JPH06108879A - Gas turbine utilizing catalyst combustor - Google Patents

Gas turbine utilizing catalyst combustor

Info

Publication number
JPH06108879A
JPH06108879A JP26184292A JP26184292A JPH06108879A JP H06108879 A JPH06108879 A JP H06108879A JP 26184292 A JP26184292 A JP 26184292A JP 26184292 A JP26184292 A JP 26184292A JP H06108879 A JPH06108879 A JP H06108879A
Authority
JP
Japan
Prior art keywords
catalyst
combustor
gas
gas turbine
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26184292A
Other languages
Japanese (ja)
Inventor
Masahiro Nagae
正浩 長江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP26184292A priority Critical patent/JPH06108879A/en
Publication of JPH06108879A publication Critical patent/JPH06108879A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a gas turbine, for which a catalyst combustor for shortening the time required for warming a catalyst therein, is used. CONSTITUTION:At the time of starting a gas turbine, a circulation shut-off valve RV provided on a circulation channel RP is 'opened', and an exhaust shut-off valve EV provided on an exhaust channel EP is 'closed'. The combustion gas generated in a combustor CC is circulated into the intake port of a compressor CP through the circulation channel, and is fed to the catalyst combustor again in a compressed form, and the catalyst in the catalyst combustor can thus be warmed up promptly.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は触媒燃焼器を使用したガ
スタービンに係わり、特に触媒暖機に要する時間を短縮
するとともに燃費を向上させることのできる触媒燃焼器
を用いたガスタービンに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas turbine using a catalytic combustor, and more particularly to a gas turbine using a catalytic combustor capable of shortening the time required for catalyst warm-up and improving fuel consumption.

【0002】[0002]

【従来の技術】ガスタービンの燃焼器での燃料の燃焼に
よる窒素酸化物の発生を低減するために、火炎燃焼によ
らず触媒反応によって燃料を燃焼させる触媒燃焼器が提
案されている。触媒燃焼を継続するには燃焼器内の触媒
が所定温度以上となることが必要であるので、ガスター
ビン始動時は火炎燃焼を行い触媒を暖機することが一般
的である。
2. Description of the Related Art In order to reduce the generation of nitrogen oxides due to the combustion of fuel in a gas turbine combustor, there has been proposed a catalytic combustor in which fuel is burned by a catalytic reaction instead of flame combustion. Since it is necessary for the catalyst in the combustor to reach a predetermined temperature or higher in order to continue catalytic combustion, it is common to perform flame combustion to warm up the catalyst when the gas turbine is started.

【0003】火炎燃焼では窒素酸化物が発生するため触
媒の暖機を迅速に行うことが必要となるが、触媒の加熱
時間を短縮する方法として排気ガスによって圧縮空気を
暖機する熱交換器を設置することが提案されている(実
開昭61−144370公報参照)。
Since nitrogen oxides are generated in flame combustion, it is necessary to quickly warm up the catalyst. As a method of shortening the heating time of the catalyst, a heat exchanger for warming compressed air with exhaust gas is used. It is proposed to install it (see Japanese Utility Model Laid-Open No. 61-144370).

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記発明
にあっては、ガスタービン始動時には排気ガス流量は小
であるにもかかわらず、コンプレッサは直接大気を吸気
するため燃焼器に供給される空気温度の上昇速度は小で
あり火炎燃焼を行う時間が長くまることを避けることは
できない。
However, in the above-mentioned invention, the compressor directly sucks in the atmosphere even though the flow rate of the exhaust gas is small at the start of the gas turbine, so that the temperature of the air supplied to the combustor is reduced. The ascending speed is small and it is unavoidable that the time for flame burning is prolonged.

【0005】本発明は上記問題点に鑑みなされたもので
あって、燃焼器内の触媒暖機に要する時間を短縮するこ
との可能な触媒燃焼器を使用したガスタービンを提供す
ることを目的とする。
The present invention has been made in view of the above problems, and an object thereof is to provide a gas turbine using a catalytic combustor capable of shortening the time required for warming up the catalyst in the combustor. To do.

【0006】[0006]

【課題を解決するための手段】本発明にかかる燃焼器と
して触媒燃焼器を使用するとともに出力タービンの排気
ガスで圧縮空気を加熱する熱交換器を具備する触媒燃焼
器を用いたガスタービンにあっては、触媒燃焼器内の触
媒が活性温度以下である時に燃焼器後流の流路からコン
プレッサの吸気口に還流させる還流流路を設置すること
を特徴とする。
According to the present invention, there is provided a gas turbine using a catalytic combustor as a combustor and a catalytic combustor having a heat exchanger for heating compressed air with exhaust gas of an output turbine. Another feature is that a recirculation flow passage is provided to recirculate the catalyst in the catalytic combustor from the flow passage downstream of the combustor to the intake port of the compressor when the temperature of the catalyst is below the activation temperature.

【0007】[0007]

【作用】本発明にかかる触媒燃焼器を使用したガスター
ビンにあっては、触媒の温度が所定温度以下である時に
は燃焼器後流の燃焼ガスあるいは排気ガスがコンプレッ
サの吸気口に還流されて圧縮空気の温度上昇速度を加速
し、触媒の暖機を促進する。
In the gas turbine using the catalytic combustor according to the present invention, when the temperature of the catalyst is below a predetermined temperature, the combustion gas or exhaust gas in the downstream of the combustor is recirculated to the intake port of the compressor and compressed. It accelerates the temperature rise rate of air and accelerates the warm-up of the catalyst.

【0008】[0008]

【実施例】図1は触媒燃焼器を使用したガスタービンの
第1の実施例の構成図であって、コンプレッサCPと出
力タービンGTとは軸Sによって直結されている。軸S
はさらにコンプレッサCP側に延長され、例えば自動車
の駆動輪である負荷Lに接続されている。
1 is a block diagram of a first embodiment of a gas turbine using a catalytic combustor, in which a compressor CP and an output turbine GT are directly connected by a shaft S. Axis S
Is further extended to the compressor CP side and is connected to a load L which is, for example, driving wheels of an automobile.

【0009】コンプレッサCPによって圧縮された吸気
は熱交換器HXの吸気側流路を経由して触媒燃焼器CC
に供給される。触媒燃焼器CCでは燃料FFが圧縮空気
と混合して反応燃焼して燃焼ガスとなり出力タービンG
Tで膨張し仕事をした後、窒素酸化物を除去するいわゆ
る号口触媒CT、熱交換器HXの排気ガス流路EPを経
由して大気に排出される。なお排気ガス流路EPには排
気ガスの流れを遮断する排気遮断弁EVが設置されてい
る。
The intake air compressed by the compressor CP passes through the intake side flow path of the heat exchanger HX and the catalytic combustor CC.
Is supplied to. In the catalytic combustor CC, the fuel FF mixes with the compressed air and reacts and burns to form combustion gas. The output turbine G
After expanding and working at T, it is discharged to the atmosphere via the so-called Noguchi catalyst CT for removing nitrogen oxides and the exhaust gas flow path EP of the heat exchanger HX. An exhaust cutoff valve EV that cuts off the flow of the exhaust gas is installed in the exhaust gas passage EP.

【0010】触媒燃焼器CCには、燃料を噴射するため
の燃料噴射弁INJ、始動時に火炎燃焼を行うための点
火プラグPLおよび触媒燃焼をするための触媒CCTが
設置されている。還流流路RPは触媒燃焼器CC後流と
コンプレッサCPの吸入口とを連通するように設けられ
ており、還流流路RPには還流流路の流れを遮断する還
流遮断弁RVが設置されている。
The catalytic combustor CC is provided with a fuel injection valve INJ for injecting fuel, a spark plug PL for performing flame combustion at the time of starting, and a catalyst CCT for performing catalytic combustion. The recirculation flow path RP is provided so as to connect the wake of the catalytic combustor CC and the suction port of the compressor CP, and the recirculation flow path RP is provided with a recirculation cutoff valve RV for cutting off the flow of the recirculation flow path. There is.

【0011】触媒燃焼器CCの下流には例えば熱電対で
ある温度計測手段TCが設置されており、制御部CNT
に入力される。また制御部CNTからは燃料噴射弁IN
J、点火プラグPL、排気遮断弁EVおよび還流遮断弁
RVに対する制御信号が出力される。図1で太線で示さ
れている流路は、ガスタービンの起動時、即ちまだ触媒
CCTが所定温度以下であって火炎燃焼が行われている
時に圧縮空気および燃焼ガスが流れている流路を表して
いる。
Downstream of the catalytic combustor CC, a temperature measuring means TC, which is, for example, a thermocouple, is installed, and a control unit CNT.
Entered in. Further, from the control unit CNT, the fuel injection valve IN
Control signals for J, the spark plug PL, the exhaust cutoff valve EV, and the recirculation cutoff valve RV are output. The flow path indicated by a thick line in FIG. 1 is a flow path in which compressed air and combustion gas are flowing when the gas turbine is started, that is, when the catalyst CCT is still below a predetermined temperature and flame combustion is performed. It represents.

【0012】この状態においては、ガスタービンは例え
ばセルモータである起動装置で駆動され、排気遮断弁E
Vは“閉”、還流遮断弁RVは“開”となっている。従
って燃焼ガスは還流流路RPを通ってコンプレッサの吸
気口に還流され、再度コンプレッサで圧縮されて、燃焼
器に供給されるため触媒CCTを所定の温度以上に暖機
するに要する時間が短縮される。
In this state, the gas turbine is driven by a starter device such as a cell motor, and the exhaust cutoff valve E
V is "closed" and the return valve RV is "open". Therefore, since the combustion gas is recirculated to the intake port of the compressor through the recirculation flow path RP, is compressed again by the compressor, and is supplied to the combustor, the time required to warm up the catalyst CCT to a predetermined temperature or more is shortened. It

【0013】そして温度検出手段TCによって測定され
る燃焼ガスの温度が所定温度以上となったことが検出さ
れると、制御部CNTは燃料噴射弁INJに対して数百
ミリ秒間“閉”指令を出力し火炎燃焼を止める。同時に
制御部CNTは排気遮断弁EVに対して“開”指令、還
流遮断弁RVに対して“閉”指令を出力して、定常運転
状態に移行する。
When it is detected that the temperature of the combustion gas measured by the temperature detecting means TC exceeds a predetermined temperature, the control unit CNT issues a "close" command to the fuel injection valve INJ for several hundreds of milliseconds. Output and stop flame combustion. At the same time, the control unit CNT outputs an “open” command to the exhaust cutoff valve EV and a “closed” command to the recirculation cutoff valve RV, and shifts to a steady operation state.

【0014】図2は第1の実施例の定常運転状態におけ
るガス流れ図であって、太線で示された流路によって燃
料ガスあるいは排気ガスが流れる。第1の実施例におい
ては、燃焼ガスは出力タービンに流入する前に還流され
るため触媒CCTの昇温を迅速に行うことができるもの
の、いわゆる自力運転はできず起動装置により運転を継
続する必要がある。
FIG. 2 is a gas flow chart in the steady operation state of the first embodiment, in which fuel gas or exhaust gas flows through the flow path shown by the thick line. In the first embodiment, since the combustion gas is recirculated before flowing into the output turbine, the temperature of the catalyst CCT can be rapidly raised, but so-called self-driving cannot be performed and the operation needs to be continued by the starter. There is.

【0015】図3は第2の実施例の構成図であって、出
力タービンで仕事をした後の排気ガスを還流することと
したものである。第2の実施例においては、第1の実施
例における還流遮断弁RVと排気遮断弁EVとを1つの
3方弁TVに置き換えることが可能となる。即ち3方弁
TVは出力タービンGTと号口触媒CTとの間の排気流
路に設置され、入口ポートが出力タービンに、第1の出
口ポートが還流流路RPに、第2の出口ポートが排気流
路EPに接続される。
FIG. 3 is a block diagram of the second embodiment, in which exhaust gas after working in the output turbine is recirculated. In the second embodiment, it is possible to replace the recirculation cutoff valve RV and the exhaust cutoff valve EV in the first embodiment with a single three-way valve TV. That is, the three-way valve TV is installed in the exhaust flow passage between the output turbine GT and the gate catalyst CT, the inlet port is the output turbine, the first outlet port is the return passage RP, the second outlet port is It is connected to the exhaust passage EP.

【0016】図3は第2の実施例の起動時のガス流れを
示しており、出力タービンGTで仕事をした排気ガスは
3方弁TVの入口ポートから第1の出口ポートを経て、
還流流路RPを介してコンプレッサの吸気口に還流され
る。図4は第2の実施例の定常運転状態におけるガス流
れ図であって、燃焼器CC出口の燃焼ガス温度が所定温
度以上になった後は3方弁TVを切り換えて、排気ガス
を号口触媒CTを経て放出する。
FIG. 3 shows the gas flow at the time of startup of the second embodiment, in which the exhaust gas working in the output turbine GT passes from the inlet port of the three-way valve TV to the first outlet port,
It is recirculated to the intake port of the compressor via the recirculation flow path RP. FIG. 4 is a gas flow diagram in the steady operation state of the second embodiment, in which after the combustion gas temperature at the combustor CC outlet reaches a predetermined temperature or higher, the three-way valve TV is switched to exhaust gas as a catalyst Release via CT.

【0017】第2の実施例においては、始動装置による
運転は短時間ですむが、コンプレッサCP吸気口に還流
されるガスの温度は低下するため触媒CTの暖機に要す
る時間は長くなる。図5および図6は第2の実施例にお
ける3方弁TVの設置位置の第1および第2の変更例を
示す図であって、図5は号口触媒CT出口に3方弁TV
に設けた場合、図6は熱交換器HX出口に3方弁TVに
設けた場合を示す。
In the second embodiment, the operation by the starter is short, but the temperature of the gas recirculated to the intake of the compressor CP is lowered, so that the time required for warming up the catalyst CT is long. 5 and 6 are views showing first and second modification examples of the installation position of the three-way valve TV in the second embodiment, and FIG. 5 is a three-way valve TV at the outlet of the issue catalyst CT.
6 shows the case where the three-way valve TV is provided at the outlet of the heat exchanger HX.

【0018】図5の第1の変更例においては号口触媒C
Tの暖機も可能となるが、還流されるガスの温度は第2
の実施例よりも低温となるため触媒CCTの暖機に要す
る時間は多少長くなる。図6の第2の変更例においては
号口触媒CTおよび熱交換器HXの暖機が可能となる
が、触媒CCTの暖機に要する時間はより長くなる。
In the first modified example of FIG. 5, the opening catalyst C is used.
It is possible to warm up T, but the temperature of the recirculated gas is the second
Since the temperature is lower than that of the above example, the time required for warming up the catalyst CCT becomes somewhat longer. In the second modified example of FIG. 6, it is possible to warm up the number catalyst CT and the heat exchanger HX, but the time required for warming up the catalyst CCT becomes longer.

【0019】[0019]

【発明の効果】本発明にかかる触媒燃焼器を用いたガス
タービンによれば、ガスタービンの起動時に燃焼器後流
の流路から燃焼ガスあるいは排気ガスがコンプレッサの
吸気口に還流されるため、触媒燃焼器内の触媒の暖機時
間を短縮することが可能となる。
According to the gas turbine using the catalytic combustor according to the present invention, since the combustion gas or the exhaust gas is recirculated to the intake port of the compressor from the passage of the combustor wake at the time of starting the gas turbine, It is possible to shorten the warm-up time of the catalyst in the catalyst combustor.

【0020】さらに熱交換器は高温の圧縮空気によって
暖機され定常運転状態に移行した時に改めて熱交換器を
暖機する必要がなくなるため、燃費を向上することも可
能となる。
Further, the heat exchanger does not need to be warmed up again when it is warmed up by the hot compressed air and enters the steady operation state, so that the fuel consumption can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は第1の実施例の構成図である。FIG. 1 is a configuration diagram of a first embodiment.

【図2】図2は第1の実施例の定常運転状態におけるガ
ス流れ図である。
FIG. 2 is a gas flow chart in a steady operation state of the first embodiment.

【図3】図3は第2の実施例の構成図である。FIG. 3 is a configuration diagram of a second embodiment.

【図4】図4は第2の実施例の定常運転状態におけるガ
ス流れ図である。
FIG. 4 is a gas flow chart in a steady operation state of the second embodiment.

【図5】図5は第2の実施例の第1の変更例の構成図で
ある。
FIG. 5 is a configuration diagram of a first modification of the second embodiment.

【図6】図6は第2の実施例の第2の変更例の構成図で
ある。
FIG. 6 is a configuration diagram of a second modification of the second embodiment.

【符号の説明】[Explanation of symbols]

CP…コンプレッサ GT…出力タービン CC…燃焼器 HX…熱交換器 L…負荷 S…軸 CT…号口触媒 RV…還流遮断弁 RP…還流流路 EV…排気遮断弁 EP…排気流路 CNT…制御部 CP ... Compressor GT ... Output turbine CC ... Combustor HX ... Heat exchanger L ... Load S ... Shaft CT ... Nozzle catalyst RV ... Reflux shutoff valve RP ... Reflux passage EV ... Exhaust shutoff valve EP ... Exhaust passage CNT ... Control Department

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 燃焼器として触媒燃焼器を使用するとと
もに、出力タービンの排気ガスで圧縮空気を加熱する熱
交換器を具備する触媒燃焼器を用いたガスタービンにお
いて、 前記触媒燃焼器内の触媒が活性温度以下である時に、燃
焼器後流の流路からコンプレッサの吸気口に還流させる
還流流路を設置することを特徴とする触媒燃焼器を用い
たガスタービン。
1. A gas turbine using a catalytic combustor as a combustor, the catalytic combustor having a heat exchanger for heating compressed air with exhaust gas of an output turbine, comprising: A gas turbine using a catalytic combustor, characterized in that a recirculation flow path is installed to recirculate the gas from the flow path downstream of the combustor to the intake port of the compressor when the temperature is below the activation temperature.
JP26184292A 1992-09-30 1992-09-30 Gas turbine utilizing catalyst combustor Pending JPH06108879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26184292A JPH06108879A (en) 1992-09-30 1992-09-30 Gas turbine utilizing catalyst combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26184292A JPH06108879A (en) 1992-09-30 1992-09-30 Gas turbine utilizing catalyst combustor

Publications (1)

Publication Number Publication Date
JPH06108879A true JPH06108879A (en) 1994-04-19

Family

ID=17367509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26184292A Pending JPH06108879A (en) 1992-09-30 1992-09-30 Gas turbine utilizing catalyst combustor

Country Status (1)

Country Link
JP (1) JPH06108879A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000068616A1 (en) * 1999-05-05 2000-11-16 Solo Energy Corporation Catalytic converter arrangement
US6960840B2 (en) * 1998-04-02 2005-11-01 Capstone Turbine Corporation Integrated turbine power generation system with catalytic reactor
US7007487B2 (en) 2003-07-31 2006-03-07 Mes International, Inc. Recuperated gas turbine engine system and method employing catalytic combustion
JP2009276053A (en) * 2008-05-15 2009-11-26 General Electric Co <Ge> Dry type three-way catalytic reduction method for gas turbine nox
GB2507147A (en) * 2013-07-23 2014-04-23 Samad Power Ltd A gas turbine heat and electricity generating apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6960840B2 (en) * 1998-04-02 2005-11-01 Capstone Turbine Corporation Integrated turbine power generation system with catalytic reactor
WO2000068616A1 (en) * 1999-05-05 2000-11-16 Solo Energy Corporation Catalytic converter arrangement
US6205768B1 (en) * 1999-05-05 2001-03-27 Solo Energy Corporation Catalytic arrangement for gas turbine combustor
US7007487B2 (en) 2003-07-31 2006-03-07 Mes International, Inc. Recuperated gas turbine engine system and method employing catalytic combustion
JP2007500815A (en) * 2003-07-31 2007-01-18 メス インターナショナル,インコーポレイテッド Recovered heat exchange gas turbine engine system and method employing catalytic combustion
JP2009276053A (en) * 2008-05-15 2009-11-26 General Electric Co <Ge> Dry type three-way catalytic reduction method for gas turbine nox
US8991149B2 (en) 2008-05-15 2015-03-31 General Electric Company Dry 3-way catalytic reduction of gas turbine NOX
GB2507147A (en) * 2013-07-23 2014-04-23 Samad Power Ltd A gas turbine heat and electricity generating apparatus
GB2507147B (en) * 2013-07-23 2014-09-17 Samad Power Ltd Apparatus for generating heat and electricity

Similar Documents

Publication Publication Date Title
JP2991187B2 (en) Internal combustion engine having a combustion heater
CA2262128A1 (en) Internal combustion engine having combustion heater
US20120042632A1 (en) Method and apparatus for processing exhaust gas in internal combustion engine
US6260545B1 (en) Internal combustion engine having combustion heater
US20070163246A1 (en) Method and arrangement for cooling an exhaust system
US6497224B2 (en) Internal combustion engine with combustion heater
JPH06108879A (en) Gas turbine utilizing catalyst combustor
KR101756022B1 (en) Apparatus and method for regenerating diesel particular matter filter
US20060196166A1 (en) Warm-up method and warm-up system for internal combustion engine
US20120301365A1 (en) Exhaust purification device for internal combustion engine
JP2005351245A (en) Device for adding reducing agent
JP2903861B2 (en) Gas turbine exhaust gas purification equipment
JP3494016B2 (en) Internal combustion engine having a combustion heater
JPH07190373A (en) Catalytic combustor starting method for gas-turbine engine
JP3358557B2 (en) Vehicle heating system
JP3539262B2 (en) Internal combustion engine having a combustion heater
JP3906581B2 (en) Vehicle heating system
JPH0724610Y2 (en) Diesel engine for vehicles with air supply preheater
JP2005330864A (en) Control method for internal combustion engine
JP2995201B2 (en) Secondary air supply for engine exhaust
JPH0729529B2 (en) Vehicle heating system
JP2995202B2 (en) Secondary air supply for engine exhaust
JPH04111540U (en) Exhaust gas purification device
JP3906582B2 (en) Vehicle heating system
CN116096986A (en) Internal combustion engine for a motor vehicle and motor vehicle