JPH06102006A - Fabrication of probe for scanning probe microscope - Google Patents

Fabrication of probe for scanning probe microscope

Info

Publication number
JPH06102006A
JPH06102006A JP4249135A JP24913592A JPH06102006A JP H06102006 A JPH06102006 A JP H06102006A JP 4249135 A JP4249135 A JP 4249135A JP 24913592 A JP24913592 A JP 24913592A JP H06102006 A JPH06102006 A JP H06102006A
Authority
JP
Japan
Prior art keywords
probe
silicon oxide
film
silicon
microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4249135A
Other languages
Japanese (ja)
Inventor
Yoshihiko Suzuki
美彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP4249135A priority Critical patent/JPH06102006A/en
Publication of JPH06102006A publication Critical patent/JPH06102006A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance resolution of scanning probe microscope. CONSTITUTION:Silicon oxide 13 is deposited on a silicon substrate 11 and then a groove is made through etching. The groove part is oxidized to produce silicon oxide 12 and a film A14 is formed on the entire surface and subsequently patterned into lever shape. A supporting base 15 is then bonded through the film A14 to the silicon substrate 11 from which the silicon oxide 12 is removed through etching thus fabricating a probe for scanning probe microscope.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、走査型プローブ顕微鏡
(SPM:Scanning Probe Microscopy )に用いるプロ
ーブに関し、特に原子間力顕微鏡または走査型摩擦力顕
微鏡に好適なプローブの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a probe used in a scanning probe microscope (SPM), and more particularly to a method of manufacturing a probe suitable for an atomic force microscope or a scanning friction force microscope.

【0002】[0002]

【従来技術】従来の原子間力顕微鏡用プローブの製造方
法を図2を用いて説明する。シリコン基板(21)の一方の
面に窒化珪素の保護膜(23)を形成する。この保護膜(23)
は、トレンチ(溝)を形成するときのマスクとなる。保
護膜(23)形成後、リソグラフィ法により、該保護膜(23)
の一部を除去し、シリコンを露出した後、KOH 水溶液で
代表されるエッチング液中に基板(21)を浸積し、エッチ
ング速度の結晶面方位依存性を利用し、四角錐状の凹部
すなわちトレンチ(溝)を形成する。
2. Description of the Related Art A conventional method for manufacturing a probe for an atomic force microscope will be described with reference to FIG. A silicon nitride protective film (23) is formed on one surface of the silicon substrate (21). This protective film (23)
Serves as a mask when forming a trench. After forming the protective film (23), the protective film (23) is formed by a lithographic method.
After removing a part of the silicon and exposing the silicon, the substrate (21) is immersed in an etching solution typified by an aqueous KOH solution, and utilizing the crystal plane orientation dependence of the etching rate, Form a trench.

【0003】この後、トレンチ部の内壁を覆うように酸
化珪素膜(22)を気相成長法等により形成する(図2 2
a)。トレンチが形成された側の基板(21)表面に窒化珪
素膜(24)を形成する(図2 2b)。窒化珪素膜(24)に支
持台(25)を接合する(図2 2c)。最後にシリコン基板
(21)と酸化珪素(22)をエッチング除去して針状チップ(2
6)に連続した可撓体を有する走査型プローブ顕微鏡用の
プローブ(図2 2d)を形成していた。
After that, a silicon oxide film (22) is formed by a vapor phase growth method or the like so as to cover the inner wall of the trench portion (FIG. 22).
a). A silicon nitride film (24) is formed on the surface of the substrate (21) where the trench is formed (FIG. 22b). The support base (25) is bonded to the silicon nitride film (24) (FIG. 22c). Finally the silicon substrate
(21) and silicon oxide (22) are removed by etching to remove the needle tip (2
A probe for a scanning probe microscope (Fig. 22d) having a continuous flexible body was formed in 6).

【0004】[0004]

【発明が解決しようとする課題】従来の方法で形成され
るプローブは、針状チップを形成するためのパターンの
外接円半径の約1.4倍の高さの針状チップしか製造す
ることができなかった。このような従来の針状チップを
原子間力顕微鏡に用いた場合、試料表面の凹凸の差の大
きな試料を正確に測定することができず、試料の細部の
観察が困難であるという問題点があった。更に、走査型
摩擦力顕微鏡に用いた場合、摩擦力に対して感度が低下
し、正確な試料表面の観察ができないという致命的な問
題点があった。
The probe formed by the conventional method can manufacture only a needle-shaped tip having a height of about 1.4 times the radius of the circumscribed circle of the pattern for forming the needle-shaped tip. could not. When such a conventional needle-shaped tip is used in an atomic force microscope, it is not possible to accurately measure a sample with a large difference in the unevenness of the sample surface, and it is difficult to observe the details of the sample. there were. Further, when used in a scanning frictional force microscope, there is a fatal problem that the sensitivity to the frictional force is lowered and the sample surface cannot be accurately observed.

【0005】そこで本発明の目的は、種々の試料表面の
凹凸の大きさの差、形状等を有する試料に対応可能な走
査型プローブ顕微鏡用のプローブが製造できる製造方法
を提供することにある。
Therefore, an object of the present invention is to provide a manufacturing method capable of manufacturing a probe for a scanning probe microscope, which can cope with samples having various sizes and shapes of irregularities on the surface of the sample.

【0006】[0006]

【問題点を解決するための手段】本発明者は、原子間力
顕微鏡に従来のプローブを用いて種々の試料表面の凹凸
の大きさの差、形状等を有する試料を観察したが、その
結果、試料表面の凸部の観察は正確に行えるが凹部の細
部の解像度が悪く観察がし難いということが分かった。
また、従来のプローブを走査型摩擦力顕微鏡に用いて観
察すると、試料表面の面内の摩擦係数の大きさの差が小
さい試料についての観察が困難で摩擦力に対する感度が
小さいことが分かった。
The present inventor observed samples having various differences in size and shape of irregularities on the surface of a sample using a conventional probe for an atomic force microscope. It was found that the projections on the sample surface can be accurately observed, but the resolution of the details of the recesses is poor and it is difficult to observe.
Further, when the conventional probe was used for the scanning friction microscope, it was found that the sample having a small difference in the in-plane friction coefficient of the sample surface was difficult to observe and the sensitivity to the friction force was small.

【0007】本発明者は鋭意研究の結果、凹部の細部の
解像度が悪く観察がし難い理由は、プローブ先端が凹部
の底に近接することができないため正確な観察ができな
いことを確認した。更に、試料表面の面内の摩擦係数の
大きさの差が小さい試料についての観察が困難である理
由は、従来のプローブでは試料表面とプローブ先端の摩
擦によるレバーの捻じれ量が小さいために摩擦力に対す
る感度が小さいことを突き止めた。
As a result of diligent research, the present inventor has confirmed that the reason for the poor resolution of the details of the recess and the difficulty of observation is that the probe tip cannot approach the bottom of the recess for accurate observation. Furthermore, the reason why it is difficult to observe a sample with a small difference in the in-plane coefficient of friction between the sample surface and the conventional probe is because the amount of torsion of the lever due to the friction between the sample surface and the probe tip is small. They found that they were less sensitive to force.

【0008】これらの問題点を解決するために本発明者
は、従来の針状チップ(針状チップを形成するためのパ
ターンの外接円半径の約1.4倍の高さ)よりも大きな
長さの針状チップを有するプローブを用いれば、上記問
題点が解決できることを見い出した。そこで本発明は、
「第1工程:シリコン基板上に酸化珪素膜からなるマス
クを形成する工程; 第2工程:エッチング法により溝を形成する工程; 第3工程:前記溝の表面を酸化することにより、酸化珪
素膜を形成する工程; 第4工程:皮膜Aを全面に形成し、次いでこれをレバー
形状にパターニングする工程; 第5工程:前記皮膜Aを介して支持台を前記シリコン基
板と接合する工程; 第6工程:前記シリコン基板並びに前記マスク及び前記
酸化珪素膜をエッチングにより除去する工程; からなる走査型プローブ顕微鏡用のプローブの製造方法
(請求項1)」を提供する。
In order to solve these problems, the inventor of the present invention has made the length larger than that of the conventional needle-like tip (height about 1.4 times the radius of the circumscribed circle of the pattern for forming the needle-like tip). It has been found that the above problems can be solved by using a probe having a needle-shaped tip. Therefore, the present invention is
"First step: forming a mask of a silicon oxide film on a silicon substrate; second step: forming a groove by an etching method; third step: oxidizing the surface of the groove to form a silicon oxide film A step of forming a film A on the entire surface, and then patterning this into a lever shape; a fifth step: a step of joining a support to the silicon substrate through the film A; Step: removing the silicon substrate, the mask, and the silicon oxide film by etching; and a method for manufacturing a probe for a scanning probe microscope (claim 1) ".

【0009】[0009]

【作用】以下、本発明の作用について説明する。シリコ
ン基板上(11)に針状チップを形成するためのマスク材料
となる酸化珪素膜を形成し、該酸化珪素膜をエッチング
により一部除去することでトレンチを形成する。トレン
チの内部を酸化することによりトレンチの内壁に酸化珪
素膜を形成する。この表面に針上チップ(16)となる皮膜
A(14)を形成し、これを残すように酸化珪素(12)、(13)
を除去する。これで針状チップが製造できる。
The function of the present invention will be described below. A silicon oxide film serving as a mask material for forming a needle-shaped chip is formed on a silicon substrate (11), and the silicon oxide film is partially removed by etching to form a trench. By oxidizing the inside of the trench, a silicon oxide film is formed on the inner wall of the trench. A film A (14) that will become the needle tip (16) is formed on this surface, and silicon oxide (12), (13) is formed so as to leave it.
To remove. With this, a needle-shaped tip can be manufactured.

【0010】従来、基板上に形成するマスク材料は、窒
化珪素を用いていたが、本願発明では、酸化珪素を用い
ている。そのため、針状チップ形成のためのエッチング
時において、従来は窒化珪素からなる基板上のマスクは
残存していた。しかし、本願発明ではマスクは酸化珪素
で形成されているため、シリコン基板と共にエッチング
で除去される。そのため除去されるマスクの膜厚分だけ
チップが長くなる。さらに、酸化珪素からなるマスクの
膜厚を可能な限り厚くすることにより、さらに長いチッ
プを形成することができる。
Conventionally, silicon nitride was used as the mask material formed on the substrate, but in the present invention, silicon oxide is used. Therefore, the mask on the substrate made of silicon nitride has heretofore remained during etching for forming the needle-shaped chip. However, in the present invention, since the mask is made of silicon oxide, it is removed by etching together with the silicon substrate. Therefore, the chip becomes longer by the film thickness of the removed mask. Further, by making the mask made of silicon oxide as thick as possible, a longer chip can be formed.

【0011】このような本願発明の作用により、針状チ
ップの付け根の太さに対するチップの高さの比(以下ア
スペクト比)が大きい、つまりチップの長さが長い針状
チップが製造できる。
By the operation of the present invention as described above, it is possible to manufacture a needle-shaped tip having a large ratio of the height of the tip to the thickness of the root of the needle-shaped tip (aspect ratio), that is, a long tip.

【0012】[0012]

【実施例1】以下、本願発明の一実施例について、図1
を用いて具体的に説明する。基板材料として、厚さ400
μm、100面方位のシリコン単結晶基板(11)を用い、
熱分解法により基板(11)表面全面に厚さ5μmの酸化
珪素膜(13)を形成する。次に、リソグラフィ法を用いて
酸化珪素膜(13)の一部(4μm角)を除去する。その
後、一部除去した部分から露出しているシリコン基板(1
1)をKOH水溶液により異方性エッチングを行い、ピラ
ミッド状の深さ約2.8 μmの凹部であるトレンチを形成
する。このトレンチはシリコン単結晶の結晶配列により
その形状が決まり、100面方位の基板を用いた場合、
トレンチの形状は四角錐となる。
[Embodiment 1] An embodiment of the present invention will be described below with reference to FIG.
Will be specifically described. As substrate material, thickness 400
Using a silicon single crystal substrate (11) with 100 μm orientation in μm,
A 5 μm thick silicon oxide film (13) is formed on the entire surface of the substrate (11) by a thermal decomposition method. Next, a part (4 μm square) of the silicon oxide film (13) is removed by using a lithography method. After that, the silicon substrate (1
1) is anisotropically etched with a KOH aqueous solution to form a pyramid-shaped trench having a depth of about 2.8 μm. The shape of this trench is determined by the crystal arrangement of the silicon single crystal, and when a substrate with 100 plane orientation is used,
The shape of the trench is a pyramid.

【0013】このトレンチの内壁に熱酸化法により酸化
珪素膜(12)を形成する(図1、1a)。この酸化珪素(1
2)は、図1に示すような形状に形成されることから、こ
の形状を利用して、先鋭化したトレンチを製造すること
ができる。その後、気相成長法を用いて皮膜(14)(例え
ば、窒化珪素)を全面に形成し、リソグラフィ法により
レバー形状のパターニングを施した(図1、1b)。
A silicon oxide film (12) is formed on the inner wall of the trench by the thermal oxidation method (FIGS. 1 and 1a). This silicon oxide (1
Since 2) is formed in a shape as shown in FIG. 1, a sharpened trench can be manufactured by utilizing this shape. After that, a film (14) (for example, silicon nitride) was formed on the entire surface by vapor phase epitaxy, and lever-shaped patterning was performed by lithography (FIGS. 1 and 1b).

【0014】この試料の上面に支持台(例えば、ガラ
ス)(15)を陽極接合法により接合する(図1、1c)。
最後に不要なシリコン部(11)、酸化珪素膜(12)及び(13)
を湿式エッチング法により除去し、針状チップを具備し
た走査型プローブ顕微鏡用のプローブを製造した(図
1、1d)。このようにして得た走査型プローブ顕微鏡
用のプローブは、従来法で作製したプローブが2.8 μm
の高さを有しているのに対して、7.8 μmの高さを有
し、アスペクト比を大幅に大きくすること事が確認され
た。
A support (eg glass) (15) is bonded to the upper surface of this sample by the anodic bonding method (FIGS. 1 and 1c).
Finally, unnecessary silicon part (11), silicon oxide films (12) and (13)
Was removed by a wet etching method to manufacture a probe for a scanning probe microscope equipped with a needle-shaped tip (FIGS. 1 and 1d). As for the probe for the scanning probe microscope obtained in this way, the probe produced by the conventional method is 2.8 μm.
It has been confirmed that it has a height of 7.8 μm, and the aspect ratio is greatly increased.

【0015】[0015]

【実施例2】本発明の別の実施例について具体的に述べ
る。基板材料として厚さ380 μm、100面方位のシリ
コン単結晶基板を用い、スパッタリング法によりはじめ
に厚さ約6μmの酸化珪素膜を全面に形成した、その
後、リソグラフィ法を用い部分的に5μm角に酸化膜を
除去し、テトラメチルアンモニウムハイドロオキサイド
水溶液によりシリコンを異方性エッチングしピラミッド
状のトレンチを形成し、内壁形状を先鋭化するため該ト
レンチ部に熱酸化法により酸化珪素膜を形成した。その
後、この試料に気相成長法により窒化珪素膜を全面に形
成し、リソグラフィ法によりレバー形状のパターニング
を施した。この試料の上面に支持台(例えば、ガラス)
を陽極接合法により接合し、最後に不要なシリコン部、
酸化珪素膜を湿式エッチング法により除去し、針状チッ
プを具備した走査型プローブ顕微鏡用のプローブを作製
した。
Second Embodiment Another embodiment of the present invention will be specifically described. A silicon single crystal substrate having a thickness of 380 μm and a 100-plane orientation is used as a substrate material, and a silicon oxide film having a thickness of about 6 μm is first formed on the entire surface by a sputtering method, and then a 5 μm square is partially oxidized by a lithography method. The film was removed, and silicon was anisotropically etched with a tetramethylammonium hydroxide aqueous solution to form a pyramid-shaped trench, and a silicon oxide film was formed in the trench by a thermal oxidation method in order to sharpen the inner wall shape. After that, a silicon nitride film was formed on the entire surface of this sample by a vapor phase growth method, and a lever-shaped patterning was performed by a lithography method. Support (eg glass) on top of this sample
By the anodic bonding method, and finally the unnecessary silicon part,
The silicon oxide film was removed by a wet etching method to prepare a probe for a scanning probe microscope equipped with a needle tip.

【0016】このようにして得た走査型プローブ顕微鏡
用のプローブは、従来法で作製したプローブが3.5 μm
の高さを有しているのに対して、8.5 μmの高さを有
し、アスペクト比を大幅に大きくする事が確認された。
As for the probe for the scanning probe microscope thus obtained, the probe prepared by the conventional method is 3.5 μm.
It has been confirmed that it has a height of 8.5 μm, whereas it has a large aspect ratio.

【0017】[0017]

【発明の効果】以上のように本発明では、従来の針状チ
ップよりもアスペクト比が大きいチップを製造すること
ができる。よって、このチップを有するプローブを具え
た原子間力顕微鏡、走査型摩擦力顕微鏡等の走査型プロ
ーブ顕微鏡を用いれば、試料表面の凹凸の差の大きな試
料又は表面の凹部と凹部(又は凸部と凸部)の間隔が小
さい試料等多種多様の表面形状を有する試料や試料表面
内の摩擦係数の大きさの差の小さな試料の観察が可能で
ある。
As described above, according to the present invention, a chip having an aspect ratio larger than that of a conventional needle-shaped chip can be manufactured. Therefore, if an atomic force microscope equipped with a probe having this tip, a scanning probe microscope such as a scanning friction force microscope is used, a sample with a large difference in the unevenness of the sample surface or a concave portion and a concave portion of the surface (or a convex portion and It is possible to observe a sample having a wide variety of surface shapes such as a sample having a small interval between convex portions) or a sample having a small difference in the coefficient of friction on the sample surface.

【図面の簡単な説明】[Brief description of drawings]

【図1】は、本発明の一実施例のプローブの製造方法を
示す概念図である。
FIG. 1 is a conceptual diagram showing a method for manufacturing a probe according to an embodiment of the present invention.

【図2】は、従来のプローブの製造方法を示す概念図で
ある。
FIG. 2 is a conceptual diagram showing a conventional method for manufacturing a probe.

【符合の説明】[Explanation of sign]

11、21・・・・・・シリコン基板 12、13、22・・・酸化珪素膜 14・・・・・・・・・皮膜A 23、24・・・・・・窒化珪素膜 15、25・・・・・・支持台 16、26・・・・・・針状チップ Silicon substrate 12, 13, 22 ... Silicon oxide film 14 ..., Film A 23, 24 ... Silicon nitride film 15, 25. ... Supporting stand 16, 26 .... Needle-like tip

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】第1工程:シリコン基板上に酸化珪素膜か
らなるマスクを形成する工程; 第2工程:エッチング法により溝を形成する工程; 第3工程:前記溝の表面を酸化することにより、酸化珪
素膜を形成する工程; 第4工程:皮膜Aを全面に形成し、次いでこれをレバー
形状にパターニングする 工程; 第5工程:前記皮膜Aを介して支持台を前記シリコン基
板と接合する工程; 第6工程:前記シリコン基板並びに前記マスク及び前記
酸化珪素膜にエッチングにより除去する工程; からなる走査型プローブ顕微鏡用のプローブの製造方
法。
1. A first step: a step of forming a mask made of a silicon oxide film on a silicon substrate; a second step: a step of forming a groove by an etching method; a third step: by oxidizing a surface of the groove. A step of forming a silicon oxide film; a fourth step: forming a film A on the entire surface and then patterning the film into a lever shape; a fifth step: joining a supporting base to the silicon substrate through the film A A step; a sixth step: a step of removing the silicon substrate, the mask, and the silicon oxide film by etching; and a method for manufacturing a probe for a scanning probe microscope.
JP4249135A 1992-09-18 1992-09-18 Fabrication of probe for scanning probe microscope Pending JPH06102006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4249135A JPH06102006A (en) 1992-09-18 1992-09-18 Fabrication of probe for scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4249135A JPH06102006A (en) 1992-09-18 1992-09-18 Fabrication of probe for scanning probe microscope

Publications (1)

Publication Number Publication Date
JPH06102006A true JPH06102006A (en) 1994-04-12

Family

ID=17188452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4249135A Pending JPH06102006A (en) 1992-09-18 1992-09-18 Fabrication of probe for scanning probe microscope

Country Status (1)

Country Link
JP (1) JPH06102006A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100733815B1 (en) * 2006-07-25 2007-07-02 주식회사 유니테스트 Method for manufacturing probe structure
US7528618B2 (en) * 2006-05-02 2009-05-05 Formfactor, Inc. Extended probe tips

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7528618B2 (en) * 2006-05-02 2009-05-05 Formfactor, Inc. Extended probe tips
KR100733815B1 (en) * 2006-07-25 2007-07-02 주식회사 유니테스트 Method for manufacturing probe structure

Similar Documents

Publication Publication Date Title
US6066265A (en) Micromachined silicon probe for scanning probe microscopy
JP2624873B2 (en) Atomic force microscope probe and method of manufacturing the same
JP2962775B2 (en) Cantilever needle having integral conical tip and method of manufacturing the same
JPH0762258B2 (en) Manufacturing method of micromechanical sensor for AFM / STM profilometry
JPH04231811A (en) Cantilever for scanning type probe microscope and manufacture thereof
US20050250276A1 (en) Superlattice nanopatterning of wires and complex patterns
JPH0748349B2 (en) Precision mechanical sensor for AFM / STM / MFM profile measurement and manufacturing method thereof
JPH0762259B2 (en) Method of manufacturing thin film sensor
US20120060244A1 (en) Scanning probe having integrated silicon tip with cantilever
US6291140B1 (en) Low-cost photoplastic cantilever
JP3813591B2 (en) SPM sensor and manufacturing method thereof
JPH01262403A (en) Probe and its manufacture
JPH08262040A (en) Afm cantilever
JPH06102006A (en) Fabrication of probe for scanning probe microscope
US7119332B2 (en) Method of fabricating probe for scanning probe microscope
JPH05299015A (en) Manufacture of cantilever for scanning type probe microscope
JPH09105755A (en) Afm cantilever and its manufacture
JP3079320B2 (en) Method of manufacturing cantilever for atomic force microscope
JP3805418B2 (en) AFM cantilever
JPH06307852A (en) Integrated afm sensor and its manufacture
JPH10300762A (en) Manufacturing method of cantilever
JPH04148546A (en) Beam dimension measurement element and its manufacture
JPH1123590A (en) Cantilever and manufacture thereof
JPH06102007A (en) Probe having needle chip and fabrication thereof
JPH09304410A (en) Afm cantilever