 A JP27280492 A JP 27280492A JP 27280492 A JP27280492 A JP 27280492A JP H06124803 A JPH06124803 A JP H06124803A
Authority
JP
Japan
Prior art keywords
glassy carbon
temperature
molecular weight
superfine
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27280492A
Other languages
Japanese (ja)
Inventor
Shinji Okumura
新司 奥村
Hiroshi Kajimaru
弘 梶丸
Keiichi Asami
圭一 浅見
Yoshiaki Echigo
良彰 越後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP27280492A priority Critical patent/JPH06124803A/en
Publication of JPH06124803A publication Critical patent/JPH06124803A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize the resistance value when the temperature is restored to a normal temperature and recover it to the initial value even if a PTC phenomenon would be generated repeatedly by using two kinds of superfine glassy carbons having different mean grain size together with an ultrahigh molecular weight polyolefin. CONSTITUTION:A composition containing 20-90wt.% ultrahigh molecular weight polyolefin, 0-40wt.% superfine glassy carbon of 1-20mum in average grain size, and 10-70wt.% superfine glassy carbon of 40-400mum in average grain size is formed by heating. As for the superfine glassy carbon, a thermosetting resin such as furfuryl alcohol resin, phenol resin, etc., is used as material and the result obtained through carbonization or graphitization can be used for its use, but globular phenol resin particles carbonized at 1000-3000 deg.C is most suitable. Thus, even if a PTC phenomenon would be generated repeatedly, the resistance value when the temperature is restored to a normal temperature can be stabilized and recovered to the initial value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、安定した正温度係数
(以下、PTCという)を有する導電性複合体に関する
ものである。
TECHNICAL FIELD The present invention relates to a conductive composite having a stable positive temperature coefficient (hereinafter referred to as PTC).

【0002】[0002]

【従来の技術】PTCとは、特定の温度領域において、
その電気抵抗値が温度の上昇と共に急激に増加する性質
のことであり、PTCの性質を有する従来の導電性組成
物としては、ポリエチレン、ポリプロピレン、ナイロン
等の結晶性ポリマーにカーボンブラックや金属粉末を充
填した導電性組成物が知られている。例えば、特開昭6
1−218117号公報には、分子量20〜40万のポ
リエチレンとカーボンブラックを混合し、ペレット化し
た後、射出成形法により得られた成形物に電子線を照射
し、PTCの性質を有する導電性組成物を得る方法が開
示されている。
2. Description of the Related Art PTC is a specific temperature range
The electric resistance value thereof is a property of rapidly increasing with an increase in temperature. As a conventional conductive composition having the property of PTC, carbon black or metal powder is added to crystalline polymer such as polyethylene, polypropylene or nylon. Filled conductive compositions are known. For example, JP-A-6
In JP-A 1-218117, a polyethylene having a molecular weight of 200,000 to 400,000 and carbon black are mixed and pelletized, and a molded product obtained by an injection molding method is irradiated with an electron beam to obtain a conductive material having a PTC property. A method of obtaining the composition is disclosed.

【0003】また、特開昭62−167358号公報に
は、ポリエチレン等の有機高分子とカーボンブラックを
溶融混合し、それを微粉砕して電子線を照射し、マトリ
ックスポリマーとブレンドして成形した後、さらに電子
線を照射し、PTCの性質を有する導電性ポリマー組成
物を得る方法が開示されている。また、特願平3−58
327号公報には、超高分子量ポリオレフィンと微粒状
のグラッシーカーボンからなるPTC複合体およびその
製造方法が開示されている。
Further, in JP-A-62-167358, an organic polymer such as polyethylene and carbon black are melt-mixed, finely pulverized, irradiated with an electron beam, blended with a matrix polymer and molded. After that, a method of further irradiating with an electron beam to obtain a conductive polymer composition having the property of PTC is disclosed. In addition, Japanese Patent Application No. 3-58
Japanese Patent No. 327 discloses a PTC composite composed of ultra-high molecular weight polyolefin and fine granular glassy carbon and a method for producing the same.

【0004】しかしながら、いずれの場合も、得られた
組成物はPTCの性質を有しているが、回路に過電流や
過電圧などの異常が生じた場合、回路をオフにしても抵
抗値が初期の値に復帰せず、時には10倍以上の値にな
るという欠点を有していた。
However, in any case, the obtained composition has the property of PTC, but when an abnormality such as overcurrent or overvoltage occurs in the circuit, the resistance value is initially set even when the circuit is turned off. It had a drawback that it did not return to the value of 10 times and sometimes became 10 times or more.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、PT
C現象を繰り返して発現させても、常温に戻した時の抵
抗値が安定して初期の値に回復するという優れた特性を
有する導電性複合体を提供することにある。
The object of the present invention is to provide a PT
It is an object of the present invention to provide a conductive composite having excellent properties such that the resistance value is stabilized and returned to the initial value when the temperature is returned to room temperature even if the C phenomenon is repeatedly expressed.

【0006】[0006]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意研究した結果、超高分子量ポリオレフ
ィンと共に平均粒径の異なる2種類の微粒状グラッシー
カーボンを用いると、その目的が達成できることを見い
出し、本発明に到達した。すなわち、本発明は、超高分
子量ポリオレフィン20〜90重量%、平均粒径1〜2
0μmの微粒状グラッシーカーボン0〜40重量%およ
び平均粒径40〜400μmの微粒状グラッシーカーボ
ン10〜70重量%を含有する組成物を加熱成形してな
る正温度係数を有する導電性複合体を要旨とするもので
ある。
Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have found that the use of two types of fine-grained glassy carbons having different average particle sizes together with ultra-high molecular weight polyolefin has the purpose. The inventors have found what can be achieved and have reached the present invention. That is, the present invention has an ultrahigh molecular weight polyolefin of 20 to 90% by weight and an average particle size of 1 to 2.
A conductive composite having a positive temperature coefficient obtained by heat-molding a composition containing 0 to 40 wt% of fine glassy carbon having a particle size of 40 to 400 μm and 0 to 40 wt% of fine glassy carbon having a mean particle size of 40 to 400 μm. It is what

【0007】本発明の導電性複合体は、超高分子量ポリ
オレフィンおよび平均粒径の異なる2種の微粒状グラッ
シーカーボンからなり、微粒状グラッシーカーボンの全
含有量が10〜80重量%、好ましくは20〜70重量
%である。10重量%未満では十分な導電性が得られ難
く、80重量%を越えると複合体の強度が弱くなる傾向
にあり、好ましくない。
The conductive composite of the present invention comprises an ultra-high molecular weight polyolefin and two kinds of finely divided glassy carbons having different average particle diameters, and the total content of the finely divided glassy carbon is 10 to 80% by weight, preferably 20. Is about 70% by weight. If it is less than 10% by weight, it is difficult to obtain sufficient conductivity, and if it exceeds 80% by weight, the strength of the composite tends to be weak, which is not preferable.

【0008】本発明で用いる超高分子量ポリオレフィン
は特に限定されず、例えば、エチレン、プロピレン、1
−ブテン、1−ヘキセン、1−オクテン、1−デセン、
1−ドデセン、4−メチル−1−ペンテン等のα−オレ
フィンの単独重合体または共重合体が挙げられる。特
に、エチレンの単独重合体が好ましい。超高分子量ポリ
オレフィンを135℃のデカリン溶媒中で測定した極限
粘度は、400ml/g以上5000ml/g以下、好まし
くは500ml/g以上4000ml/g以下である。極限
粘度が400ml/g未満であると、得られた複合体の強
度が充分でなく、5000ml/gを越えると成形が困難
になる傾向にある。
The ultra-high molecular weight polyolefin used in the present invention is not particularly limited, and examples thereof include ethylene, propylene and 1
-Butene, 1-hexene, 1-octene, 1-decene,
Examples thereof include homopolymers or copolymers of α-olefins such as 1-dodecene and 4-methyl-1-pentene. In particular, a homopolymer of ethylene is preferable. The intrinsic viscosity of ultra-high molecular weight polyolefin measured in a decalin solvent at 135 ° C. is 400 ml / g or more and 5000 ml / g or less, preferably 500 ml / g or more and 4000 ml / g or less. When the intrinsic viscosity is less than 400 ml / g, the strength of the obtained composite is insufficient, and when it exceeds 5000 ml / g, molding tends to be difficult.

【0009】前記超高分子量ポリオレフィンとしては、
粒径5〜800μmのものが使用され、10〜100μm
のものが好ましい。粒径が5μm未満のものは二次凝集
をおこしやすく、800μmを越えるものを使用すると
充分な強度を有する複合体が得られにくくなる。
As the ultra high molecular weight polyolefin,
Particle size of 5-800μm is used, 10-100μm
Are preferred. If the particle size is less than 5 μm, secondary aggregation is likely to occur, and if the particle size exceeds 800 μm, it becomes difficult to obtain a composite having sufficient strength.

【0010】本発明で用いる微粒状グラッシーカーボン
としては、フルフリルアルコール樹脂、フェノール樹脂
等の熱硬化性樹脂を原料として炭素化または黒鉛化の過
程を経て製造されるものが使用できるが、球状フェノー
ル樹脂粒子を1000〜3000℃で炭素化したものが
最も好ましい。本発明においては、平均粒径1〜20μ
mの微粒状グラッシーカーボンと平均粒径40〜400
μmの微粒状グラッシーカーボンを組み合せて使用する
ことが好ましいが、それ以外の粒径のものを使用する
と、PTCの性質を示した後、常温に戻した時初期の抵
抗値に戻りにくくなる。
As the fine granular glassy carbon used in the present invention, those produced through a process of carbonization or graphitization from a thermosetting resin such as furfuryl alcohol resin or phenol resin can be used. Most preferably, the resin particles are carbonized at 1000 to 3000 ° C. In the present invention, the average particle size is 1 to 20 μ.
m fine-grained glassy carbon and average particle size 40-400
It is preferable to use a combination of fine granular glassy carbon having a particle size of μm. However, if a particle size other than that is used, it becomes difficult to return to the initial resistance value when the temperature returns to room temperature after exhibiting the properties of PTC.

【0011】これらの成分の配合により、室温(10〜
30℃)で約10Ω・cm以下の抵抗値を有し、0〜20
0℃の操作温度範囲において、R15値が10以上また
はR100値が100以上、好ましくはR15値が10
以上およびR100が、100以上である導電性複合体
が得られる。ここで、R15値とは0〜200℃の操作
温度範囲において、抵抗率増加が最も大きい15℃の温
度範囲における最初と最後の抵抗率比を表し、R100
値とは0〜200℃の操作温度範囲において抵抗率増加
が最も大きい100℃の温度範囲における最初と最後の
抵抗率の比を表したものである。
By blending these components, room temperature (10 to 10
It has a resistance value of about 10 Ω · cm or less at 30 ℃, 0-20
In the operating temperature range of 0 ° C., the R15 value is 10 or more, or the R100 value is 100 or more, preferably the R15 value is 10 or more.
A conductive composite having the above and R100 of 100 or more is obtained. Here, the R15 value represents the ratio of the first and last resistivities in the temperature range of 15 ° C. in which the increase in resistivity is largest in the operating temperature range of 0 to 200 ° C., and R100
The value represents the ratio of the first and last resistivities in the temperature range of 100 ° C. in which the resistivity increase is largest in the operating temperature range of 0 to 200 ° C.

【0012】本発明の導電性複合体は、超高分子量ポリ
オレフィンと2種類の微粒状グラッシーカーボンを所定
量混合した後、混合物を加熱下で圧縮成形することによ
り製造できる。この際、必要に応じて、離型剤、酸化防
止剤、炭酸カルシウム等の充填剤を添加してもよい。
The electroconductive composite of the present invention can be produced by mixing a predetermined amount of ultra-high molecular weight polyolefin and two kinds of finely divided glassy carbon, and then compression-molding the mixture under heating. At this time, a release agent, an antioxidant, and a filler such as calcium carbonate may be added, if necessary.

【0013】加熱温度としては、超高分子量ポリオレフ
ィンの融点以上、(融点+30℃)以下、好ましくは、
超高分子量ポリオレフィンの融点以上、(融点+20
℃)以下である。超高分子量ポリオレフィンの融点より
低い温度では、充分な強度が得られず、(融点+30
℃)より高い温度では、超高分子量ポリオレフィンが微
粒状グラッシーカーボンの表面を覆うために充分な導電
性が得られにくくなる。
The heating temperature is not less than the melting point of the ultrahigh molecular weight polyolefin and not more than (melting point + 30 ° C.), preferably,
Above the melting point of ultra high molecular weight polyolefin, (melting point +20
℃) or less. At a temperature lower than the melting point of the ultra high molecular weight polyolefin, sufficient strength cannot be obtained, and (melting point +30
At a temperature higher than (.degree. C.), the ultra-high molecular weight polyolefin covers the surface of the fine glassy carbon and it becomes difficult to obtain sufficient conductivity.

【0014】成形圧力としては、10〜1500kg/cm
2が適当であり、好ましくは40〜700kg/cm2であ
る。プレス時間としては、10〜360秒が適当であ
り、好ましくは20〜300秒である。プレス圧が10
kg/cm2より小さい場合や、プレス時間が10秒より少
ない場合は、充分な強度が得られにくくなる。また、プ
レス圧が1500kg/cm2を越える場合や、プレス時間
が360秒を越える場合は不経済であり、好ましくな
い。
The molding pressure is 10 to 1500 kg / cm.
2 is suitable, preferably 40 to 700 kg / cm 2 . The pressing time is suitably 10 to 360 seconds, preferably 20 to 300 seconds. Press pressure is 10
If it is less than kg / cm 2 or if the pressing time is less than 10 seconds, it becomes difficult to obtain sufficient strength. If the pressing pressure exceeds 1500 kg / cm 2 or the pressing time exceeds 360 seconds, it is uneconomical and not preferable.

【0015】次に、実施例を挙げて本発明をさらに具体
的に説明する。 実施例1 超高分子量ポリエチレン微粉末(PE−COMP−14
07、東洋インキ社製)50重量%、平均粒径8μmの
微粒状グラッシーカーボン(GCP−10H、ユニチカ
社製)30重量%および平均粒径90μmの微粒状グラ
ッシーカーボン(GCP−100H、ユニチカ社製)2
0重量%をドライブレンドして混合物を得た。この混合
物を金型に充填し、金型温度160℃、プレス圧60kg
/cm2で180秒間プレスを行い、加圧下で冷却し、室
温での体積抵抗が3.7×100Ω・cmである導電性複合
体を得た。次に、電気抵抗値の安定性を調べるために温
度サイクルテスト(140℃で10分間保持、25℃で
10分間保持を1サイクルとして、10サイクル後の室
温での体積抵抗を測定し、初期の体積抵抗との変化率を
計測する)を行った結果、初期値に対する体積抵抗値の
変化率は4.0%であり安定していた。その物性値を表
1に示す。
Next, the present invention will be described more specifically with reference to examples. Example 1 Ultra high molecular weight polyethylene fine powder (PE-COMP-14
07, manufactured by Toyo Ink Co., Ltd.) 50% by weight, 30% by weight of fine granular glassy carbon (GCP-10H, manufactured by Unitika Ltd.) having an average particle size of 8 μm, and 90% by weight of fine granular glassy carbon (GCP-100H, manufactured by Unitika Ltd.) ) 2
0 wt% was dry blended to obtain a mixture. This mixture is filled in a mold and the mold temperature is 160 ° C and the pressing pressure is 60 kg.
/ Cm 2 in do 180 seconds press, and cooled under pressure, the volume resistivity at room temperature to obtain a conductive composite is 3.7 × 10 0 Ω · cm. Next, in order to investigate the stability of the electric resistance value, a temperature cycle test (holding at 140 ° C. for 10 minutes, holding at 25 ° C. for 10 minutes was set as one cycle, and the volume resistance at room temperature after 10 cycles was measured, and The rate of change of the volume resistance value with respect to the initial value was 4.0%, which was stable. The physical property values are shown in Table 1.

【0016】実施例2 超高分子量ポリエチレン微粉末(PE−COMP−14
07、東洋インキ社製)70重量%、微粒状グラッシー
カーボン(GCP−100H、ユニチカ社製)10重量
%および微粒状グラッシーカーボン(GCP−10H、
ユニチカ社製)20重量%をドライブレンドして混合物
を得た。この混合物を金型に充填し、金型温度160
℃、プレス圧60kg/cm2で180秒間プレスを行い、
加圧下で冷却し、室温での体積抵抗が4.0×100Ω・
cmである導電性複合体を得た。温度サイクルテストの結
果およびその物性値を表1に示す。
Example 2 Ultra high molecular weight polyethylene fine powder (PE-COMP-14
07, manufactured by Toyo Ink Co., Ltd.) 70% by weight, fine granular glassy carbon (GCP-100H, manufactured by Unitika Ltd.) 10% by weight, and fine granular glassy carbon (GCP-10H,
Unitika 20% by weight was dry blended to obtain a mixture. This mixture is filled in a mold and the mold temperature is set to 160
Press for 180 seconds at ℃ and press pressure of 60kg / cm 2 ,
Cooled under pressure, the volume resistance at room temperature is 4.0 × 10 0 Ω ・
A conductive composite that is cm is obtained. Table 1 shows the results of the temperature cycle test and the physical properties thereof.

【0017】実施例3 超高分子量ポリエチレン微粉末(PE−COMP−14
07、東洋インキ社製)45重量%および微粒状グラッ
シーカーボン(GCP−100H、ユニチカ社製)55
重量%をドライブレンドして混合物を得た。この混合物
を金型に充填し、金型温度160℃、プレス圧60kg/
cm2で180秒間プレスを行い、加圧下で冷却し、室温
での体積抵抗が1.6×100Ω・cmである導電性複合体
を得た。温度サイクルテストの結果およびその物性値を
表1に示す。
Example 3 Ultra high molecular weight polyethylene fine powder (PE-COMP-14
07, manufactured by Toyo Ink Co., Ltd.) 45% by weight and fine-grained glassy carbon (GCP-100H, manufactured by Unitika) 55
The mixture was obtained by dry blending wt%. This mixture is filled in a mold, the mold temperature is 160 ° C., the pressing pressure is 60 kg /
It was pressed at cm 2 for 180 seconds and cooled under pressure to obtain a conductive composite having a volume resistance at room temperature of 1.6 × 10 0 Ω · cm. Table 1 shows the results of the temperature cycle test and the physical properties thereof.

【0018】比較例1 超高分子量ポリエチレン微粉末(PE−COMP−14
07、東洋インキ社製)50重量%および平均25μm
の微粒状グラッシーカーボン(GCP−30、ユニチカ
社製)50重量%をドライブレンドして混合物を得た。
この混合物を金型に充填し、金型温度145℃、プレス
圧150kg/cm2で10秒間プレスを行い、加圧下で冷
却し、室温での体積抵抗が1.4×10-1Ω・cmであ
る導電性複合体を得た。温度サイクルテストの結果およ
びその物性値を表1に示す。
Comparative Example 1 Ultra high molecular weight polyethylene fine powder (PE-COMP-14
07, manufactured by Toyo Ink Co., Ltd.) 50% by weight and average 25 μm
50% by weight of fine granular glassy carbon (GCP-30, manufactured by Unitika Ltd.) was dry blended to obtain a mixture.
This mixture was filled in a mold, and pressed at a mold temperature of 145 ° C. and a pressing pressure of 150 kg / cm 2 for 10 seconds, cooled under pressure, and had a volume resistance at room temperature of 1.4 × 10 −1 Ω · cm. To obtain a conductive composite. Table 1 shows the results of the temperature cycle test and the physical properties thereof.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】本発明によれば、PTC現象を繰り返し
て発現させても常温に戻した時の抵抗値が安定して初期
の値に回復するという優れた特性を有する導電性複合体
が得られる。
EFFECTS OF THE INVENTION According to the present invention, a conductive composite having excellent characteristics that the resistance value when the temperature is returned to room temperature is stably recovered to the initial value even if the PTC phenomenon is repeatedly expressed is obtained. To be

───────────────────────────────────────────────────── フロントページの続き (72)発明者 越後 良彰 京都府宇治市宇治小桜23番地 ユニチカ株 式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshiaki Echigo 23 Uji Kozakura, Uji City, Kyoto Prefecture Unitika Ltd. Central Research Laboratory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 超高分子量ポリオレフィン20〜90重
量%、平均粒径1〜20μmの微粒状グラッシーカーボ
ン0〜40重量%および平均粒径40〜400μmの微
粒状グラッシーカーボン10〜70重量%を含有する組
成物を加熱成形してなる正温度係数を有する導電性複合
体。
1. Ultra-high molecular weight polyolefin 20 to 90% by weight, finely divided glassy carbon having an average particle size of 1 to 20 μm 0 to 40% by weight, and finely divided glassy carbon having an average particle size of 40 to 400 μm 10 to 70% by weight A conductive composite having a positive temperature coefficient obtained by heat-molding the composition.
JP27280492A 1992-10-12 1992-10-12 Conductive composite body Pending JPH06124803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27280492A JPH06124803A (en) 1992-10-12 1992-10-12 Conductive composite body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27280492A JPH06124803A (en) 1992-10-12 1992-10-12 Conductive composite body

Publications (1)

Publication Number Publication Date
JPH06124803A true JPH06124803A (en) 1994-05-06

Family

ID=17518989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27280492A Pending JPH06124803A (en) 1992-10-12 1992-10-12 Conductive composite body

Country Status (1)

Country Link
JP (1) JPH06124803A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0730282A2 (en) * 1995-02-28 1996-09-04 Unitika Ltd. PTC element and process for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0730282A2 (en) * 1995-02-28 1996-09-04 Unitika Ltd. PTC element and process for producing the same
EP0730282A3 (en) * 1995-02-28 1997-06-04 Unitika Ltd PTC element and process for producing the same

Similar Documents

Publication Publication Date Title
CA1302609C (en) Conductive polymer composition
Mather et al. Carbon black/high density polyethylene conducting composite materials: Part I Structural modification of a carbon black by gasification in carbon dioxide and the effect on the electrical and mechanical properties of the composite
US5106538A (en) Conductive polymer composition
EP0038714A2 (en) PTC conductive polymer compositions containing fillers
KR100525210B1 (en) Electrically conductive compositions and methods for producing same
JPS62131065A (en) Polymer composition having positive temperature dependence
CN1970612A (en) Preparation method of electrically conductive composite material with positive temperature coefficient effect
US4775500A (en) Electrically conductive polymeric composite and method of making said composite
JPS6360062B2 (en)
KR20010109288A (en) Electrically conductive compositions and methods for producing same
CN104194131A (en) High-density polyethylene/graphene/polyaniline composite material and synthetic method thereof
EP0371059A1 (en) Conductive polymer composition
Burmistrov et al. Enhancement of percolation threshold by controlling the structure of composites based on nanostructured carbon filler
JPH06124803A (en) Conductive composite body
JP2000012307A (en) Organic positive temperature coefficient thermistor
US4778958A (en) Material for electric contacts having arc-quenching properties
JP2918306B2 (en) Conductive composite and method for producing the same
Bhadra et al. Mechanical, dynamic mechanical, morphological, thermal behavior and processability of polyaniline and ethylene 1‐octene based semi‐conducting composites
JPS6053560A (en) Conductive polyphenylene sulfide resin composition
JPH0794018A (en) Conductive compound
Lo et al. Effects of mixing procedures on the volume fraction of silver particles in conductive adhesives
Zhu et al. Conductive polymer nanocomposites containing in situ ultra-fine metal particles
JPS58108242A (en) Electrically conductive resin composition
JPS60173027A (en) Electroconductive polyolefin resin composition
JPS6234968A (en) Carbon paste of high resistance