JPH06114812A - Oxide superconductor and manufacture thereof - Google Patents
Oxide superconductor and manufacture thereofInfo
- Publication number
- JPH06114812A JPH06114812A JP4267408A JP26740892A JPH06114812A JP H06114812 A JPH06114812 A JP H06114812A JP 4267408 A JP4267408 A JP 4267408A JP 26740892 A JP26740892 A JP 26740892A JP H06114812 A JPH06114812 A JP H06114812A
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- substrate
- surface roughness
- oxide superconductor
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、基板−酸化物超電導層
又は基板−中間層−酸化物超電導層という積層構造有す
る酸化物超電導体とその製造方法に関し、詳しくは、酸
化物超電導層と接する基板又は中間層の平均表面粗さ
(Ra)を一定範囲に限定することによって、酸化物超
電導層の溶融温度又は部分溶融温度での焼成の際に起こ
る液相の流出を防止した酸化物超電導体とその製造方法
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide superconductor having a laminated structure of a substrate-oxide superconducting layer or a substrate-intermediate layer-oxide superconducting layer, and a method for producing the same. By limiting the average surface roughness (Ra) of the substrate or the intermediate layer within a certain range, an oxide superconductor that prevents the outflow of a liquid phase that occurs during firing at the melting temperature or the partial melting temperature of the oxide superconducting layer And its manufacturing method.
【0002】[0002]
【従来の技術】近年、酸化物超電導体は高い臨界温度を
示すことで注目を集め、電力分野、核磁気共鳴コンピュ
ーター断層診断装置(MRI:Magnetic Resonance Ima
ging)、磁気シールド等の各分野での用途が期待されて
いる。これら酸化物超電導体を実用化する場合、酸化物
超電導体により、器具、基材を製造することも可能であ
るが、従来既存の基板上に酸化物超電導体の層を形成す
る方法が知られている。基板上に酸化物超電導体の層を
形成させる場合、通常は酸化物超電導体の焼成中に酸化
物超電導体と反応が不活性であり超電導特性を低下させ
ない基板材料を選定し、あるいは不活性材からなる中間
層を介在させ、この基板上又は中間層上に、酸化物超電
導体の層を溶融あるいは部分溶融温度にて焼成し形成す
る。2. Description of the Related Art In recent years, oxide superconductors have attracted attention because of their high critical temperature, and in the field of electric power, nuclear magnetic resonance computer tomography diagnostic apparatus (MRI: Magnetic Resonance Image).
Applications such as ging) and magnetic shielding are expected. When these oxide superconductors are put into practical use, it is possible to manufacture the equipment and the substrate by using the oxide superconductor, but conventionally, a method of forming a layer of the oxide superconductor on an existing substrate is known. ing. When forming a layer of oxide superconductor on a substrate, usually select a substrate material that does not deteriorate the superconducting property because the reaction with the oxide superconductor is inactive during firing of the oxide superconductor, A layer of an oxide superconductor is formed by melting or firing at a partial melting temperature on this substrate or on the intermediate layer with an intermediate layer made of (3) being interposed.
【0002】例えば、特開平1−270518号公報に
は、アルミナ、酸化マグネシウム、若しくは部分安定化
ジルコニア基板上に形成された超電導体厚膜が開示され
ており、また、特開平1−252534号公報には、基
材と超電導体厚膜の間に、銀、金等の貴金属や、酸化マ
グネシウム等からなる中間層を配設した超電導セラミッ
ク積層体についての記載がある。For example, JP-A-1-270518 discloses a superconductor thick film formed on an alumina, magnesium oxide or partially stabilized zirconia substrate, and JP-A-1-252534. Describes a superconducting ceramic laminate in which an intermediate layer made of a noble metal such as silver or gold or magnesium oxide is provided between a base material and a thick film of a superconductor.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上記従
来技術においては、溶融あるいは部分溶融温度での焼成
時に液相が流出して十分な膜厚が得られなかったり、膜
厚にムラが生じたりして、所望の超電導特性を得られな
いという問題があった。また、超電導検出コイル等をス
クリーン印刷成形法により作製する場合、基板上に印刷
された配線パターンが焼成時の液相流出により幅広とな
り、配線幅の制御が困難であった。発明者らは、このよ
うな従来技術の欠点を解消すべく鋭意検討を行ったとこ
ろ、酸化物超電導層と接する基板又は中間層の面粗度
が、液相流出の重大な要因であることがわかった。However, in the above-mentioned prior art, the liquid phase may flow out during melting or firing at a partial melting temperature, and a sufficient film thickness may not be obtained, or the film thickness may be uneven. Therefore, there is a problem that desired superconducting characteristics cannot be obtained. Further, when the superconducting detection coil or the like is produced by the screen printing molding method, the wiring pattern printed on the substrate becomes wide due to the liquid phase outflow during firing, which makes it difficult to control the wiring width. The inventors of the present invention have conducted extensive studies to eliminate such drawbacks of the prior art, and find that the surface roughness of the substrate or the intermediate layer in contact with the oxide superconducting layer is a significant factor in the liquid phase outflow. all right.
【0004】すなわち、酸化物超電導体は、溶融あるい
は部分溶融温度での焼成時、固相と粘性の低い液相の共
存状態となるが、従来のように基板又は中間層の面粗度
が特に管理されておらず粗い場合には、液相が流出し、
固相と液相に分離が生じるのである。本発明は、酸化物
超電導層と接する基板又は中間層の平均表面粗さを一定
の範囲に限定することによって上記従来技術の欠点を解
消した酸化物超電導体とその製造方法を提供することを
目的とする。That is, when an oxide superconductor is melted or baked at a partial melting temperature, a solid phase and a liquid phase having low viscosity coexist, but as in the conventional case, the surface roughness of the substrate or the intermediate layer is particularly high. If uncontrolled and rough, the liquid phase will flow out,
Separation occurs between the solid and liquid phases. An object of the present invention is to provide an oxide superconductor and a method for producing the same in which the above-mentioned drawbacks of the prior art are eliminated by limiting the average surface roughness of the substrate or the intermediate layer in contact with the oxide superconducting layer to a certain range. And
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
に、本発明によれば、基板と該基板上に形成された酸化
物超電導層とからなる酸化物超電導体であって、酸化物
超電導層と接する基板の面粗度が、平均表面粗さ(R
a)0.1〜0.7μmであることを特徴とする酸化物
超電導体、及び耐酸化性金属基板と該耐酸化性金属基板
上に中間層を介して形成された酸化物超電導層とからな
る酸化物超電導体であって、酸化物超電導層と接する中
間層の面粗度が、平均表面粗さ(Ra)0.1〜0.7
μmであることを特徴とする酸化物超電導体が提供され
る。In order to achieve the above object, according to the present invention, there is provided an oxide superconductor comprising a substrate and an oxide superconducting layer formed on the substrate. The surface roughness of the substrate in contact with the layer is the average surface roughness (R
a) Oxide superconductor characterized by having a thickness of 0.1 to 0.7 μm, and an oxidation resistant metal substrate and an oxide superconducting layer formed on the oxidation resistant metal substrate via an intermediate layer. The surface roughness of the intermediate layer in contact with the oxide superconducting layer has an average surface roughness (Ra) of 0.1 to 0.7.
There is provided an oxide superconductor characterized in that it is μm.
【0006】また、本発明によればこのような酸化物超
電導体の製造方法として、面粗度が、平均表面粗さ(R
a)0.1〜0.7μmである基板上又は中間層上に、
加熱により超電導特性を発現する膜状の成形体を形成
し、その後、該成形体が溶融あるいは部分溶融する温度
にて焼成することを特徴とする酸化物超電導体の製造方
法が提供される。Further, according to the present invention, as a method for producing such an oxide superconductor, the surface roughness is the average surface roughness (R
a) on a substrate or intermediate layer of 0.1-0.7 μm,
Provided is a method for producing an oxide superconductor, which comprises forming a film-shaped molded product exhibiting superconducting properties by heating and then firing the film at a temperature at which the molded product melts or partially melts.
【0007】[0007]
【作用】本発明は上記のように構成され、酸化物超電導
層と接する基板又は中間層の平均表面粗さ(Ra)を
0.1〜0.7μmに限定したことによって、焼成時の
液相流出が防止される。また、上記限定範囲内において
は、酸化物超電導層と基板又は中間層との密着性も良好
で、超電導特性を発現する極低温度と室温との間で冷熱
が繰り返されても剥離等が生じ難い。The present invention is configured as described above, and by limiting the average surface roughness (Ra) of the substrate or the intermediate layer in contact with the oxide superconducting layer to 0.1 to 0.7 μm, the liquid phase during firing is Outflow is prevented. Further, within the above-mentioned limited range, the adhesion between the oxide superconducting layer and the substrate or the intermediate layer is also good, and peeling or the like occurs even if the cold heat is repeated between the extremely low temperature and the room temperature that express the superconducting properties. hard.
【0008】以下、本発明について詳しく説明する。本
発明に用いる基板としては、酸化物超電導層の機械的強
度を保持できるものであればよく、例えば、酸化マグネ
シウム、ジルコニア、チタニア等のセラミックスや、S
US430、SUS310、インコネル、インコロイ、
ハステロイ等の耐酸化性金属及び貴金属を用いることが
できる。The present invention will be described in detail below. The substrate used in the present invention may be one that can maintain the mechanical strength of the oxide superconducting layer, and examples thereof include ceramics such as magnesium oxide, zirconia, and titania, and S.
US430, SUS310, Inconel, Incoloy,
Oxidation resistant metals such as Hastelloy and noble metals can be used.
【0009】ただし、酸化物超電導層を直接基板上に形
成する場合は、耐酸化性金属基板を用いると、焼成時に
酸化物超電導層との反応が著しく、得られる超電導体の
超電導特性が低くなる。また、酸化物超電導層との反応
が比較的少なく、焼成による超電導特性の低下を防止で
きる貴金属は、基板としてそれ自体で機械的強度を保持
しようとする場合には、貴金属の厚さを厚くする必要が
あり、コスト的に問題となる。However, when the oxide superconducting layer is formed directly on the substrate, when an oxidation resistant metal substrate is used, the reaction with the oxide superconducting layer is remarkable during firing, and the superconducting property of the obtained superconductor is deteriorated. . In addition, the precious metal, which has relatively little reaction with the oxide superconducting layer and can prevent deterioration of superconducting properties due to firing, increases the thickness of the precious metal when it is intended to maintain mechanical strength by itself as a substrate. It is necessary and costly.
【0010】したがって、酸化物超電導層を直接基板上
に形成する場合は、酸化マグネシウム等のセラミックス
を基板として用いることが好ましく、また、耐酸化性金
属基板を用いる場合は、酸化物超電導層と基板との間
に、不活性材からなる中間層を設けることが好ましい。
ただし、中間層を設ける場合であっても、通常の磁気シ
ールド体に基板として用いられる鉄、ニッケル、銅及び
SUS304は、酸化物超電導層形成時の焼成の際に酸
化されて中間層との密着性が低下するので好ましくな
い。また、基板の厚さは特に制限されず、機械的強度を
保持できる厚さであればよい。Therefore, when the oxide superconducting layer is formed directly on the substrate, it is preferable to use ceramics such as magnesium oxide as the substrate, and when using an oxidation resistant metal substrate, the oxide superconducting layer and the substrate are used. It is preferable to provide an intermediate layer made of an inert material between and.
However, even when the intermediate layer is provided, iron, nickel, copper, and SUS304 used as a substrate in a usual magnetic shield are oxidized during firing during formation of the oxide superconducting layer and adhere to the intermediate layer. It is not preferable because it deteriorates the property. Further, the thickness of the substrate is not particularly limited as long as it can maintain the mechanical strength.
【0011】中間層の材質としては、銀、金、白金等の
貴金属や、酸化マグネシウム、ジルコニア、チタニア等
のセラミックスなど焼成時の酸化物超電導層との反応性
が低いものであればよく、特に貴金属の中でも、安価な
銀は、ヤング率が低く、酸化物超電導層/中間層/金属
基板の積層構造体に発生する熱応力を緩和することが可
能であるため好適に用いられる。また、酸化マグネシウ
ムは、酸化物超電導層との反応性が極めて低く、更に、
熱膨張係数が酸化物超電導層と近く、酸化物超電導積層
構造体に発生する熱応力が小さくなるため、好適に用い
ることができる。また、中間層の形成方法としては、メ
ッキ、溶射、蒸着及びそれらの組み合わせ等従来公知の
いずれの方法を用いてもよいが、特に溶射は、成膜速度
が速いため、磁気シールド体などの大面積の積層基板を
作製することが容易であり好ましい。中間層の厚さは、
上記した金属基板と酸化物超電導層との反応を防止でき
る厚さであればよい。The intermediate layer may be made of any material having a low reactivity with the oxide superconducting layer during firing, such as noble metals such as silver, gold and platinum and ceramics such as magnesium oxide, zirconia and titania. Among the noble metals, inexpensive silver has a low Young's modulus and can relax the thermal stress generated in the laminated structure of the oxide superconducting layer / intermediate layer / metal substrate, and thus is preferably used. Further, magnesium oxide has extremely low reactivity with the oxide superconducting layer, and further,
Since the thermal expansion coefficient is close to that of the oxide superconducting layer and the thermal stress generated in the oxide superconducting laminated structure is small, it can be preferably used. As the method for forming the intermediate layer, any conventionally known method such as plating, thermal spraying, vapor deposition, and combinations thereof may be used. It is easy and preferable to produce a laminated substrate having an area. The thickness of the intermediate layer is
The thickness may be such that the reaction between the metal substrate and the oxide superconducting layer described above can be prevented.
【0012】本発明においては、以上説明したような基
板上又は中間層上に酸化物超電導層を形成するに先立
ち、これら基板又は中間層の表面を平均表面粗さ(R
a)0.1〜0.7μmとなるように研磨加工する。R
aを0.1〜0.7μmの範囲に限定したのは、Raが
0.7を超えると焼成時に液相の流出が起こり、Raが
0.1未満では液相の流出は防げるものの、基板又は中
間層と、超電導層との密着性が低下し、超電導特性発現
のための液体窒素等の極低温度と室温間を繰り返す冷熱
サイクルによって剥離等が生じるからである。なお、本
発明者らの実験によれば、何の表面処理も施さない場合
の酸化マグネシウム焼結基板のRaは0.8〜1.2μ
m程度であり、中間層として基板上に溶射により形成し
た銀層の表面処理を施さない場合のRaは14.0〜1
5.0μm程度であった。In the present invention, prior to forming the oxide superconducting layer on the substrate or the intermediate layer as described above, the surface of these substrates or the intermediate layer has an average surface roughness (R).
a) Polishing is performed so as to have a thickness of 0.1 to 0.7 μm. R
The reason for limiting a to the range of 0.1 to 0.7 μm is that when Ra exceeds 0.7, liquid phase outflow occurs during firing, and when Ra is less than 0.1, liquid phase outflow can be prevented. Alternatively, the adhesion between the intermediate layer and the superconducting layer is lowered, and peeling or the like occurs due to a cooling / heating cycle in which the temperature of liquid nitrogen or the like for exhibiting superconducting characteristics is repeated between room temperature and room temperature. According to the experiments by the present inventors, Ra of the magnesium oxide sintered substrate without any surface treatment is 0.8 to 1.2 μm.
m is about Ra, and Ra when the surface treatment of the silver layer formed by thermal spraying on the substrate as the intermediate layer is not performed is 14.0 to 1
It was about 5.0 μm.
【0013】基板又は中間層の研磨加工方法としては、
研磨紙を用いた湿式研磨や、研磨砥石を用いて湿式旋盤
にて加工する方法等を用いることができる。研磨紙を用
いる場合には#400程度まで、また、研磨砥石を用い
る場合には#240程度まで研磨を行えば、上記範囲内
のRaとなる。As a method of polishing the substrate or the intermediate layer,
Wet polishing using polishing paper, a method of processing with a wet lathe using a polishing grindstone, and the like can be used. If the polishing paper is used, polishing up to about # 400, and if the polishing grindstone is used up to about # 240, Ra is within the above range.
【0014】本発明において、酸化物超電導層として用
いられる超電導組成物は、特に限定されるものではな
く、例えば、Bi2Sr2CaCu2OxやBi2Sr2Ca
2Cu3Oxに代表される組成を有するBi−Sr−Ca
−Cu−O系化合物の多層ペロブスカイト構造を有する
酸化物が好適に用いられるほか、M−Ba−Cu−O系
化合物で、MがSc、Y、及La、Eu、Gd、Er、
Yb、Lu等のランタニドから選ばれる一種以上の希土
類元素を含む多層ペロブスカイト構造を有するYBa2
Cu3O7-y等の組成の希土類系酸化物等も用いられる。In the present invention, the superconducting composition used as the oxide superconducting layer is not particularly limited. For example, Bi 2 Sr 2 CaCu 2 O x or Bi 2 Sr 2 Ca is used.
Bi-Sr-Ca having a composition represented by 2 Cu 3 O x
An oxide of a —Cu—O-based compound having a multi-layer perovskite structure is preferably used, and an M—Ba—Cu—O-based compound in which M is Sc, Y, La, Eu, Gd, Er,
YBa 2 having a multilayer perovskite structure containing one or more rare earth elements selected from lanthanides such as Yb and Lu
A rare earth oxide having a composition such as Cu 3 O 7-y is also used.
【0015】本発明の酸化物超電導体は、研磨加工によ
り得られた、Ra0.1〜0.7μmの基板上又は中間
層上に上記の酸化物超電導組成物からなる酸化物超電導
層を形成することにより得ることができる。具体的に
は、まず、Bi2Sr2CaCu2OxあるいはYBa2C
u3O7-y等の組成となるように、原料粉末を調合し、こ
れを混合する。次に、混合された原料粉末を仮焼し、そ
の後、仮焼された原料粉末に、銀及び/又は酸化銀を添
加することが好ましく、更に酸化マグネシウム粉末を添
加すると一層好ましい。In the oxide superconductor of the present invention, an oxide superconducting layer made of the above-mentioned oxide superconducting composition is formed on a substrate having Ra of 0.1 to 0.7 μm or an intermediate layer obtained by polishing. Can be obtained. Specifically, first, Bi 2 Sr 2 CaCu 2 O x or YBa 2 C
Raw material powders are prepared so as to have a composition of u 3 O 7-y or the like and mixed. Next, it is preferable to calcinate the mixed raw material powder, and then to add silver and / or silver oxide to the calcined raw material powder, and it is more preferable to add magnesium oxide powder.
【0016】出発原料に炭酸塩を用いた場合や、有機溶
剤、バインダー、分散剤等を用いてスラリーを作製した
場合には、酸化物超電導成形体に炭素が残留している。
この炭素を焼成中に除去できず、焼成された酸化物超電
導層に残留した場合、超電導特性が著しく低下する。上
述した銀及び/又は酸化銀を添加することにより、この
炭素の除去を補助し、銀及び/又は酸化銀の添加量が
0.5〜10.0重量%の範囲で、高い超電導特性を得
ることができる。焼成後の残留炭素量としては、0.5
重量%以下にすることが好ましい。また、超電導層に残
留した銀は、クラックの発生を防止する緩衝剤として働
き、超電導層の機械的強度を向上させることができ、好
適である。添加量が0.5重量%未満では、クラックが
生じたり、多量の炭素が残留するか若しくは気泡が残存
し、Jc値が低下する。また、溶融が不均一になる場合
もある。10.0重量%を超えると焼成後の酸化物超電
導層中に銀が多量に分散してJc値が低下し、好ましく
ない。When a carbonate is used as a starting material, or when a slurry is prepared using an organic solvent, a binder, a dispersant, etc., carbon remains in the oxide superconducting compact.
If this carbon cannot be removed during firing and remains in the fired oxide superconducting layer, the superconducting properties will be significantly reduced. By adding the above-mentioned silver and / or silver oxide, the removal of carbon is assisted, and a high superconducting property is obtained when the addition amount of silver and / or silver oxide is in the range of 0.5 to 10.0% by weight. be able to. The residual carbon amount after firing is 0.5
It is preferable that the content is not more than wt%. Further, the silver remaining in the superconducting layer functions as a buffering agent for preventing the generation of cracks and can improve the mechanical strength of the superconducting layer, which is preferable. If the addition amount is less than 0.5% by weight, cracks occur, a large amount of carbon remains or bubbles remain, and the Jc value decreases. In addition, the melting may be non-uniform. If it exceeds 10.0% by weight, a large amount of silver is dispersed in the oxide superconducting layer after firing and the Jc value is lowered, which is not preferable.
【0017】また、酸化マグネシウム粉末を添加する
と、超電導酸化物の部分溶融時に固相分の割合が増加し
て見掛け粘性が増加し、液相の粘性の低下が減少する。
したがって、超電導酸化物の融点前後での急激な粘性低
下に起因する釉ダレが防止できるとともに、本発明の主
要な作用である基板又は中間層のRa範囲限定による液
相流出防止作用と相俟って、膜厚の厚い酸化物超電導層
の形成が一層容易になる。酸化マグネシウム粉末の添加
量は0.5〜5.0重量%の範囲とするのが好ましく、
この範囲で添加した場合、酸化物超電導層は膜厚10〜
1000μmであれば釉ダレ等の不利益を被ることなく
形成できる。酸化マグネシウム粉末の添加量が0.5重
量%未満では十分な液相の粘性低下減少効果が得られ
ず、5.0重量%を超えると、焼成後の酸化物超電導層
中に酸化マグネシウムが多量に分散して、Jc値が低下
し、好ましくない。添加する酸化マグネシウム粉末の粒
径は、特に制限されないが、酸化物超電導層を貫通する
ような酸化マグネシウム粉末はそれ自体が欠陥として作
用するので好ましくない。When magnesium oxide powder is added, the ratio of the solid phase component increases when the superconducting oxide is partially melted, the apparent viscosity increases, and the decrease in the liquid phase viscosity decreases.
Therefore, it is possible to prevent glaze dripping due to a rapid decrease in viscosity around the melting point of the superconducting oxide, and to combine with the liquid phase outflow preventing effect by limiting the Ra range of the substrate or the intermediate layer, which is the main effect of the present invention. Therefore, it becomes easier to form a thick oxide superconducting layer. The amount of magnesium oxide powder added is preferably in the range of 0.5 to 5.0% by weight,
When added in this range, the oxide superconducting layer has a film thickness of 10 to 10.
If it is 1000 μm, it can be formed without suffering from disadvantages such as glaze sag. If the addition amount of the magnesium oxide powder is less than 0.5% by weight, a sufficient effect of decreasing the viscosity of the liquid phase is not obtained, and if it exceeds 5.0% by weight, a large amount of magnesium oxide is present in the oxide superconducting layer after firing. And the Jc value decreases, which is not preferable. The particle size of the magnesium oxide powder to be added is not particularly limited, but magnesium oxide powder penetrating the oxide superconducting layer itself acts as a defect, which is not preferable.
【0018】このように、好ましくは、銀及び/又は酸
化銀、酸化マグネシウム粉末が添加された酸化物超電導
体原料粉末に溶媒等を加えてスラリーを得る。そして、
この酸化物超電導体原料を含有するスラリーを用い、ス
プレー等の塗布成形、ドクターブレード法よる成形体を
載置する方法等従来公知のいずれかの方法により、Ra
0.1〜0.7μmの基板上又は中間層上に膜状の成形
体を形成する。なお、酸化物超電導検出コイル等の配線
パターン等の形成には、スクリーン印刷成形が好適に用
いられる。次に、この成形体を酸素雰囲気中において、
溶融あるいは部分溶融する温度で焼成して酸化物超電導
層を形成する。焼成温度は超電導酸化物の種類により適
宜調整し、例えば、YBa2CuOxからなるときには9
00〜1200℃であり、Bi2Sr2CaCu2Oxから
なるときには870〜910℃である。As described above, preferably, a solvent or the like is added to the oxide superconductor raw material powder to which the silver and / or silver oxide and magnesium oxide powders are added to obtain a slurry. And
Using the slurry containing this oxide superconductor raw material, Ra can be formed by any conventionally known method such as coating by spraying or the like or placing a molded body by the doctor blade method.
A film-shaped compact is formed on a substrate or an intermediate layer having a thickness of 0.1 to 0.7 μm. In addition, screen printing molding is preferably used for forming the wiring pattern and the like of the oxide superconducting detection coil and the like. Next, in an oxygen atmosphere, this molded body,
The oxide superconducting layer is formed by firing at a temperature at which it melts or partially melts. The firing temperature is appropriately adjusted depending on the type of superconducting oxide, and for example, when it is made of YBa 2 CuO x, it is 9
The temperature is 00 to 1200 ° C., and the temperature is 870 to 910 ° C. when it is made of Bi 2 Sr 2 CaCu 2 O x .
【0019】[0019]
【実施例】以下、本発明を実施例により更に詳細に説明
する。ただし、本発明は、下記実施例に限定されるもの
ではない。EXAMPLES The present invention will now be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
【0020】(実施例1)酸化マグネシウム(純度9
9.9%)の焼結体基板(20×50×5mm)の片面
を湿式にて#400(研磨紙)まで研磨した。得られた
研磨面の表面粗さを表面粗さ形状測定器(東京精密製)
にて測定し、平均表面粗さ(Ra)0.15μmを得
た。次に、Bi2Sr2CaCu2Ox原料をエタノール、
トルエン、酢酸エチル又はイソプロピルアルコールを溶
媒に用い、バインダー、可塑剤、分散剤を添加して、ド
クターブレード成形した酸化物超電導成形体を作製し
た。得られた酸化物超電導成形体を酸化マグネシウム焼
結体基板の研磨面上に載置し、酸素ガス雰囲気で890
℃で部分溶融し、降温速度1℃/分で830℃まで徐冷
し、830℃で15時間保持して結晶化した。更に、7
00℃まで冷却し、その後、窒素雰囲気として室温まで
徐冷し、酸化物超電導体テストピースを得た。(Example 1) Magnesium oxide (purity 9
One side of a 9.9%) sintered substrate (20 × 50 × 5 mm) was wet-polished to # 400 (abrasive paper). The surface roughness of the obtained polished surface is measured by a surface roughness measuring instrument (manufactured by Tokyo Seimitsu).
And an average surface roughness (Ra) of 0.15 μm was obtained. Next, the Bi 2 Sr 2 CaCu 2 O x raw material is ethanol,
Toluene, ethyl acetate or isopropyl alcohol was used as a solvent, a binder, a plasticizer and a dispersant were added to prepare a doctor blade molded oxide superconducting molded body. The obtained oxide superconducting molded body was placed on the polished surface of the magnesium oxide sintered body substrate, and it was placed in an oxygen gas atmosphere at 890.
Partially melted at ℃, gradually cooled to 830 ℃ at a cooling rate of 1 ℃ / min, and kept at 830 ℃ for 15 hours to crystallize. Furthermore, 7
It was cooled to 00 ° C. and then gradually cooled to room temperature in a nitrogen atmosphere to obtain an oxide superconductor test piece.
【0021】得られた酸化物超電導体テストピースにつ
いて目視観測にて外観評価を行い、良不良を判定した。
判定は液相流出の有無により行い、液相流出のないもの
を良、液相流出の有るものを不良とした。また、四端子
法により液体窒素中で、臨界電流密度を測定した。更
に、以下の方法により冷熱サイクル評価を行った。ま
ず、得られた酸化物超電導体を液体窒素中に浸漬し、酸
化物超電導体が液体窒素温度になった後、30分保持し
て、臨界電流密度(磁気シールド能)を測定した。その
後、酸化物超電体を液体窒素中から取り出し、室温に放
置し、酸化物超電体全体が室温になった後30分保持す
る操作を1サイクルとし、再び液体窒素中に浸漬、保
持、臨界電流密度(磁気シールド能)測定、室温取り出
し、放置、保持とサイクルを5回繰り返し、1回目と5
回目の冷熱サイクル臨界電流密度(磁気シールド能)を
それぞれ下記数1にて比較し、80%以上を○、50%
以上を△、50%未満を×とした。これらの結果を表1
に示す。The resulting oxide superconductor test piece was visually observed to evaluate its appearance, and was judged as good or bad.
The judgment was made based on the presence / absence of liquid phase outflow, and those without liquid phase outflow were evaluated as good, and those with liquid phase outflow were evaluated as poor. In addition, the critical current density was measured in liquid nitrogen by the four probe method. Further, the thermal cycle evaluation was performed by the following method. First, the obtained oxide superconductor was immersed in liquid nitrogen, and after the oxide superconductor reached the liquid nitrogen temperature, it was held for 30 minutes to measure the critical current density (magnetic shielding ability). After that, the oxide superconductor is taken out of the liquid nitrogen, left at room temperature, and held for 30 minutes after the entire oxide superconductor reaches room temperature, which is defined as one cycle, and is immersed in liquid nitrogen again and held, The critical current density (magnetic shielding ability) measurement, room temperature removal, leaving, holding and cycling were repeated 5 times, the first time and 5 times.
The critical current densities (magnetic shielding ability) of the second thermal cycle are compared with the following numerical formulas 1, respectively, and 80% or more is ○, 50%
The above was evaluated as Δ, and less than 50% was evaluated as x. These results are shown in Table 1.
Shown in.
【0022】[0022]
【数1】 [Equation 1]
【0023】(実施例2〜11)酸化マグネシウム焼結
体基板の研磨面の平均表面粗さ(Ra)の測定値が表1
示すとおりであり、Bi2Sr2CaCu2Ox原料に表1
に示す添加量の銀粉末を添加し、部分溶融温度を885
℃とした以外は実施例1と同様にして酸化物超電導体テ
ストピースを得、各特性を測定・評価した。その結果を
表1に示す。Examples 2 to 11 Table 1 shows the measured values of the average surface roughness (Ra) of the polished surface of the magnesium oxide sintered body substrate.
As shown in Table 1, the Bi 2 Sr 2 CaCu 2 O x raw material is shown in Table 1.
Add the silver powder in the amount shown in, and adjust the partial melting temperature to 885.
An oxide superconductor test piece was obtained in the same manner as in Example 1 except that the temperature was set to 0 ° C., and each characteristic was measured and evaluated. The results are shown in Table 1.
【0025】(実施例12〜16)酸化マグネシウム焼
結体基板の研磨面の平均表面粗さ(Ra)の測定値が表
1示すとおりであり、Bi2Sr2CaCu2Ox原料に表
1に示す添加量の銀粉末及び酸化マグネシウム粉末を添
加し、部分溶融温度を885℃とした以外は実施例1と
同様にして酸化物超電導体テストピースを得、各特性を
測定・評価した。その結果を表1に示す。(Examples 12 to 16) The measured values of the average surface roughness (Ra) of the polished surface of the magnesium oxide sintered body substrate are shown in Table 1, and the Bi 2 Sr 2 CaCu 2 O x raw material was used in Table 1. An oxide superconductor test piece was obtained in the same manner as in Example 1 except that the addition amounts of silver powder and magnesium oxide powder shown in 1 were added and the partial melting temperature was 885 ° C., and each characteristic was measured and evaluated. The results are shown in Table 1.
【0026】[0026]
【表1】 [Table 1]
【0027】(実施例17)酸化マグネシウム(純度9
9.9%)の焼結体円筒(ID70×OD80×H40
0mm、底付)の外面を湿式旋盤にて、#240(研磨
砥石)まで研磨した。得られた研磨面の表面粗さを表面
粗さ形状測定器(東京精密製)にて測定し、平均表面粗
さ(Ra)0.25μmを得た。次に、Bi2Sr2Ca
Cu2Ox原料をエタノール、トルエン、酢酸エチル又は
イソプロピルアルコールを溶媒に用いて、スプレー塗布
成形により、酸化物超電導磁気シールド円筒成形体を作
製した。得られた酸化物超電導磁気シールド円筒成形体
を、酸素ガス雰囲気で890℃で部分溶融し、降温速度
1℃/分で830℃まで徐冷し、830℃で15時間保
持して結晶化した。更に、700℃まで冷却し、その
後、窒素雰囲気として室温まで徐冷し、酸化物超電導磁
気シールド円筒を得、実施例1と同様にして各特性の測
定・評価を行った。その結果を表2に示す。Example 17 Magnesium oxide (purity 9
9.9%) sintered cylinder (ID70 x OD80 x H40
The outer surface of 0 mm, with bottom) was ground to # 240 (grinding stone) with a wet lathe. The surface roughness of the obtained polished surface was measured with a surface roughness profiler (manufactured by Tokyo Seimitsu Co., Ltd.) to obtain an average surface roughness (Ra) of 0.25 μm. Next, Bi 2 Sr 2 Ca
A Cu 2 O x raw material was used as a solvent in ethanol, toluene, ethyl acetate, or isopropyl alcohol as a solvent, and was spray-coated to form an oxide superconducting magnetic shield cylinder. The obtained oxide superconducting magnetic shield cylinder compact was partially melted in an oxygen gas atmosphere at 890 ° C., gradually cooled to 830 ° C. at a temperature lowering rate of 1 ° C./min, and kept at 830 ° C. for 15 hours for crystallization. Further, it was cooled to 700 ° C. and then gradually cooled to room temperature in a nitrogen atmosphere to obtain an oxide superconducting magnetic shield cylinder, and each characteristic was measured and evaluated in the same manner as in Example 1. The results are shown in Table 2.
【0028】(実施例18及び19)酸化マグネシウム
焼結体円筒の研磨面の平均表面粗さ(Ra)の測定値が
表2示すとおりであり、Bi2Sr2CaCu2Ox原料に
銀粉末を4.0重量%添加し、部分溶融温度を885℃
とした以外は実施例17と同様にして酸化物超電導磁気
シールド円筒を得、各特性を測定・評価した。その結果
を表2に示す。(Examples 18 and 19) The measured values of the average surface roughness (Ra) of the polished surface of the magnesium oxide sintered cylinder are shown in Table 2, and the raw material of Bi 2 Sr 2 CaCu 2 O x was silver powder. 4.0 wt% was added, and the partial melting temperature was 885 ° C.
An oxide superconducting magnetic shield cylinder was obtained in the same manner as in Example 17 except that the above was used, and each property was measured and evaluated. The results are shown in Table 2.
【0029】(実施例20及び21)酸化マグネシウム
焼結体円筒の研磨面の平均表面粗さ(Ra)の測定値が
表2示すとおりであり、Bi2Sr2CaCu2Ox原料に
銀粉末を4.0重量%、酸化マグネシウム粉末を1.0
重量%添加し、部分溶融温度を885℃とした以外は実
施例17と同様にして酸化物超電導磁気シールド円筒を
得、各特性を測定・評価した。その結果を表2に示す。(Examples 20 and 21) The measured values of the average surface roughness (Ra) of the polished surface of the magnesium oxide sintered body cylinder are shown in Table 2, and the raw material of Bi 2 Sr 2 CaCu 2 O x was silver powder. 4.0% by weight, magnesium oxide powder 1.0
An oxide superconducting magnetic shield cylinder was obtained in the same manner as in Example 17 except that the weight percent was added and the partial melting temperature was 885 ° C., and each characteristic was measured and evaluated. The results are shown in Table 2.
【0030】(実施例22)酸化マグネシウム(純度9
9.9%)粉末をプラズマ溶射法により、インコネル6
25円筒(φ100×H600mm、底付)の外面上に
溶射し、酸化マグネシウム層の厚さ0.3mm、インコ
ネル層の厚さ1.98mmの積層円筒を得た。次に酸化
マグネシウム層を湿式旋盤にて、#240(研磨砥石)
まで研磨した。得られた研磨面の表面粗さを表面粗さ形
状測定器(東京精密製)にて測定し、平均表面粗さ(R
a)0.64μmを得た。次に、Bi2Sr2CaCu2
Ox原料にエタノール、トルエン、酢酸エチル又はイソ
プロピルアルコールを溶媒に用いて、スプレー塗布成形
により、酸化物超電導磁気シールド成形体を作製した。
得られた酸化物超電導磁気シールド円筒成形体を、酸素
ガス雰囲気で890℃で部分溶融し、降温速度1℃/分
で830℃まで徐冷し、830℃で15時間保持して結
晶化した。更に、700℃まで冷却し、その後、窒素雰
囲気として室温まで徐冷し、酸化物超電導磁気シールド
円筒を得、実施例1と同様にして各特性の測定・評価を
行った。その結果を表2に示す。Example 22 Magnesium oxide (purity 9
9.9%) powder by plasma spraying method to Inconel 6
Thermal spraying was performed on the outer surface of 25 cylinders (φ100 × H600 mm, with bottom) to obtain a laminated cylinder having a magnesium oxide layer thickness of 0.3 mm and an Inconel layer thickness of 1.98 mm. Next, the magnesium oxide layer was wet-turned with a # 240 (polishing wheel).
Polished up to. The surface roughness of the obtained polished surface was measured with a surface roughness measuring instrument (manufactured by Tokyo Seimitsu Co., Ltd.), and the average surface roughness (R
a) 0.64 μm was obtained. Next, Bi 2 Sr 2 CaCu 2
An oxide superconducting magnetic shield molding was produced by spray coating using ethanol, toluene, ethyl acetate or isopropyl alcohol as a solvent for the O x raw material.
The obtained oxide superconducting magnetic shield cylinder compact was partially melted in an oxygen gas atmosphere at 890 ° C., gradually cooled to 830 ° C. at a temperature lowering rate of 1 ° C./min, and kept at 830 ° C. for 15 hours for crystallization. Further, it was cooled to 700 ° C. and then gradually cooled to room temperature in a nitrogen atmosphere to obtain an oxide superconducting magnetic shield cylinder, and each characteristic was measured and evaluated in the same manner as in Example 1. The results are shown in Table 2.
【0031】(実施例23)酸化マグネシウム層の研磨
面の平均表面粗さ(Ra)の測定値が表2示すとおりで
あり、Bi2Sr2CaCu2Ox原料に銀粉末を4.0重
量%添加し、部分溶融温度を885℃とした以外は実施
例22と同様にして酸化物超電導磁気シールド円筒を
得、各特性を測定・評価した。その結果を表2に示す。(Example 23) The average surface roughness (Ra) of the polished surface of the magnesium oxide layer is shown in Table 2, and the Bi 2 Sr 2 CaCu 2 O x raw material contains 4.0 parts by weight of silver powder. %, And an oxide superconducting magnetic shield cylinder was obtained in the same manner as in Example 22 except that the partial melting temperature was set to 885 ° C., and each characteristic was measured and evaluated. The results are shown in Table 2.
【0032】(実施例24)酸化マグネシウム層の研磨
面の平均表面粗さ(Ra)の測定値が表2示すとおりで
あり、Bi2Sr2CaCu2Ox原料に銀粉末を4.0重
量%、酸化マグネシウム粉末を1.0重量%添加し、部
分溶融温度を885℃とした以外は実施例22と同様に
して酸化物超電導磁気シールド円筒を得、各特性を測定
・評価した。その結果を表2に示す。(Example 24) The measured values of the average surface roughness (Ra) of the polished surface of the magnesium oxide layer are as shown in Table 2, and the Bi 2 Sr 2 CaCu 2 O x raw material contained 4.0 weight% of silver powder. %, Magnesium oxide powder was added at 1.0% by weight, and an oxide superconducting magnetic shield cylinder was obtained in the same manner as in Example 22 except that the partial melting temperature was 885 ° C., and each characteristic was measured and evaluated. The results are shown in Table 2.
【0033】(実施例25)銀(純度99.9%)粉末
を粉末ガス溶射法により、インコネル625円筒(φ1
00×H600mm、底付)の外面上に溶射し、銀層の
厚さ0.3mm、インコネルの厚さ1.98mmの積層
円筒を得た。次に銀層を湿式旋盤にて、#240(研磨
砥石)まで研磨した。得られた研磨面の表面粗さを表面
粗さ形状測定器(東京精密製)にて測定し、平均表面粗
さ(Ra)0.27μmを得た。次に、Bi2Sr2Ca
Cu2Ox原料にエタノール、トルエン、酢酸エチル又は
イソプロピルアルコールを溶媒に用いて、スプレー塗布
成形により、酸化物超電導磁気シールド成形体を作製し
た。得られた酸化物超電導磁気シールド円筒成形体を、
酸素ガス雰囲気で885℃で部分溶融し、降温速度1℃
/分で830℃まで徐冷し、830℃で15時間保持し
て結晶化した。 更に、700℃まで冷却し、その後、
窒素雰囲気として室温まで徐冷し、酸化物超電導磁気シ
ールド円筒を得、実施例1と同様にして各特性の測定・
評価を行った。その結果を表2に示す。(Example 25) Inconel 625 cylinder (φ1) was prepared by a powder gas spraying method using silver (purity 99.9%) powder.
Thermal spraying was applied to the outer surface (00 × H600 mm, bottomed) to obtain a laminated cylinder having a silver layer thickness of 0.3 mm and an Inconel thickness of 1.98 mm. Next, the silver layer was polished by a wet lathe to # 240 (polishing stone). The surface roughness of the obtained polished surface was measured with a surface roughness measuring instrument (manufactured by Tokyo Seimitsu Co., Ltd.) to obtain an average surface roughness (Ra) of 0.27 μm. Next, Bi 2 Sr 2 Ca
An oxide superconducting magnetic shield molded body was produced by spray coating molding using ethanol, toluene, ethyl acetate or isopropyl alcohol as a solvent for the Cu 2 O x raw material. The obtained oxide superconducting magnetic shield cylindrical molded body,
Partially melted at 885 ° C in an oxygen gas atmosphere, and the cooling rate was 1 ° C.
The mixture was gradually cooled to 830 ° C. at a heating rate of 1 minute / minute, and kept at 830 ° C. for 15 hours for crystallization. Further cool to 700 ° C, then
Slowly cool to room temperature in a nitrogen atmosphere to obtain an oxide superconducting magnetic shield cylinder, and measure each characteristic in the same manner as in Example 1.
An evaluation was made. The results are shown in Table 2.
【0034】(実施例26)銀層の研磨面の平均表面粗
さ(Ra)の測定値が表2示すとおりであり、Bi2S
r2CaCu2Ox原料に、酸化マグネシウム粉末を1.
0重量%添加した以外は実施例25と同様にして酸化物
超電導磁気シールド円筒を得、各特性を測定・評価し
た。その結果を表2に示す。(Example 26) The measured values of the average surface roughness (Ra) of the polished surface of the silver layer are as shown in Table 2, and Bi 2 S
1. Magnesium oxide powder was added to r 2 CaCu 2 O x raw material.
An oxide superconducting magnetic shield cylinder was obtained in the same manner as in Example 25 except that 0% by weight was added, and each characteristic was measured and evaluated. The results are shown in Table 2.
【0035】(実施例27〜29)銀層の研磨面の平均
表面粗さ(Ra)の測定値が表2示すとおりであり、基
板となる円筒の材質をそれぞれ、SUS430(実施例
27)、インコネル601(実施例28)、SUS31
0S(実施例29)とした以外は、実施例25と同様に
して酸化物超電導磁気シールド円筒を得、各特性を測定
・評価した。その結果を表2に示す。(Examples 27 to 29) The measured values of the average surface roughness (Ra) of the polished surface of the silver layer are as shown in Table 2, and the material of the cylinder to be the substrate is SUS430 (Example 27), Inconel 601 (Example 28), SUS31
An oxide superconducting magnetic shield cylinder was obtained in the same manner as in Example 25 except that it was set to 0S (Example 29), and each characteristic was measured and evaluated. The results are shown in Table 2.
【0036】(実施例30)酸化マグネシウム(純度9
9.9%)の焼結体円筒(ID30×OD36×H10
0mm)の外面を湿式旋盤にて、#400(研磨砥石)
まで研磨した。得られた研磨面の表面粗さを表面粗さ形
状測定器(東京精密製)にて測定し、平均表面粗さ(R
a)0.12μmを得た。次に、Bi2Sr2CaCu2
Ox原料をエタノール、トルエン、酢酸エチル又はイソ
プロピルアルコールを溶媒に用い、バインダー、可塑
剤、分散剤を添加して、スクリーン印刷成形により、検
出コイルの配線パターンが印刷された酸化物超電導検出
コイル成形体を作製した。得られた酸化物超電導成形体
を、酸素ガス雰囲気で890℃で部分溶融し、降温速度
1℃/分で830℃まで徐冷し、830℃で15時間保
持して結晶化した。 更に、700℃まで冷却し、その
後、窒素雰囲気として室温まで徐冷し、酸化物超電導検
出コイルを得、実施例1と同様にして各特性の測定・評
価を行った。その結果を表2に示す。(Example 30) Magnesium oxide (purity 9
9.9%) sintered cylinder (ID30 x OD36 x H10
The outer surface of 0 mm) is # 400 (grinding stone) with a wet lathe.
Polished up to. The surface roughness of the obtained polished surface was measured with a surface roughness measuring instrument (manufactured by Tokyo Seimitsu Co., Ltd.), and the average surface roughness (R
a) 0.12 μm was obtained. Next, Bi 2 Sr 2 CaCu 2
Ox raw material using ethanol, toluene, ethyl acetate or isopropyl alcohol as a solvent, binder, plasticizer, dispersant added, screen printing molding, oxide superconducting detection coil molding printed wiring pattern of the detection coil The body was made. The obtained oxide superconducting molded body was partially melted at 890 ° C. in an oxygen gas atmosphere, gradually cooled to 830 ° C. at a temperature lowering rate of 1 ° C./minute, and kept at 830 ° C. for 15 hours for crystallization. Further, it was cooled to 700 ° C. and then gradually cooled to room temperature in a nitrogen atmosphere to obtain an oxide superconducting detection coil, and each characteristic was measured and evaluated in the same manner as in Example 1. The results are shown in Table 2.
【0037】(実施例31)酸化マグネシウム焼結体円
筒の研磨面の平均表面粗さ(Ra)の測定値が表1示す
とおりであり、Bi2Sr2CaCu2Ox原料に、銀粉末
を4.0重量%添加し、部分溶融温度を885℃とした
以外は実施例30と同様にして酸化物超電導検出コイル
を得、各特性を測定・評価した。その結果を表2に示
す。(Example 31) The measured values of the average surface roughness (Ra) of the polished surface of the magnesium oxide sintered cylinder are as shown in Table 1, and the Bi 2 Sr 2 CaCu 2 O x raw material was mixed with silver powder. An oxide superconducting detection coil was obtained in the same manner as in Example 30 except that 4.0% by weight was added and the partial melting temperature was 885 ° C., and each characteristic was measured and evaluated. The results are shown in Table 2.
【0038】(実施例32)酸化マグネシウム焼結体円
筒の研磨面の平均表面粗さ(Ra)の測定値が表1示す
とおりであり、Bi2Sr2CaCu2Ox原料に、銀粉末
を4.0重量%、酸化マグネシウム粉末を1.0重量%
添加し、部分溶融温度を885℃とした以外は実施例3
0と同様にして酸化物超電導検出コイルを得、各特性を
測定・評価した。その結果を表2に示す。(Example 32) The measured values of the average surface roughness (Ra) of the polished surface of the magnesium oxide sintered cylinder are as shown in Table 1, and the Bi 2 Sr 2 CaCu 2 O x raw material was mixed with silver powder. 4.0% by weight, magnesium oxide powder 1.0% by weight
Example 3 except that the partial melting temperature was 885 ° C.
An oxide superconducting detection coil was obtained in the same manner as in 0, and each characteristic was measured and evaluated. The results are shown in Table 2.
【0039】[0039]
【表2】 [Table 2]
【0040】(比較例1)酸化マグネシウム(純度9
9.9%)の焼結体基板(20×50×5mm)につい
て研磨を行わなかった以外は実施例1と同様にして酸化
物超電導体テストピースを得、各特性を測定・評価し
た。その結果を表3に示す。なお、酸化マグネシウム焼
結体基板の焼成面の表面粗さを表面粗さ形状測定器(東
京精密製)にて測定したところ、平均表面粗さ(Ra)
0.88μmを得た。Comparative Example 1 Magnesium oxide (purity 9
An oxide superconductor test piece was obtained in the same manner as in Example 1 except that polishing was not performed on the sintered body substrate (9.9%) (20 × 50 × 5 mm), and each characteristic was measured and evaluated. The results are shown in Table 3. In addition, when the surface roughness of the fired surface of the magnesium oxide sintered body substrate was measured with a surface roughness measuring instrument (manufactured by Tokyo Seimitsu Co., Ltd.), the average surface roughness (Ra) was obtained.
0.88 μm was obtained.
【0041】(比較例2)酸化マグネシウム(純度9
9.9%)の焼結体基板(20×50×5mm)の片面
を湿式にて、2μmダイヤモンド砥粒まで光学研磨した
以外は実施例1と同様にして酸化物超電導体テストピー
スを得、各特性を測定・評価した。その結果を表3に示
す。なお、得られた研磨面の表面粗さを表面粗さ形状測
定器(東京精密製)にて測定したところ、平均表面粗さ
(Ra)0.06μmを得た。Comparative Example 2 Magnesium oxide (purity 9
An oxide superconductor test piece was obtained in the same manner as in Example 1 except that one side of a sintered body substrate (9.9%) (20 × 50 × 5 mm) was wet-polished to 2 μm diamond abrasive grains. Each characteristic was measured and evaluated. The results are shown in Table 3. In addition, when the surface roughness of the obtained polished surface was measured by a surface roughness measuring instrument (manufactured by Tokyo Seimitsu Co., Ltd.), an average surface roughness (Ra) of 0.06 μm was obtained.
【0042】(比較例3)酸化マグネシウム(純度9
9.9%)の焼結体基板(20×50×5mm)につい
て研磨を行わなかった以外は実施例2〜7と同様にして
酸化物超電導体テストピースを得、各特性を測定・評価
した。その結果を表3に示す。なお、酸化マグネシウム
焼結体基板の焼成面の表面粗さを表面粗さ形状測定器
(東京精密製)にて測定したところ、平均表面粗さ(R
a)0.91μmを得た。Comparative Example 3 Magnesium oxide (purity 9
An oxide superconductor test piece was obtained in the same manner as in Examples 2 to 7, except that the sintered substrate (9.9%) (20 × 50 × 5 mm) was not polished, and each characteristic was measured and evaluated. . The results are shown in Table 3. The surface roughness of the fired surface of the magnesium oxide sintered body substrate was measured by a surface roughness measuring instrument (manufactured by Tokyo Seimitsu Co., Ltd.), and the average surface roughness (R
a) 0.91 μm was obtained.
【0043】(比較例4)酸化マグネシウム(純度9
9.9%)の焼結体基板(20×50×5mm)の片面
を湿式にて、2μmダイヤモンド砥粒まで光学研磨した
以外は実施例2〜7と同様にして酸化物超電導体テスト
ピースを得、各特性を測定・評価した。その結果を表3
に示す。なお、得られた研磨面の表面粗さを表面粗さ形
状測定器(東京精密製)にて測定したところ、平均表面
粗さ(Ra)0.07μmを得た。Comparative Example 4 Magnesium oxide (purity 9
The oxide superconductor test pieces were prepared in the same manner as in Examples 2 to 7 except that one surface of a sintered body substrate (9.9%) (20 × 50 × 5 mm) was wet-polished to 2 μm diamond abrasive grains. Then, each characteristic was measured and evaluated. The results are shown in Table 3.
Shown in. When the surface roughness of the obtained polished surface was measured by a surface roughness measuring instrument (manufactured by Tokyo Seimitsu Co., Ltd.), an average surface roughness (Ra) of 0.07 μm was obtained.
【0044】(比較例5)酸化マグネシウム(純度9
9.9%)の焼結体基板(20×50×5mm)につい
て研磨を行わなかった以外は実施例14と同様にして酸
化物超電導体テストピースを得、各特性を測定・評価し
た。その結果を表3に示す。なお、酸化マグネシウム焼
結体基板の焼成面の表面粗さを表面粗さ形状測定器(東
京精密製)にて測定したところ、平均表面粗さ(Ra)
0.86μmを得た。Comparative Example 5 Magnesium oxide (purity 9
An oxide superconductor test piece was obtained in the same manner as in Example 14 except that the 9.9%) sintered substrate (20 × 50 × 5 mm) was not polished, and each characteristic was measured and evaluated. The results are shown in Table 3. In addition, when the surface roughness of the fired surface of the magnesium oxide sintered body substrate was measured with a surface roughness measuring instrument (manufactured by Tokyo Seimitsu Co., Ltd.), the average surface roughness (Ra) was obtained.
0.86 μm was obtained.
【0045】(比較例6)酸化マグネシウム(純度9
9.9%)の焼結体基板(20×50×5mm)の片面
を湿式にて、2μmダイヤモンド砥粒まで光学研磨した
以外は実施例14と同様にして酸化物超電導体テストピ
ースを得、各特性を測定・評価した。その結果を表3に
示す。なお、得られた研磨面の表面粗さを表面粗さ形状
測定器(東京精密製)にて測定したところ、平均表面粗
さ(Ra)0.06μmを得た。Comparative Example 6 Magnesium oxide (purity 9
An oxide superconductor test piece was obtained in the same manner as in Example 14 except that one side of a sintered body substrate (9.9%) (20 × 50 × 5 mm) was optically polished to 2 μm diamond abrasive grains. Each characteristic was measured and evaluated. The results are shown in Table 3. In addition, when the surface roughness of the obtained polished surface was measured by a surface roughness measuring instrument (manufactured by Tokyo Seimitsu Co., Ltd.), an average surface roughness (Ra) of 0.06 μm was obtained.
【0046】(比較例7)酸化マグネシウム(純度9
9.9%)の焼結体円筒(ID70×OD80×H40
0mm、底付)の外面について研磨を行わなかった以外
は実施例20及び21と同様にして酸化物超電導磁気シ
ールドを得、各特性を測定・評価した。その結果を表3
に示す。なお、酸化マグネシウム焼結体円筒の焼成面の
表面粗さを表面粗さ形状測定器(東京精密製)にて測定
したところ、平均表面粗さ(Ra)0.83μmを得
た。Comparative Example 7 Magnesium oxide (purity 9
9.9%) sintered cylinder (ID70 x OD80 x H40
An oxide superconducting magnetic shield was obtained in the same manner as in Examples 20 and 21, except that the outer surface (0 mm, bottomed) was not polished, and each characteristic was measured and evaluated. The results are shown in Table 3.
Shown in. The surface roughness of the sintered surface of the magnesium oxide sintered body cylinder was measured by a surface roughness measuring instrument (manufactured by Tokyo Seimitsu Co., Ltd.), and an average surface roughness (Ra) of 0.83 μm was obtained.
【0047】(比較例8)酸化マグネシウム(純度9
9.9%)の焼結体円筒(ID70×OD80×H40
0mm、底付)の外面を2μmダイヤモンド砥粒まで光
学研磨した以外は実施例20及び21と同様にして酸化
物超電導磁気シールドを得、各特性を測定・評価した。
その結果を表3に示す。なお、得られた研磨面の表面粗
さを表面粗さ形状測定器(東京精密製)にて測定したと
ころ、平均表面粗さ(Ra)0.08μmを得た。Comparative Example 8 Magnesium oxide (purity 9
9.9%) sintered cylinder (ID70 x OD80 x H40
Oxide superconducting magnetic shields were obtained in the same manner as in Examples 20 and 21, except that the outer surface (0 mm, bottomed) was optically polished to 2 μm diamond abrasive grains, and each characteristic was measured and evaluated.
The results are shown in Table 3. In addition, when the surface roughness of the obtained polished surface was measured by a surface roughness measuring instrument (manufactured by Tokyo Seimitsu Co., Ltd.), an average surface roughness (Ra) of 0.08 μm was obtained.
【0048】(比較例9)酸化マグネシウム層について
研磨を行わなかった以外は実施例23と同様にして酸化
物超電導磁気シールドを得、各特性を測定・評価した。
その結果を表3に示す。なお、酸化マグネシウム層の表
面粗さを表面粗さ形状測定器(東京精密製)にて測定し
たところ、平均表面粗さ(Ra)14.55μmを得
た。(Comparative Example 9) An oxide superconducting magnetic shield was obtained in the same manner as in Example 23 except that the magnesium oxide layer was not polished, and each characteristic was measured and evaluated.
The results are shown in Table 3. The surface roughness of the magnesium oxide layer was measured with a surface roughness profiler (manufactured by Tokyo Seimitsu Co., Ltd.), and an average surface roughness (Ra) of 14.55 μm was obtained.
【0049】(比較例10)銀層について研磨を行わな
かった以外は実施例25と同様にして酸化物超電導磁気
シールドを得、各特性を測定・評価した。その結果を表
3に示す。なお、銀層の表面粗さを表面粗さ形状測定器
(東京精密製)にて測定したところ、平均表面粗さ(R
a)14.03μmを得た。Comparative Example 10 An oxide superconducting magnetic shield was obtained in the same manner as in Example 25 except that the silver layer was not polished, and each characteristic was measured and evaluated. The results are shown in Table 3. In addition, when the surface roughness of the silver layer was measured by a surface roughness measuring instrument (manufactured by Tokyo Seimitsu Co., Ltd.), the average surface roughness (R
a) 14.03 μm was obtained.
【0050】(比較例11)酸化マグネシウム(純度9
9.9%)の焼結体円筒(ID30×OD36×H10
0mm)について研磨を行わなず、銀粉末の添加量を
1.0重量%とした以外は実施例31と同様にして酸化
物超電導磁気検出コイルを得、各特性を測定・評価し
た。その結果を表3に示す。なお、酸化マグネシウム焼
結体円筒の焼成面の表面粗さを表面粗さ形状測定器(東
京精密製)にて測定したところ、平均表面粗さ(Ra)
0.86μmを得た。Comparative Example 11 Magnesium oxide (purity 9
9.9%) sintered cylinder (ID30 x OD36 x H10
(0 mm) was not polished, and an oxide superconducting magnetic detection coil was obtained in the same manner as in Example 31 except that the addition amount of silver powder was 1.0% by weight, and each characteristic was measured and evaluated. The results are shown in Table 3. The surface roughness of the sintered surface of the magnesium oxide sintered body cylinder was measured with a surface roughness measuring instrument (manufactured by Tokyo Seimitsu Co., Ltd.), and the average surface roughness (Ra) was obtained.
0.86 μm was obtained.
【0051】(比較例12)酸化マグネシウム(純度9
9.9%)の焼結体円筒(ID30×OD36×H10
0mm)の外面を2μmダイヤモンド砥粒まで光学研磨
し、銀粉末の添加量を1.0重量%とした以外は実施例
31と同様にして酸化物超電導磁気検出コイルを得、各
特性を測定・評価した。その結果を表3に示す。なお、
得られた研磨面の表面粗さを表面粗さ形状測定器(東京
精密製)にて測定したところ、平均表面粗さ(Ra)
0.08μmを得た。(Comparative Example 12) Magnesium oxide (purity 9
9.9%) sintered cylinder (ID30 x OD36 x H10
(0 mm) outer surface was optically polished to 2 μm diamond abrasive grains, and the oxide superconducting magnetic detection coil was obtained in the same manner as in Example 31 except that the addition amount of silver powder was 1.0 wt%. evaluated. The results are shown in Table 3. In addition,
When the surface roughness of the obtained polished surface was measured by a surface roughness measuring instrument (manufactured by Tokyo Seimitsu Co., Ltd.), the average surface roughness (Ra) was obtained.
0.08 μm was obtained.
【0052】[0052]
【表3】 [Table 3]
【0053】以上の実施例及び比較例の結果、本発明の
範囲内である実施例のものはいずれも良好な特性を示し
たが、比較例の内、基板又は中間層に研磨処理を施さな
かったものは、部分溶融温度での焼成時に液相が流出
し、液相流出部分以外では、膜厚が薄く臨界電流は小さ
いものの、所定の臨界電流密度が得られたが、液相流出
部分に関しては、超電導特性を示さなかった。また、比
較例の内、基板又は中間層を2μmダイヤモンド砥粒ま
で光学研磨したものは、焼成時の液相流出は起こらなか
ったが、液体窒素と室温との冷熱サイクルを実施したと
ころ、2サイクル目に酸化物超電導層が基板又は中間層
から剥離した。As a result of the above examples and comparative examples, all of the examples within the scope of the present invention showed good characteristics, but among the comparative examples, the substrate or the intermediate layer was not subjected to polishing treatment. The liquid phase flowed out during firing at the partial melting temperature, and although the film thickness was thin and the critical current was small except for the liquid phase outflow part, the prescribed critical current density was obtained. Did not show superconducting properties. Further, among the comparative examples, the one in which the substrate or the intermediate layer was optically polished to 2 μm diamond abrasive grains did not cause the outflow of the liquid phase at the time of firing, but when a cooling / heating cycle of liquid nitrogen and room temperature was carried out, two cycles were obtained. The oxide superconducting layer was peeled from the substrate or the intermediate layer in the eye.
【0054】[0054]
【発明の効果】以上説明したように、本発明によれば、
酸化物超電導層の溶融あるいは部分溶融温度での焼成時
の液相流出が防げるので、十分な膜厚の酸化物超電導層
を得ることができるとともに、検出コイル等の作製にあ
っては、その配線幅を制御することが可能となる。ま
た、基板又は中間層の平均表面密度(Ra)が本発明の
範囲内に管理されていれば、酸化物超電導層との密着性
の低下も見られない。As described above, according to the present invention,
Since liquid phase outflow during melting of the oxide superconducting layer or firing at partial melting temperature can be prevented, it is possible to obtain an oxide superconducting layer with a sufficient film thickness, and to prepare a detection coil, etc. It is possible to control the width. Further, if the average surface density (Ra) of the substrate or the intermediate layer is controlled within the range of the present invention, no decrease in adhesion with the oxide superconducting layer is observed.
Claims (11)
導層とからなる酸化物超電導体であって、酸化物超電導
層と接する基板の面粗度が、平均表面粗さ(Ra)0.
1〜0.7μmであることを特徴とする酸化物超電導
体。1. An oxide superconductor comprising a substrate and an oxide superconducting layer formed on the substrate, wherein the substrate in contact with the oxide superconducting layer has an average surface roughness (Ra) of 0. .
An oxide superconductor having a thickness of 1 to 0.7 μm.
1記載の酸化物超電導体。2. The oxide superconductor according to claim 1, wherein the substrate is made of magnesium oxide.
上に中間層を介して形成された酸化物超電導層とからな
る酸化物超電導体であって、酸化物超電導層と接する中
間層の面粗度が、平均表面粗さ(Ra)0.1〜0.7
μmであることを特徴とする酸化物超電導体。3. An oxide superconductor comprising an oxidation resistant metal substrate and an oxide superconducting layer formed on the oxidation resistant metal substrate via an intermediate layer, the intermediate layer being in contact with the oxide superconducting layer. The average surface roughness (Ra) is 0.1 to 0.7.
An oxide superconductor characterized by being μm.
って形成された銀層である請求項3記載の酸化物超電導
体。4. The oxide superconductor according to claim 3, wherein the intermediate layer is a silver layer formed by thermal spraying on an oxidation resistant metal substrate.
って形成された酸化マグネシウム層である請求項3記載
の酸化物超電導体。5. The oxide superconductor according to claim 3, wherein the intermediate layer is a magnesium oxide layer formed by thermal spraying on an oxidation resistant metal substrate.
u系化合物の多層ペロブスカイト構造を有する酸化物で
ある請求項1ないし5のいずれかに記載の酸化物超電導
体。6. The oxide superconducting layer is Bi-Sr-Ca-C.
The oxide superconductor according to any one of claims 1 to 5, which is an oxide of a u-based compound having a multi-layer perovskite structure.
0.5〜10.0重量%含有する請求項1ないし6のい
ずれかに記載の酸化物超電導体。7. The oxide superconductor according to claim 1, wherein the oxide superconducting layer contains 0.5 to 10.0% by weight of silver and / or silver oxide.
0.5〜5.0重量%含有し、膜厚が10〜1000μ
mである請求項1ないし7のいずれかに記載の酸化物超
電導体。8. The oxide superconducting layer contains 0.5 to 5.0% by weight of magnesium oxide and has a film thickness of 10 to 1000 μm.
The oxide superconductor according to any one of claims 1 to 7, wherein m is m.
〜0.7μmである基板上又は中間層上に、加熱により
超電導特性を発現する膜状の成形体を形成し、その後、
該成形体が溶融あるいは部分溶融する温度にて焼成する
ことを特徴とする酸化物超電導体の製造方法。9. The surface roughness has an average surface roughness (Ra) of 0.1.
On the substrate or the intermediate layer having a thickness of ~ 0.7 μm, a film-shaped molded body exhibiting superconducting properties is formed by heating, and thereafter,
A method for producing an oxide superconductor, which comprises firing at a temperature at which the molded body is melted or partially melted.
〜10.0重量%添加されたものである請求項9記載の
酸化物超電導体の製造方法。10. The molded body contains 0.5 parts of silver and / or silver oxide.
The method for producing an oxide superconductor according to claim 9, wherein the oxide superconductor is added in an amount of -10.0% by weight.
5〜10.0重量%添加されたものである請求項9又は
10記載の酸化物超電導体の製造方法。11. A molded body containing magnesium oxide powder of 0.1.
The method for producing an oxide superconductor according to claim 9, wherein the oxide superconductor is added in an amount of 5 to 10.0% by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4267408A JPH06114812A (en) | 1992-10-06 | 1992-10-06 | Oxide superconductor and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4267408A JPH06114812A (en) | 1992-10-06 | 1992-10-06 | Oxide superconductor and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06114812A true JPH06114812A (en) | 1994-04-26 |
Family
ID=17444434
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4267408A Withdrawn JPH06114812A (en) | 1992-10-06 | 1992-10-06 | Oxide superconductor and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06114812A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001110256A (en) * | 1999-10-14 | 2001-04-20 | Toshiba Corp | Superconductive complex and its manufacture |
WO2006008893A1 (en) * | 2004-07-16 | 2006-01-26 | Sumitomo Electric Industries, Ltd. | Thin film material and method for manufacturing the same |
-
1992
- 1992-10-06 JP JP4267408A patent/JPH06114812A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001110256A (en) * | 1999-10-14 | 2001-04-20 | Toshiba Corp | Superconductive complex and its manufacture |
WO2006008893A1 (en) * | 2004-07-16 | 2006-01-26 | Sumitomo Electric Industries, Ltd. | Thin film material and method for manufacturing the same |
JP2006027958A (en) * | 2004-07-16 | 2006-02-02 | Sumitomo Electric Ind Ltd | Thin film material and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2938505B2 (en) | Method for producing a crystallographically oriented surface layer from ceramic high-temperature superconductors | |
CA2277346C (en) | Aluminum nitride sintered body and method of preparing the same | |
EP1088801B1 (en) | Aluminum nitride sintered bodies and semiconductor-producing members including same | |
JPH062615B2 (en) | Magnetic head slider material | |
US4956335A (en) | Conductive articles and processes for their preparation | |
EP0657949B1 (en) | Method of manufacturing a superconducting ceramics elongated body | |
EP0636714A1 (en) | Composite metal oxide material | |
EP0311337B1 (en) | Method of producing a superconductive oxide conductor and a superconductive oxide conductor produced by the method | |
JPH06114812A (en) | Oxide superconductor and manufacture thereof | |
US6103670A (en) | Method of manufacturing oxide superconductor containing Ag and having substantially same crystal orientation | |
JP2642641B2 (en) | Superconductor | |
TWI386383B (en) | Aluminum nitride sintered body | |
PL158306B1 (en) | Method for manufacturing a complex product of an oxygenation reaction | |
US5284825A (en) | Contaminant diffusion barrier for a ceramic oxide superconductor coating on a substrate | |
JP3150718B2 (en) | Superconductor lamination substrate and superconducting laminate using the same | |
JPH03192615A (en) | Oxide superconducting structural body and manufacture thereof | |
JP3228733B2 (en) | Superconducting film formation method | |
JP3965467B2 (en) | Ceramic resistor, method for manufacturing the same, and electrostatic chuck | |
JPH01302752A (en) | integrated circuit package | |
JPH0817127B2 (en) | Oxide superconducting coil | |
JPH0768694A (en) | Superconducting composite and its manufacturing method | |
JPH11240751A (en) | Electrostatic chuck | |
JPH05310421A (en) | Thick-film laminate of oxide superconductor and its production | |
Yin et al. | Fabrication Processes for Functional Ceramics | |
JPH02252616A (en) | Formation of electlic conductive film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000104 |