JPH06117333A - Failure diagnosis device of evaporation purge system - Google Patents

Failure diagnosis device of evaporation purge system

Info

Publication number
JPH06117333A
JPH06117333A JP26769992A JP26769992A JPH06117333A JP H06117333 A JPH06117333 A JP H06117333A JP 26769992 A JP26769992 A JP 26769992A JP 26769992 A JP26769992 A JP 26769992A JP H06117333 A JPH06117333 A JP H06117333A
Authority
JP
Japan
Prior art keywords
pressure
canister
fuel
vapor passage
fuel tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26769992A
Other languages
Japanese (ja)
Other versions
JP2697524B2 (en
Inventor
Tatsumasa Sugiyama
辰優 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP26769992A priority Critical patent/JP2697524B2/en
Priority to US08/006,902 priority patent/US5425344A/en
Publication of JPH06117333A publication Critical patent/JPH06117333A/en
Application granted granted Critical
Publication of JP2697524B2 publication Critical patent/JP2697524B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Engines (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Abstract

PURPOSE:To constantly carry out correct failure judgement without being influenced by flow common difference of a purge control valve, pressure loss difference of a canister, change with the elapse of time and others in a failure diagnosis device of an evaporation purge system. CONSTITUTION:A regulation means M9 regulates flow between the side of a fuel tank M1 of a vapor passage M2 and the side of a canister M3. A pressure detection means M10 separately detects pressure on the side of the fuel tank M1 and the side of the canister M3 respectively by the regulation means M9 of the vapor passage M2. A judgement value generation means 11 regulates flow of the vapor passage M2 by the regulation means M9 at the time of introducing negative pressure of a negative pressure introduction means and generates a judgement value used by a judgement means 8 in accordance with detected pressure on the side of the canister M3 of the vapor passage M2 detected by the pressure detection means M10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はエバポパージシステムの
故障診断装置に係り、特に内燃機関の蒸発燃料(ベー
パ)をキャニスタ内の吸着剤に吸着させ、吸着された燃
料を所定運転条件下で内燃機関の吸気系へ放出(パー
ジ)して燃焼させるエバポパージシステムの故障診断装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a failure diagnosing device for an evaporative purge system, and more particularly to adsorbing evaporated fuel (vapor) of an internal combustion engine to an adsorbent in a canister, and adsorbing the adsorbed fuel to an internal combustion engine under a predetermined operating condition. The present invention relates to a failure diagnostic device for an evaporative purge system that discharges (purge) to an intake system of an engine and burns it.

【0002】[0002]

【従来の技術】燃料タンク内で蒸発した燃料(ベーパ)
が大気へ放出されるのを防止するため、各部分を密閉す
ると共に、ベーパを一旦キャニスタ内の吸着剤に吸着さ
せ、車両の走行中に吸着した燃料を吸気系に吸引させて
燃焼させるエバポパージシステムを備えた内燃機関にお
いては、何らかの原因でベーパ通路が破損したり、配管
がはずれたりした場合にはベーパが大気に放出されてし
まい、また吸気系へのパージ通路が閉塞した場合には、
キャニスタ内のベーパがオーバーフローし、キャニスタ
の大気孔より大気にベーパが漏れてしまう。従って、こ
のようなエバポパージシステムの故障発生の有無を診断
することが必要とされる。
2. Description of the Related Art Fuel (vapor) evaporated in a fuel tank
In order to prevent air from being released to the atmosphere, each part is hermetically sealed, and the vapor is once adsorbed by the adsorbent in the canister, and the fuel adsorbed while the vehicle is running is sucked into the intake system and burned by evaporative purging. In an internal combustion engine equipped with a system, if the vapor passage is damaged for some reason or if the pipe is disconnected, the vapor is released to the atmosphere, and if the purge passage to the intake system is blocked,
The vapor in the canister overflows, and the vapor leaks into the atmosphere through the air hole in the canister. Therefore, it is necessary to diagnose whether or not such a failure of the evaporative purge system has occurred.

【0003】従来、エバポパージシステムの故障診断装
置として特願平3−323364号に開示されたものが
ある。この装置は燃料タンクまでのエバポ系に吸気管の
負圧を導入し、所定時間内に導入される負圧値に基づい
てエバポ系に洩れ等の故障が発生していないかを診断し
ている。
Conventionally, as a failure diagnostic device for an evaporative purge system, there is one disclosed in Japanese Patent Application No. 3-323364. This device introduces the negative pressure of the intake pipe to the evaporative system up to the fuel tank, and diagnoses whether the evaporative system has a failure such as leakage based on the negative pressure value introduced within a predetermined time. .

【0004】[0004]

【発明が解決しようとする課題】従来装置では、吸気管
負圧を導入するパージ制御弁の流量公差及びキャニスタ
の圧力損失の変動、及び経時変化等により一定時間内に
燃料タンクへ導入される負圧の大きさが変動する。この
ため、例えばパージ制御弁の流量が大きな場合は導入負
圧が大となって洩れがあっても検出負圧がある程度大き
くなり正常と誤判定し、また流量が小さな場合は導入負
圧が小となって洩れがなくても負圧が小さく故障と誤判
定し、正確な故障判定を行なうことができないという問
題があった。
In the conventional apparatus, the negative pressure introduced into the fuel tank within a certain period of time due to fluctuations in the flow rate tolerance of the purge control valve for introducing the intake pipe negative pressure, pressure loss of the canister, and changes over time. The magnitude of pressure fluctuates. Therefore, for example, when the flow rate of the purge control valve is large, the introduced negative pressure becomes large and even if there is a leak, the detected negative pressure becomes large to some extent and it is erroneously judged to be normal. Even if there is no leakage, the negative pressure is small and the failure is erroneously determined, so that there is a problem that an accurate failure determination cannot be performed.

【0005】本発明は上記の点に鑑みなされたもので、
キャニスタ側までの導入負圧値から燃料タンクまでの導
入負圧値に対する判定値を生成することにより、パージ
制御弁の流量公差やキャニスタの圧損差や経時変化等の
影響を受けず、常に正確な故障判定が可能なエバポパー
ジシステムの故障診断装置を提供することを目的とす
る。
The present invention has been made in view of the above points,
By generating a judgment value for the introduced negative pressure value to the fuel tank from the introduced negative pressure value to the canister side, there is no influence of the flow control tolerance of the purge control valve, the pressure loss difference of the canister, or the change over time, and it is always accurate. It is an object of the present invention to provide a failure diagnosis device for an evaporative purge system capable of judging a failure.

【0006】[0006]

【課題を解決するための手段】本発明のエバポパージシ
ステムの故障診断装置は、図1に示す如く、燃料タンク
M1からの蒸発燃料をベーパ通路M2を通してキャニス
タM3内の吸着材に吸着させ、上記のキャニスタ内の吸
着燃料をパージ通路M4を通して内燃機関の吸気通路M
6へパージするエバポパージシステムで、上記燃料タン
クまでのエバポ系に負圧導入手段M7で吸気負圧を導入
して検出したエバポ系の圧力に基づき判定手段M8で故
障判定を行なうエバポパージシステムの故障診断装置に
おいて、上記ベーパ通路M2の燃料タンクM1側とキャ
ニスタM3側との流通を規制する規制手段M9と、上記
ベーパ通路の規制手段より燃料タンク側及びキャニスタ
側夫々の圧力を別々に検出する圧力検出手段M10と、
上記負圧導入手段の負圧導入時に規制手段M9でベーパ
通路の流通を規制して圧力検出手段で検出したベーパ通
路のキャニスタ側の検出圧力を基に判定値を生成する判
定値生成手段M11とを有する。
As shown in FIG. 1, a failure diagnosing device for an evaporative purge system according to the present invention causes evaporated fuel from a fuel tank M1 to be adsorbed by an adsorbent in a canister M3 through a vapor passage M2. Of the adsorbed fuel in the canister of the internal combustion engine through the purge passage M4
In the evaporative purging system for purging to No. 6, the determination means M8 makes a failure determination based on the pressure of the evaporation system detected by introducing the intake negative pressure to the evaporation system up to the fuel tank by the negative pressure introducing means M7. In the failure diagnosing device, the regulating means M9 for regulating the flow of the vapor passage M2 between the fuel tank M1 side and the canister M3 side, and the pressures on the fuel tank side and the canister side are separately detected by the vapor passage regulating means. Pressure detection means M10,
When the negative pressure is introduced by the negative pressure introducing means, the regulation means M9 regulates the circulation of the vapor passage, and the determination value generating means M11 generates a determination value based on the detected pressure on the canister side of the vapor passage detected by the pressure detecting means. Have.

【0007】[0007]

【作用】規制手段M9は、上記ベーパ通路M2の燃料タ
ンクM1側とキャニスタM3側との流通を規制する。
The regulating means M9 regulates the flow of the vapor passage M2 between the fuel tank M1 side and the canister M3 side.

【0008】圧力検出手段M10は、上記ベーパ通路の
規制手段より燃料タンク側及びキャニスタ側夫々の圧力
を別々に検出する。
The pressure detecting means M10 separately detects the pressures on the fuel tank side and the canister side from the vapor passage regulating means.

【0009】判定値生成手段M11は、上記負圧導入手
段の負圧導入時に規制手段M9でベーパ通路の流通を規
制して圧力検出手段で検出したベーパ通路のキャニスタ
側の検出圧力を基に判定手段M8で用いる判定値を生成
する。
The judgment value generating means M11 judges on the basis of the detected pressure on the canister side of the vapor passage detected by the pressure detecting means by regulating the circulation of the vapor passage by the regulating means M9 when the negative pressure is introduced by the negative pressure introducing means. A judgment value used in the means M8 is generated.

【0010】[0010]

【実施例】図2は本発明装置のシステム構成図を示す。
同図中、燃料タンク21はメインタンク21aとサブタ
ンク21bとからなる。サブタンク21bはメインタン
ク21a内にあり、メインタンク21aと連通されると
共に、フューエルポンプ22が配置されている。また、
燃料タンク21の上部にはロールオーババルブ23が設
けられている。このロールオーババルブ23は車両横転
時に燃料が外部へ流出しないようにするために設けられ
ている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 2 shows the system configuration of the device of the present invention.
In the figure, the fuel tank 21 comprises a main tank 21a and a sub tank 21b. The sub tank 21b is inside the main tank 21a, communicates with the main tank 21a, and has the fuel pump 22 arranged therein. Also,
A rollover valve 23 is provided above the fuel tank 21. The rollover valve 23 is provided to prevent fuel from flowing outside when the vehicle rolls over.

【0011】フューエルポンプ22はパイプ24、プレ
ッシャレギュレータ25を夫々介して燃料噴射弁26に
連通されている。プレッシャレギュレータ25は燃料圧
力を一定にするために設けられており、燃料噴射弁26
で噴射されない余った燃料をリターンパイプ27を介し
てサブタンク21b内に戻す。
The fuel pump 22 is connected to a fuel injection valve 26 via a pipe 24 and a pressure regulator 25, respectively. The pressure regulator 25 is provided to keep the fuel pressure constant, and the fuel injector 26
The surplus fuel that is not injected in is returned to the sub tank 21b through the return pipe 27.

【0012】また、燃料タンク21のタンク上部はベー
パ通路及び内圧制御弁29を夫々通してキャニスタ30
に連通されている。内圧制御弁29はチェックボール2
9aとスプリング29bとよりなり、スプリング29b
がチェックボール29aを図中右方向に付勢力を与えて
おり、スプリング29bにより燃料タンク21内圧力を
所定値(例えば250mmAq)以下に保持する。
The upper portion of the fuel tank 21 has a canister 30 through a vapor passage and an internal pressure control valve 29, respectively.
Is in communication with. The internal pressure control valve 29 is the check ball 2
9a and spring 29b, and spring 29b
Applies a biasing force to the check ball 29a in the right direction in the drawing, and the spring 29b keeps the internal pressure of the fuel tank 21 at a predetermined value (for example, 250 mmAq) or less.

【0013】キャニスタ30は内部に吸着剤として活性
炭30aを有し、また外部に開放された大気導入孔30
bが形成されている公知の構成である。
The canister 30 has an activated carbon 30a as an adsorbent therein and has an atmosphere introduction hole 30 opened to the outside.
This is a known configuration in which b is formed.

【0014】また、キャニスタ30はパージ通路32
と、電磁弁(VSV)であるパージ制御弁33とを夫々
介して吸気通路36のスロットルバルブ35より下流側
位置に連通されている。スロットルバルブ35の上流側
には空気を濾過して塵埃を除去するエアクリーナ(A
C)34が設けられている。
The canister 30 has a purge passage 32.
And a purge control valve 33, which is a solenoid valve (VSV), are connected to the intake passage 36 at a position downstream of the throttle valve 35. The upstream side of the throttle valve 35 has an air cleaner (A
C) 34 is provided.

【0015】スロットルバルブ35は運転者により操作
されるアクセルペダルの踏込量によって開度が制御され
るバルブで、その開度はスロットルポジションセンサ3
7により検出される。また、燃料温センサ40は燃料タ
ンク21内の燃料温度を検出し、吸気温センサ41は吸
気通路36内の吸気温度を検出し、燃料残量センサ42
は燃料タンク21内の燃料残量を検出して夫々の検出信
号をマイクロコンピュータ38に供給する。
The throttle valve 35 is a valve whose opening is controlled by the amount of depression of the accelerator pedal operated by the driver.
Detected by 7. The fuel temperature sensor 40 detects the fuel temperature in the fuel tank 21, the intake air temperature sensor 41 detects the intake air temperature in the intake passage 36, and the fuel remaining amount sensor 42.
Detects the remaining amount of fuel in the fuel tank 21 and supplies respective detection signals to the microcomputer 38.

【0016】また、燃料タンク21と内圧制御弁29と
の間のベーパ通路及び内圧制御弁29とキャニスタ30
の間のベーパ通路は電磁弁(VSV)であるバイパス制
御弁45に連通されており、バイパス制御弁45の開弁
時には内圧制御弁29をバイパスしてベーパ通路28は
燃料タンク21とキャニスタ30との間を直結する。ま
た、三方切換弁46には燃料タンク21と内圧制御弁2
9との間のベーパ通路と、内圧制御弁29とキャニスタ
30との間のベーパ通路夫々が接続されると共に、圧力
センサ31が接続されており、三方切換弁46はマイク
ロコンピュータ38の制御によりオン時に燃料タンク2
1側のベーパ通路を圧力センサ31に接続し、またオフ
時にキャニスタ30側のベーパ通路を圧力センサ31に
接続する。圧力センサ31はシリコンウェーハの歪をブ
リッジ回路で検出する一種の歪ゲージであり、三方切換
弁46により接続されたベーパ通路の圧力と大気圧との
差圧を測定する。
The vapor passage between the fuel tank 21 and the internal pressure control valve 29, and the internal pressure control valve 29 and the canister 30.
The vapor passage between them is communicated with a bypass control valve 45 which is a solenoid valve (VSV). When the bypass control valve 45 is opened, the internal pressure control valve 29 is bypassed and the vapor passage 28 is connected to the fuel tank 21 and the canister 30. Connect directly between the two. Further, the three-way switching valve 46 includes the fuel tank 21 and the internal pressure control valve 2
9, a vapor passage between the internal pressure control valve 29 and the canister 30, and a pressure sensor 31 are connected, and the three-way switching valve 46 is turned on by the control of the microcomputer 38. Sometimes fuel tank 2
The vapor passage on the first side is connected to the pressure sensor 31, and the vapor passage on the canister 30 side is connected to the pressure sensor 31 when it is off. The pressure sensor 31 is a kind of strain gauge that detects the strain of the silicon wafer with a bridge circuit, and measures the pressure difference between the pressure in the vapor passage connected by the three-way switching valve 46 and the atmospheric pressure.

【0017】マイクロコンピュータ38はエバポパージ
システムの制御を司る電子制御装置で、前記圧力変化検
出手段17及び判定手段18及び診断期間延長手段20
を夫々ソフトウェア動作により実現すると共に、異常判
定時は警告灯39を点灯し、運転者に異常発生を報知さ
せる。
The microcomputer 38 is an electronic control unit for controlling the evaporative purge system, and comprises the pressure change detecting means 17, the judging means 18, and the diagnostic period extending means 20.
Each is realized by software operation, and at the time of abnormality determination, the warning light 39 is turned on to notify the driver of the abnormality occurrence.

【0018】マイクロコンピュータ38は、図3に示す
如き公知のハードウェア構成を有している。同図中、図
2と同一構成部分には同一符号を付し、その説明を省略
する。図3において、マイクロコンピュータ38は中央
処理装置(CPU)50、処理プログラムを格納したリ
ード・オンリ・メモリ(ROM)51、作業領域として
使用されるランダム・アクセス・メモリ(RAM)5
2、エンジン停止後もデータを保持するバックアップR
AM53、マルチプレクサ付き入力インタフェース回路
54、入出力インタフェース回路55及びA/Dコンバ
ータ56などから構成されており、それらは双方向のバ
ス57を介して接続されている。
The microcomputer 38 has a known hardware configuration as shown in FIG. 2, those parts which are the same as those corresponding parts in FIG. 2 are designated by the same reference numerals, and a description thereof will be omitted. In FIG. 3, a microcomputer 38 includes a central processing unit (CPU) 50, a read only memory (ROM) 51 storing a processing program, and a random access memory (RAM) 5 used as a work area.
2. Backup R that retains data even after the engine is stopped
The AM 53, an input interface circuit 54 with a multiplexer, an input / output interface circuit 55, an A / D converter 56, and the like are connected to each other via a bidirectional bus 57.

【0019】A/Dコンバータ56は圧力センサ31か
らの圧力検出信号やスロットルポジションセンサ37か
らの検出信号及び、燃料温センサ、吸気温センサ夫々の
検出信号を入力インタフェース回路54を通して順次切
換えて取り込み、それをアナログ・ディジタル変換して
バス57へ順次送出する。入出力インタフェース回路5
5はスロットルポジションセンサ37からの信号をバス
57へ送出する一方、燃料噴射弁26、パージ制御弁3
3、警告灯39、バイパス制御弁45、及び三方切換弁
46へ制御信号を選択的に送出してそれらを制御する。
The A / D converter 56 sequentially fetches the pressure detection signal from the pressure sensor 31, the detection signal from the throttle position sensor 37, and the detection signals of the fuel temperature sensor and the intake air temperature sensor through the input interface circuit 54, respectively. It is converted from analog to digital and sent to the bus 57 sequentially. I / O interface circuit 5
The reference numeral 5 sends a signal from the throttle position sensor 37 to the bus 57, while the fuel injection valve 26 and the purge control valve 3 are provided.
3, control signals are selectively sent to the warning light 39, the bypass control valve 45, and the three-way switching valve 46 to control them.

【0020】次に図2のシステムの通常のエバポパージ
の作動について説明する。図示しないイグニッションス
イッチがオンとされると、図2のフューエルポンプ22
の作動によりサブタンク21b内の燃料が、パイプ24
を通してプレッシャレギュレータ25へ吐出され、ここ
で一定圧力にされて燃料噴射弁26へ送られ、マイクロ
コンピュータ38からの燃料噴射時間、燃料噴射弁26
から吸気通路36へ噴射される。また、余った燃料はリ
ターンパイプ27を介してサブタンク21bに戻され
る。
Next, the operation of the normal evaporative purge of the system shown in FIG. 2 will be described. When an ignition switch (not shown) is turned on, the fuel pump 22 shown in FIG.
The fuel in the sub-tank 21b is activated by the operation of
Is discharged to the pressure regulator 25 through the pressure regulator 25 and is sent to the fuel injection valve 26 at a constant pressure there. The fuel injection time from the microcomputer 38, the fuel injection valve 26
Is injected into the intake passage 36 from. The surplus fuel is returned to the sub tank 21b via the return pipe 27.

【0021】一方、燃料タンク21内で発生した蒸発燃
料(ベーパ)は、バイパス制御弁45が開弁しているた
めベーパ通路28を通して内圧制御弁29に到る。ここ
で、タンク内圧が内圧制御弁29による設定圧力(例え
ば250mmAq)より小さいときは、スプリング29
bのばね力によりチェックボール29aは図示の位置に
あり、ベーパ通路28を遮断しているため、蒸発燃料の
キャニスタ30への送出が阻止される。
On the other hand, the evaporated fuel (vapor) generated in the fuel tank 21 reaches the internal pressure control valve 29 through the vapor passage 28 because the bypass control valve 45 is open. Here, when the tank internal pressure is lower than the pressure set by the internal pressure control valve 29 (for example, 250 mmAq), the spring 29
The check ball 29a is located at the position shown in the figure by the spring force of b and blocks the vapor passage 28, so that the vaporized fuel is prevented from being delivered to the canister 30.

【0022】例えば、機関の冷間始動時は、タンク内圧
は大気圧付近にあり、その直後燃料噴射弁26による燃
料消費により燃料体積が減少するため、タンク内圧が負
圧に一旦減少する。しかし、その後燃温が排気熱により
徐々に上昇し、蒸発燃料の発生量が増え、タンク内圧は
正圧方向へ上昇していき内圧制御弁29による設定圧力
に達する。
For example, when the engine is cold-started, the tank internal pressure is close to the atmospheric pressure, and immediately after that, the fuel volume is reduced by the fuel consumption by the fuel injection valve 26, so that the tank internal pressure once decreases to a negative pressure. However, thereafter, the fuel temperature gradually rises due to the exhaust heat, the amount of evaporated fuel generated increases, the tank internal pressure rises in the positive pressure direction, and reaches the set pressure by the internal pressure control valve 29.

【0023】そして、更に蒸発燃料が発生しタンク内圧
が上記設定圧力以上になると、内圧制御弁29のチェッ
クボール29aが図2中、左方向にスプリング29bの
ばね力に抗して押動され、その結果、蒸発燃料はベーパ
通路28及び内圧制御弁29を通してキャニスタ30内
に送り込まれ、内部の活性炭30aに吸着される。この
蒸発燃料のキャニスタ30への送出が行なわれると、タ
ンク内圧は減少し、タンク内圧が上記設定圧以下になる
と、内圧制御弁29が再び閉弁される。
When the evaporated fuel is further generated and the tank internal pressure becomes equal to or higher than the set pressure, the check ball 29a of the internal pressure control valve 29 is pushed leftward in FIG. 2 against the spring force of the spring 29b, As a result, the evaporated fuel is sent into the canister 30 through the vapor passage 28 and the internal pressure control valve 29, and is adsorbed by the activated carbon 30a inside. When the evaporated fuel is delivered to the canister 30, the tank internal pressure decreases, and when the tank internal pressure becomes equal to or lower than the set pressure, the internal pressure control valve 29 is closed again.

【0024】上記のように、ベーパ通路28や燃料タン
ク21に洩れがない正常時には、前記したように蒸発燃
料が内圧制御弁29を通してキャニスタ30内の活性炭
30aに吸着されていく。機関始動直後はパージ制御弁
33はパージ制御条件が満足されていないので、閉弁さ
れている。
As described above, when there is no leakage in the vapor passage 28 or the fuel tank 21, the evaporated fuel is adsorbed by the activated carbon 30a in the canister 30 through the internal pressure control valve 29 as described above. Immediately after the engine is started, the purge control valve 33 is closed because the purge control condition is not satisfied.

【0025】上記パージ制御条件はパージにより空燃比
が荒れても、運転性や排気エミッションへの悪影響を極
力小さくできる運転条件であり、例えば機関冷却水温が
所定温度以上、空燃比を目標値とする燃料噴射のフィー
ドバック制御中、吸入空気量が所定値以上、フューエル
カットをしていないなどがあり、これらをすべて満足し
ているときパージ制御条件を満足しているとマイクロコ
ンピュータ38によって判断される。
The above-mentioned purge control conditions are operating conditions in which the adverse effect on operability and exhaust emission can be minimized even if the air-fuel ratio becomes rough due to purging. For example, the engine cooling water temperature is above a predetermined temperature and the air-fuel ratio is set to a target value. During feedback control of fuel injection, the intake air amount is not less than a predetermined value, fuel cut is not performed, etc. When all of these are satisfied, the microcomputer 38 determines that the purge control conditions are satisfied.

【0026】パージ制御条件が満足していると判定され
たものとすると、マイクロコンピュータ38はパージ制
御弁33を開弁する。すると、吸気通路36の負圧によ
り、大気導入口30bより大気がキャニスタ30内に導
入され、活性炭30aに吸着されている燃料が脱離され
てパージ通路32及びパージ制御弁33を夫々通して吸
気通路36内に蒸発燃料が吸い込まれる。また、活性炭
30aは上記の脱離により再生され、次のベーパの吸着
に備える。これにより、パージ流量が徐々に上昇してい
く。
If it is determined that the purge control condition is satisfied, the microcomputer 38 opens the purge control valve 33. Then, due to the negative pressure in the intake passage 36, the atmosphere is introduced into the canister 30 from the atmosphere introduction port 30b, the fuel adsorbed on the activated carbon 30a is desorbed, and the air is introduced through the purge passage 32 and the purge control valve 33, respectively. The evaporated fuel is sucked into the passage 36. In addition, the activated carbon 30a is regenerated by the above desorption and prepared for the next vapor adsorption. As a result, the purge flow rate gradually increases.

【0027】次に上記のシステムでマイクロコンピュー
タ38の実行する故障診断処理について説明する。図4
は故障診断ルーチンの一実施例のフローチャートを示
す。このルーチンは例えば32msec毎の割込みルーチン
である。
Next, the failure diagnosis processing executed by the microcomputer 38 in the above system will be described. Figure 4
Shows a flow chart of an embodiment of a failure diagnosis routine. This routine is, for example, an interrupt routine every 32 msec.

【0028】同図中、ステップS10では終了フラグが
1にセットされているか否かを判別し、終了フラグ=1
9場合は処理を終了し、終了フラグ≠1のときステップ
S12に進む。なお終了フラグ及び後述の判定カウンタ
は始動時に0にリセットされている。
In the figure, in step S10, it is determined whether or not the end flag is set to 1, and the end flag = 1.
In the case of 9, the process ends, and when the end flag ≠ 1, the process proceeds to step S12. The end flag and the later-described determination counter are reset to 0 at the time of starting.

【0029】ステップS12では空燃比フィードバック
制御を実行し、かつ冷却水温が80℃以上であるか等の
故障診断実行条件を満足しているか否かを判別し、満足
していればステップS14に進み、満足していなければ
処理を終了する。
In step S12, air-fuel ratio feedback control is executed, and it is determined whether or not a failure diagnosis execution condition such as whether the cooling water temperature is 80 ° C. or higher is satisfied, and if so, the process proceeds to step S14. If not satisfied, the process ends.

【0030】ステップS14ではパージ制御弁33を開
弁(オン)し、次のステップS16で判定カウンタの値
に1を加算する。ステップS20では判定カウンタの値
が所定値aを越えているか否かを判別し、判定カウンタ
≦aの場合はステップS22でバイパス制御弁45を閉
弁(オフ)し、ステップS24で三方切換弁46をオフ
としてキャニスタ30側のベーパ通路を圧力センサ31
に接続する。
In step S14, the purge control valve 33 is opened (turned on), and in the next step S16, 1 is added to the value of the determination counter. In step S20, it is determined whether or not the value of the determination counter exceeds a predetermined value a. If the determination counter ≦ a, the bypass control valve 45 is closed (OFF) in step S22, and the three-way switching valve 46 in step S24. Is turned off and the vapor passage on the canister 30 side is connected to the pressure sensor 31.
Connect to.

【0031】次にステップS26で判定カウンタの値が
所定値aとなったか否かを判別し、判定カウンタ≠aの
場合は処理を終了し、判定カウンタ=aの場合はステッ
プS28に進む。所定値aは機関運転状態が安定するま
での時間に対応した値である。ステップS28では圧力
センサ31の検出信号に基づいてキャニスタ30側のパ
ージ負圧POFF を読み込む。この後、ステップ30でバ
イパス制御弁45を開弁して燃料タンク21まで負圧を
導入し、ステップS32で三方切換弁46をオンして燃
料タンク21側のベーパ通路を圧力センサ31に接続す
る。ステップS32の実行後、又はステップS20で判
定カウンタ>aの場合はステップS34に進み、判定カ
ウンタの値が所定値b(b>a)を越えたかどうかを判
別し、判定カウンタ≦bの場合は処理を終了し、判定カ
ウンタ>bの場合はステップS36に進む。なお、所定
値bは診断に要する時間(b−a)を設定するための値
である。
Next, in step S26, it is determined whether or not the value of the determination counter has reached the predetermined value a. If the determination counter ≠ a, the process ends, and if the determination counter = a, the process proceeds to step S28. The predetermined value a is a value corresponding to the time until the engine operating state stabilizes. In step S28, the purge negative pressure P OFF on the canister 30 side is read based on the detection signal of the pressure sensor 31. Thereafter, in step 30, the bypass control valve 45 is opened to introduce a negative pressure to the fuel tank 21, and in step S32 the three-way switching valve 46 is turned on to connect the vapor passage on the fuel tank 21 side to the pressure sensor 31. . After the execution of step S32, or if the determination counter> a in step S20, the process proceeds to step S34, it is determined whether the value of the determination counter exceeds a predetermined value b (b> a), and if the determination counter ≦ b, When the determination counter> b is completed, the process proceeds to step S36. The predetermined value b is a value for setting the time required for diagnosis (ba).

【0032】ステップS36では圧力センサ31の検出
信号に基づいて燃料タンク21のタンク内圧PONを読み
込む。
In step S36, the tank internal pressure P ON of the fuel tank 21 is read based on the detection signal of the pressure sensor 31.

【0033】次にステップS38でタンク内圧PONがパ
ージ負圧POFF に所定値αを加算した判定値以下かどう
かを判別する。つまり判定値(POFF +α)はパージ制
御弁33及びキャニスタ30を通して測定したパージ負
圧POFF に応じて設定され、パージ制御弁の流量公差や
キャニスタの圧損差や経時変化の影響を含めてその時々
に応じて設定される値である。
Next, in step S38, it is determined whether the tank internal pressure P ON is less than or equal to a determination value obtained by adding a predetermined value α to the purge negative pressure P OFF . That is, the determination value (P OFF + α) is set according to the purge negative pressure P OFF measured through the purge control valve 33 and the canister 30, and the influence including the flow rate tolerance of the purge control valve, the pressure loss difference of the canister, and the change over time is set. It is a value that is set occasionally.

【0034】ステップS38でPON≦POFF +αの場合
は洩れがないとしてステップS40で警告灯39を消灯
し、PON>POFF +αの場合は洩れがあるとしてステッ
プS42で警告灯で点灯する。この後、終了フラグを1
にセットして処理を終了する。
If P ON ≤ P OFF + α in step S38, it is determined that there is no leakage, and the warning lamp 39 is turned off in step S40. If P ON > P OFF + α, there is leakage and the warning lamp is lit in step S42. . After this, set the end flag to 1
To set the process to end.

【0035】図5は上記の診断動作のタイミングチャー
トを示す。時点t0 で始動を開始した後、時点t1 で故
障診断の実行条件が満足すると判定カウンタの値は図5
(A)に示す如く増加すると共に、パージ制御弁33が
開弁する。この後判定カウンタの値が所定値aとなるま
でバイパス制御弁45及び三方切換弁46はオフとさ
れ、圧力センサ45はキャニスタ30側のベーパ通路に
接続される。判定カウンタの値が所定値aを越えた時点
2 でバイパス制御弁45及び三方切換弁46がオンと
され、圧力センサ45は燃料タンク21側のベーパ通路
に接続され、判定カウンタの値が所定値bを越えた時点
3 で故障判定が行なわれる。
FIG. 5 shows a timing chart of the above diagnostic operation. After starting the start-up at time t 0, the value of the determination counter and execution conditions of the failure diagnosis in time t 1 is satisfied 5
As shown in (A), the purge control valve 33 opens while increasing. After that, the bypass control valve 45 and the three-way switching valve 46 are turned off until the value of the determination counter reaches the predetermined value a, and the pressure sensor 45 is connected to the vapor passage on the canister 30 side. At time t 2 when the value of the determination counter exceeds the predetermined value a, the bypass control valve 45 and the three-way switching valve 46 are turned on, the pressure sensor 45 is connected to the vapor passage on the fuel tank 21 side, and the value of the determination counter is the predetermined value. At time t 3 when the value b is exceeded, failure determination is performed.

【0036】なお、判定値はパージ負圧POFF に所定値
αを加算する代りに、パージ負圧P OFF に所定係数βを
乗算して求めても良く、上記実施例に限定されない。
The judgment value is the purge negative pressure P.OFFTo a predetermined value
Instead of adding α, purge negative pressure P OFFA predetermined coefficient β
It may be obtained by multiplication and is not limited to the above embodiment.

【0037】[0037]

【発明の効果】上述の如く、本発明のエバポパージシス
テムの故障診断装置によれば、キャニスタ側までの導入
負圧値から燃料タンクまでの導入負圧値に対する判定値
を生成することにより、パージ制御弁の流量公差やキャ
ニスタの圧損差や経時変化等の影響を受けず、常に正確
な故障判定が可能となり、実用上きわめて有用である。
As described above, according to the failure diagnosis device for the evaporative purge system of the present invention, the purge is performed by generating the judgment value for the introduced negative pressure value to the fuel tank from the introduced negative pressure value to the canister side. This is extremely useful in practice because it enables accurate failure determination without being affected by the flow rate tolerance of the control valve, the pressure loss difference of the canister, and the change over time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理図である。FIG. 1 is a principle diagram of the present invention.

【図2】本発明のシステム構成図である。FIG. 2 is a system configuration diagram of the present invention.

【図3】マイクロコンピュータのハードウェアの構成図
である。
FIG. 3 is a configuration diagram of hardware of a microcomputer.

【図4】本発明の故障診断ルーチンの一実施例のフロー
チャートである。
FIG. 4 is a flowchart of an embodiment of a failure diagnosis routine of the present invention.

【図5】本発明の動作を説明するための図である。FIG. 5 is a diagram for explaining the operation of the present invention.

【符号の説明】[Explanation of symbols]

M1,21 燃料タンク M2,28 ベーパ通路 M3,30 キャニスタ M4,32 パージ通路 M6,36 吸気通路 M7 負圧導入手段 M8 判定手段 M9 規制手段 M10 圧力検出手段 M11 判定値生成手段 26 燃料噴射弁 29 内圧制御弁 31 圧力センサ 33 パージ制御弁 38 マイクロコンピュータ 39 警告灯 45 バイパス制御弁 46 三方切換弁 M1,21 fuel tank M2,28 vapor passage M3,30 canister M4,32 purge passage M6,36 intake passage M7 negative pressure introducing means M8 determining means M9 regulating means M10 pressure detecting means M11 determination value generating means 26 fuel injection valve 29 internal pressure Control valve 31 Pressure sensor 33 Purge control valve 38 Microcomputer 39 Warning light 45 Bypass control valve 46 Three-way switching valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 燃料タンクからの蒸発燃料をベーパ通路
を通してキャニスタ内の吸着材に吸着させ、上記のキャ
ニスタ内の吸着燃料をパージ通路を通して内燃機関の吸
気通路へパージするエバポパージシステムで、 上記燃料タンクまでのエバポ系に負圧導入手段で吸気負
圧を導入して検出したエバポ系の圧力に基づき故障判定
を行なうエバポパージシステムの故障診断装置におい
て、 上記ベーパ通路の燃料タンク側とキャニスタ側との流通
を規制する規制手段と、 上記ベーパ通路の規制手段より燃料タンク側及びキャニ
スタ側夫々の圧力を別々に検出する圧力検出手段と、 上記負圧導入手段の負圧導入時に規制手段でベーパ通路
の流通を規制して圧力検出手段で検出したベーパ通路の
キャニスタ側の検出圧力を基に判定値を生成する判定値
生成手段とを有することを特徴とするエバポパージシス
テムの故障診断装置。
1. An evaporation purge system for adsorbing evaporated fuel from a fuel tank to an adsorbent in a canister through a vapor passage and purging the adsorbed fuel in the canister into an intake passage of an internal combustion engine through a purge passage. In the failure diagnosis device of the evaporative purge system, which performs failure judgment based on the pressure of the evaporative system detected by introducing the intake negative pressure into the evaporative system up to the tank, the fuel tank side of the vapor passage and the canister side And a pressure detecting means for separately detecting the pressures on the fuel tank side and the canister side of the vapor passage regulating means, and the regulating means when the negative pressure is introduced by the negative pressure introducing means. Judgment value that generates a judgment value based on the pressure detected on the canister side of the vapor passage detected by the pressure detection means by restricting the flow of Trouble diagnosis device for the evaporative emission control system characterized by having a forming means.
JP26769992A 1992-01-21 1992-10-06 Failure diagnosis device for evaporation purge system Expired - Lifetime JP2697524B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP26769992A JP2697524B2 (en) 1992-10-06 1992-10-06 Failure diagnosis device for evaporation purge system
US08/006,902 US5425344A (en) 1992-01-21 1993-01-21 Diagnostic apparatus for evaporative fuel purge system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26769992A JP2697524B2 (en) 1992-10-06 1992-10-06 Failure diagnosis device for evaporation purge system

Publications (2)

Publication Number Publication Date
JPH06117333A true JPH06117333A (en) 1994-04-26
JP2697524B2 JP2697524B2 (en) 1998-01-14

Family

ID=17448316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26769992A Expired - Lifetime JP2697524B2 (en) 1992-01-21 1992-10-06 Failure diagnosis device for evaporation purge system

Country Status (1)

Country Link
JP (1) JP2697524B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5845625A (en) * 1996-07-19 1998-12-08 Toyota Jidosha Kabushiki Kaisha Defect diagnosing apparatus of evaporation purge system
CN114263550A (en) * 2021-09-29 2022-04-01 联合汽车电子有限公司 Hybrid vehicle desorption diagnosis method and device, medium, monitor and vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5845625A (en) * 1996-07-19 1998-12-08 Toyota Jidosha Kabushiki Kaisha Defect diagnosing apparatus of evaporation purge system
CN114263550A (en) * 2021-09-29 2022-04-01 联合汽车电子有限公司 Hybrid vehicle desorption diagnosis method and device, medium, monitor and vehicle

Also Published As

Publication number Publication date
JP2697524B2 (en) 1998-01-14

Similar Documents

Publication Publication Date Title
JP2635270B2 (en) Failure detection device for evaporative fuel control device
US5245973A (en) Failure detection device for evaporative fuel purge system
JP3252494B2 (en) Self-diagnosis device of fuel evaporative gas diffusion prevention device
JP2666557B2 (en) Failure diagnosis device for evaporation purge system
JP3089687B2 (en) Fuel evaporative gas state detector
US6047692A (en) Abnormality-diagnosing device for evaporation purge system and air-fuel ratio controller for internal combustion engine having the abnormality-diagnosing device incorporated therein
KR100293609B1 (en) Fault diagnosis device of fuel oxidizer
US5669362A (en) Diagnostic device for an evaporative emission control system
JPH0642415A (en) Evaporation fuel processing device for internal combustion engine
US5203870A (en) Method and apparatus for detecting abnormal state of evaporative emission-control system
JP2745991B2 (en) Failure diagnosis device for evaporation purge system
JP3265655B2 (en) Failure diagnosis device for evaporation purge system
JP2697525B2 (en) Failure diagnosis device for evaporation purge system
JP2697524B2 (en) Failure diagnosis device for evaporation purge system
JP3287037B2 (en) Failure diagnosis device for evaporation purge system
JP3334277B2 (en) Failure diagnosis device for evaporative fuel evaporation prevention device of internal combustion engine
JP2699769B2 (en) Failure diagnosis device for evaporation purge system
JP3139096B2 (en) Diagnosis device for evaporative fuel control system of vehicle
JPH0642414A (en) Failure diagnostic device of evaporative purge system
JP2699774B2 (en) Failure diagnosis device for evaporation purge system
JP2699772B2 (en) Failure diagnosis device for evaporation purge system
JPH0723706B2 (en) Evaporative fuel processor for engine
JP3158469B2 (en) Abnormality detection device for fuel evaporation prevention device
JP2751758B2 (en) Failure diagnosis device for evaporation purge system
JP2699779B2 (en) Abnormality detector for evaporative purge system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20070919

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20110919

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20120919

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20120919

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 16