JPH0587753A - Thermal analyzer - Google Patents

Thermal analyzer

Info

Publication number
JPH0587753A
JPH0587753A JP25099091A JP25099091A JPH0587753A JP H0587753 A JPH0587753 A JP H0587753A JP 25099091 A JP25099091 A JP 25099091A JP 25099091 A JP25099091 A JP 25099091A JP H0587753 A JPH0587753 A JP H0587753A
Authority
JP
Japan
Prior art keywords
sample
cooling
cooling medium
sample holder
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25099091A
Other languages
Japanese (ja)
Other versions
JP2586733B2 (en
Inventor
Koji Nishino
孝二 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP3250990A priority Critical patent/JP2586733B2/en
Publication of JPH0587753A publication Critical patent/JPH0587753A/en
Application granted granted Critical
Publication of JP2586733B2 publication Critical patent/JP2586733B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To enable a thermal analyzer to perform thermal analysis as it is after a quenching process, such as uncrystallization, etc. CONSTITUTION:A coolant passage 31 for directly sprinkling a liquid or gaseous coolant 33 upon a sample holder 34 or a sample 35 put in the holder 11 is formed through a sampling heater/cooler 30 covering the periphery of the sample holder 34. Therefore, the cooling condition of the sample 35 can be fixed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱を利用した材料分析
装置である示差熱分析装置や示差走査熱量測定装置等の
熱分析装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal analyzer such as a differential thermal analyzer or a differential scanning calorimeter which is a material analyzer utilizing heat.

【0002】[0002]

【従来の技術】示差熱分析(Differential Thermal Ana
lysis=DTA)装置は、試料と基準物質の温度を一定
の速度で変化させながら、両者の温度差ΔTを温度Tの
関数として測定することにより、試料の熱的特性を調査
する装置である。また、示差走査熱量測定(Differenti
al Scanning Calorimetry=DSC)装置は、試料と基
準物質の温度を一定の速度で変化させながら、両者に対
するエネルギ入力の差ΔQを温度Tの関数として測定す
る装置である。
2. Description of the Related Art Differential Thermal Analysis
The lysis = DTA) device is a device for investigating the thermal characteristics of the sample by measuring the temperature difference ΔT between the sample and the reference substance as a function of the temperature T while changing the temperature of the sample and the reference substance at a constant rate. In addition, differential scanning calorimetry (Differenti
al Scanning Calorimetry = DSC) is a device that measures the difference ΔQ in energy input to the sample and the reference substance as a function of the temperature T while changing the temperature of the sample and the reference substance at a constant speed.

【0003】示差走査熱量測定装置の概要を図3により
説明する。銀等の良熱伝導体による試料ホルダ34の内
部の空洞に、熱通路として作用する薄板50が掛け渡さ
れ、その上にアルミニウム等の容器に収納された試料3
5及び基準物質36が置かれる。試料35の下と基準物
質36の下の薄板50にはそれぞれクロメル(C)−ア
ルメル(A)等の熱電対51、52が取り付けられる。
薄板50を適当な金属(図3の例ではコンスタンタンC
t)で作製しておけば、試料35と基準物質36との間
の温度差ΔTは、両熱電対51、52の同一金属線(図
2の例ではC)の間の電位差を測定することにより検出
することができる。試料35の温度Tはもちろん熱電対
51により検出される。
An outline of the differential scanning calorimeter will be described with reference to FIG. A thin plate 50 acting as a heat passage is laid over a cavity inside a sample holder 34 made of a good heat conductor such as silver, and a sample 3 stored in a container made of aluminum or the like thereon.
5 and reference material 36 are placed. Thermocouples 51 and 52 such as chromel (C) -alumel (A) are attached to the thin plates 50 below the sample 35 and the reference material 36, respectively.
The thin plate 50 is made of a suitable metal (Constantan C in the example of FIG. 3).
If prepared in step t), the temperature difference ΔT between the sample 35 and the reference substance 36 is measured by measuring the potential difference between the same metal wires (C in the example of FIG. 2) of both thermocouples 51 and 52. Can be detected by. The temperature T of the sample 35 is of course detected by the thermocouple 51.

【0004】試料35と基準物質36とを試料ホルダ3
4の中に置き、蓋38をした後、試料ホルダ34全体を
徐々に加熱又は冷却し、その間の試料温度T及び試料と
基準物質との間の温度差ΔTを連続的に測定することに
より、試料内で起こる熱変化をベースラインシフトや吸
熱・発熱ピークにより検出することができる。
A sample holder 3 is provided with a sample 35 and a reference substance 36.
4 and by closing the lid 38, gradually heating or cooling the entire sample holder 34, and continuously measuring the sample temperature T and the temperature difference ΔT between the sample and the reference material during that period, The heat change occurring in the sample can be detected by the baseline shift and the endothermic / exothermic peaks.

【0005】[0005]

【発明が解決しようとする課題】熱分析が行なわれる試
料は無機物、有機物を問わず広い範囲にわたるが、その
分子の集合状態に関する情報が得られる場合がある。例
えば、元来結晶構造を有する金属や高分子樹脂を高温に
加熱した後、非常に高速で冷却すると、結晶化せずに、
液体に類した無秩序(アモルファス)状態のままで固化
(ガラス化)する。通常、同一物質でも結晶状態とアモ
ルファス状態では熱的性質が異なることから、両者の熱
分析データの比較を行なう必要がある。
The samples for which thermal analysis is performed cover a wide range regardless of whether they are inorganic substances or organic substances, but in some cases information about the aggregated state of the molecules can be obtained. For example, if a metal or polymer resin originally having a crystal structure is heated to a high temperature and then cooled at a very high speed, it does not crystallize,
It solidifies (vitrifies) in a disordered (amorphous) state similar to liquid. Normally, even if the same substance is used, the crystalline state and the amorphous state have different thermal properties, so it is necessary to compare the thermal analysis data of both.

【0006】このような場合、従来は、熱分析装置とは
別のところで試料を溶融し、冷却液に浸した金属塊上で
冷却したり、試料を容器ごと冷却液に浸してアモルファ
ス化していた。しかし、このように、試料作製のための
前処理とその後の熱分析とを別個に行なうことは操作上
煩雑であるのみならず、このような方法では再現性のあ
る冷却過程を実現することに困難を伴うことが多い。
In such a case, conventionally, the sample was melted at a place different from the thermal analyzer and cooled on a metal block immersed in the cooling liquid, or the sample together with the container was immersed in the cooling liquid to be made amorphous. .. However, it is not only operationally complicated to separately perform the pretreatment for sample preparation and the subsequent thermal analysis as described above, but such a method can realize a reproducible cooling process. Often difficult.

【0007】本発明はこのような課題を解決するために
成されたものであり、その目的とするところは、アモル
ファス化等の冷却処理を行なった後、そのまま、直ちに
熱分析を行なうことができる熱分析装置を提供すること
にある。
The present invention has been made in order to solve such a problem, and its object is to perform a thermal analysis immediately after performing a cooling treatment such as amorphization. It is to provide a thermal analysis device.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に成された本発明では、試料の周辺を覆う試料加熱・冷
却器を備えた熱分析装置において、試料に液体又は気体
の冷却媒体を掛けるための冷却媒体通路を設けたことを
特徴とする。
According to the present invention, which has been made to solve the above-mentioned problems, in a thermal analysis apparatus equipped with a sample heating / cooling device that covers the periphery of a sample, a liquid or gas cooling medium is provided in the sample. A cooling medium passage for hanging is provided.

【0009】なおここで言う試料加熱・冷却器には、加
熱のみ、或いは、冷却のみを行なうものも含まれる。ま
た、示差走査熱量測定装置のように試料が良熱伝導体製
の試料ホルダによって囲われ、試料ホルダを介して熱を
授受するようなシステムになっている場合には、試料ホ
ルダに液体又は気体の冷却媒体を掛けるようにしてもよ
い。
The sample heating / cooling device referred to here includes a device that performs only heating or only cooling. In the case where the sample is surrounded by a sample holder made of a good thermal conductor such as a differential scanning calorimeter and heat is exchanged through the sample holder, liquid or gas is passed through the sample holder. The cooling medium may be applied.

【0010】[0010]

【作用】試料を容器の中に入れた後、試料加熱・冷却器
によって試料を加熱して、試料を溶融させる。その後、
試料加熱・冷却器による加熱を停止し、直ちに、冷却媒
体通路を通して液体又は気体の冷却媒体を掛ける。この
とき、試料の冷却速度を非常に大きくしたいときは、液
体の冷却媒体を大流量で試料又は試料ホルダに掛ける。
こうして急速冷却による試料の前処理が終了した後、直
ちに試料加熱・冷却器により試料を所定の温度プログラ
ムで加熱し、試料の熱分析を行なう。
After the sample is put in the container, the sample is heated by the sample heating / cooling device to melt the sample. afterwards,
The heating by the sample heating / cooling device is stopped, and the liquid or gas cooling medium is immediately applied through the cooling medium passage. At this time, when it is desired to increase the cooling rate of the sample very much, the liquid cooling medium is applied to the sample or the sample holder at a large flow rate.
Immediately after the pretreatment of the sample by rapid cooling is completed, the sample is heated by the sample heating / cooling device according to a predetermined temperature program, and the sample is subjected to thermal analysis.

【0011】[0011]

【実施例】本発明の一実施例として、示差走査熱量測定
装置を図1により説明する。本実施例では試料を冷却す
るための装置は、断熱材製のカバー30と、その断熱カ
バー30に取り付けられた上部パイプ31及び下部パイ
プ32により構成される。なお、カバー30には、内部
に真空空間を形成した鏡面処理二重ガラス容器又は金属
二重壁容器(いわゆる魔法瓶形式の断熱容器)を使用し
てもよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As an embodiment of the present invention, a differential scanning calorimeter will be described with reference to FIG. In this embodiment, the device for cooling the sample is composed of a cover 30 made of a heat insulating material, and an upper pipe 31 and a lower pipe 32 attached to the heat insulating cover 30. The cover 30 may be a mirror-finished double glass container or a metal double-walled container (so-called thermos type heat insulating container) having a vacuum space formed therein.

【0012】断熱カバー30は示差走査熱量測定装置の
試料ホルダ34を覆うように、試料ホルダ34の下方の
底板35の上に置かれる。これにより、断熱カバー30
の内部は外部から遮断される。上部パイプ31はその断
熱カバー30の上部中央に断熱カバー30を貫通するよ
うに設けられ、下部パイプ32は断熱カバー30の側壁
の下の方で同様に断熱カバー30を貫通するように設け
られている。
The heat insulating cover 30 is placed on the bottom plate 35 below the sample holder 34 so as to cover the sample holder 34 of the differential scanning calorimeter. Thereby, the heat insulating cover 30
The inside of is isolated from the outside. The upper pipe 31 is provided at the center of the upper portion of the heat insulating cover 30 so as to penetrate the heat insulating cover 30, and the lower pipe 32 is provided at the lower side wall of the heat insulating cover 30 so as to also penetrate the heat insulating cover 30. There is.

【0013】試料35と基準物質36はそれぞれアルミ
ニウム等で作製された容器に収納され、共に示差走査熱
量測定装置の試料ホルダ34の内部に置かれる。試料ホ
ルダ34には、断熱カバー30の外部から開閉可能な蓋
38が設けられている。図1の例では、蓋38は紐39
を引くことにより開けられ、紐39を放すことにより自
重で試料ホルダ34の上部を覆う。試料ホルダ34及び
蓋38はいずれも銀等の良熱伝導体により作製される。
本実施例では、試料35(及び基準物質36)の加熱
は、試料ホルダ34の外周に巻かれたヒータ40により
行なわれる。試料ホルダ34と示差走査熱量測定装置の
コントローラ41との間には、熱電対やヒータ40のリ
ード線42等が接続される。
The sample 35 and the reference substance 36 are respectively housed in a container made of aluminum or the like, and both are placed inside the sample holder 34 of the differential scanning calorimeter. The sample holder 34 is provided with a lid 38 that can be opened and closed from the outside of the heat insulating cover 30. In the example of FIG. 1, the lid 38 is a cord 39.
The sample holder 34 is opened by pulling, and the upper part of the sample holder 34 is covered by its own weight by releasing the string 39. Both the sample holder 34 and the lid 38 are made of a good heat conductor such as silver.
In this embodiment, the sample 35 (and the reference material 36) is heated by the heater 40 wound around the outer periphery of the sample holder 34. A thermocouple, a lead wire 42 of the heater 40, and the like are connected between the sample holder 34 and the controller 41 of the differential scanning calorimeter.

【0014】以上のような構成を有する示差走査熱量測
定装置により、例えばある樹脂物質のアモルファス状態
での示差走査熱量分析を行なおうとする場合、まず、樹
脂物質試料を試料ホルダ34の試料容器に入れ、ヒータ
40により融点以上に加熱する。そして、紐39を引い
て蓋38を開け、上部パイプ31から液化した冷却媒体
(例えば、液体窒素)33を試料35に掛ける。通常、
物質をアモルファス化するためには冷却速度を非常に大
きくしなければならないため、上部パイプ31を太くし
て、大量の液化冷却媒体を一挙に試料35に掛けられる
ようにしておくことが望ましい。なお、試料35に掛か
り、気化した冷却媒体33は、下部パイプ32から断熱
カバー30の外部に排出される。
When a differential scanning calorimetric analysis apparatus having the above-mentioned structure is used to perform differential scanning calorimetric analysis in the amorphous state of a resin substance, first, the resin substance sample is placed in the sample container of the sample holder 34. Then, it is heated to a temperature higher than the melting point by the heater 40. Then, the string 39 is pulled to open the lid 38, and the liquefied cooling medium (for example, liquid nitrogen) 33 is hung on the sample 35 from the upper pipe 31. Normal,
Since the cooling rate must be very high in order to make the substance amorphous, it is desirable to make the upper pipe 31 thick so that a large amount of the liquefied cooling medium can be applied to the sample 35 all at once. In addition, the cooling medium 33 that has been vaporized on the sample 35 is discharged from the lower pipe 32 to the outside of the heat insulating cover 30.

【0015】こうして試料35のアモルファス化が終了
した後、直ちに紐39を放して試料ホルダ34に蓋を
し、示差走査熱量測定装置のコントローラ41による制
御を開始する。この示差走査熱量測定において、試料3
5を加熱するときは試料ホルダ34の周囲のヒータ40
を用い、試料35を冷却するときは、下部パイプ32か
ら気化した冷却媒体(窒素ガス等)を導入することによ
り行なう。このとき、試料35を冷却した後の冷却媒体
ガスは上部パイプ31から外部に排出される。
Immediately after the amorphization of the sample 35, the string 39 is released to cover the sample holder 34, and the control by the controller 41 of the differential scanning calorimeter is started. In this differential scanning calorimetry, sample 3
When heating 5, the heater 40 around the sample holder 34
When the sample 35 is cooled by using, the vaporized cooling medium (nitrogen gas or the like) is introduced from the lower pipe 32. At this time, the cooling medium gas after cooling the sample 35 is discharged from the upper pipe 31 to the outside.

【0016】本発明の別の実施例を図2により説明す
る。本実施例も示差走査熱量測定装置についてのもので
あるが、試料の冷却をより効率的に行なうための複雑な
試料冷却装置10を設けている。この試料冷却装置10
は冷却部12と制御部13とで構成されており、冷却部
12を外殻18と内殻19から成る二重構造として、そ
の間に液化冷却媒体21を満たしたものである。以下、
この試料冷却装置10について詳しく述べる。
Another embodiment of the present invention will be described with reference to FIG. Although this embodiment is also related to the differential scanning calorimeter, a complicated sample cooling device 10 is provided to cool the sample more efficiently. This sample cooling device 10
Is composed of a cooling unit 12 and a control unit 13. The cooling unit 12 has a double structure composed of an outer shell 18 and an inner shell 19, and a liquefied cooling medium 21 is filled between them. Less than,
The sample cooling device 10 will be described in detail.

【0017】冷却部12は、底部で開口する外殻18
と、外殻の内側にあり、同様に底部で開口する内殻19
と、底部で両者を連結して内外殻間に閉空間20を形成
するための底板22とから構成される。外殻18及び底
板22には断熱材を使用する。内部に真空空間を形成し
た鏡面処理二重ガラス容器又は金属二重壁容器(いわゆ
る魔法瓶形式の断熱容器)を使用してもよい。内殻19
には特に断熱材を使用する必要はない。むしろ、後述す
るように、場合によっては試料を冷却するために良熱伝
導体を用いることが好ましい。
The cooling unit 12 has an outer shell 18 that opens at the bottom.
And the inner shell 19 that is inside the outer shell and also opens at the bottom
And a bottom plate 22 for connecting the two at the bottom to form a closed space 20 between the inner and outer shells. A heat insulating material is used for the outer shell 18 and the bottom plate 22. A mirror-finished double glass container or a metal double-walled container (so-called thermos type heat insulating container) having a vacuum space formed therein may be used. Inner shell 19
It is not necessary to use a heat insulating material. Rather, as described below, in some cases it is preferable to use a good thermal conductor to cool the sample.

【0018】外殻18の側面上部には、液体窒素等の液
化冷却媒体21を閉空間20内に供給するための供給口
23を設ける。また、閉空間20の内部には、液化冷却
媒体21の通常の液面レベルよりも高い位置に一方の開
口を有し、他方が内殻19の内側(試料側)で開口する
冷却ガス送出管24を設ける。更に、内外殻19、18
及び閉空間20を貫通して、内殻19の内側と外殻18
の上部とを連通する上部管25を設ける。上部管25は
外殻18の外部で、切替バルブ44を介して大気への放
出口43と、後述する冷却媒体タンク14に連通するパ
イプ45とに分岐する。
A supply port 23 for supplying a liquefied cooling medium 21 such as liquid nitrogen into the closed space 20 is provided on the upper side surface of the outer shell 18. Further, inside the closed space 20, a cooling gas delivery pipe having one opening at a position higher than the normal liquid surface level of the liquefied cooling medium 21 and the other opening inside the inner shell 19 (sample side). 24 is provided. Furthermore, the inner and outer shells 19, 18
And the inside of the inner shell 19 and the outer shell 18 through the closed space 20.
An upper pipe 25 is provided which communicates with the upper part of the. The upper pipe 25 is branched outside the outer shell 18 into a discharge port 43 to the atmosphere via a switching valve 44 and a pipe 45 communicating with a cooling medium tank 14 described later.

【0019】閉空間20における液化冷却媒体21の通
常液面レベルよりも下の位置には、液面検出センサ26
を設ける。閉空間20内における液化冷却媒体21の液
面レベルが下がり、このセンサ26の位置よりも下にな
ったときは、このセンサ26は制御部13にその旨の信
号を送る。また、同じく閉空間20における液化冷却媒
体21の通常液面レベルよりも下の位置に、液化冷却媒
体21を加熱して気化させるためのヒータ27を設け
る。このヒータ27は、本示差走査熱量測定装置の制御
装置(図示せず)により制御される。
At a position below the normal liquid level of the liquefied cooling medium 21 in the closed space 20, a liquid level detection sensor 26 is provided.
To provide. When the liquid surface level of the liquefied cooling medium 21 in the closed space 20 drops below the position of the sensor 26, the sensor 26 sends a signal to that effect to the control unit 13. Similarly, a heater 27 for heating and vaporizing the liquefied cooling medium 21 is provided at a position below the normal liquid level of the liquefied cooling medium 21 in the closed space 20. The heater 27 is controlled by a controller (not shown) of the differential scanning calorimeter.

【0020】冷却部12の供給口23にはポンプ16を
介して外部の液化冷却媒体タンク14が接続される。ポ
ンプ16は本試料冷却装置10の制御部13により制御
され、タンク内の液化冷却媒体15を任意の時点で任意
の量だけ冷却部12の閉空間20内に供給し、或いは、
上部管25を通して試料に直接掛ける。なお、ポンプ1
6は単なる輸送手段であり、ヒータ加圧式のサイフォン
等種々の装置を使用することができる。
An external liquefied cooling medium tank 14 is connected to the supply port 23 of the cooling unit 12 via a pump 16. The pump 16 is controlled by the control unit 13 of the sample cooling device 10, and supplies the liquefied cooling medium 15 in the tank to the closed space 20 of the cooling unit 12 in an arbitrary amount at an arbitrary time, or
The sample is directly hung through the upper tube 25. In addition, pump 1
Reference numeral 6 is a mere transport means, and various devices such as a heater pressurizing type siphon can be used.

【0021】ポンプ16と供給口23との間には切替バ
ルブ46が設けられ、このバルブ46の切替により、タ
ンク14内の液化冷却媒体15の流れは供給口23への
パイプ47と上部管25へのパイプ45とに振り分けら
れる。また、供給口23の外部側にも切替バルブ48が
設けられ、大気への放出口49とタンク14へのパイプ
47とに接続が切り替えられる。
A switching valve 46 is provided between the pump 16 and the supply port 23, and the switching of the valve 46 causes the flow of the liquefied cooling medium 15 in the tank 14 to flow to the supply port 23 through a pipe 47 and an upper pipe 25. It is distributed to the pipe 45 to. Further, a switching valve 48 is also provided on the outside of the supply port 23, and the connection is switched to a discharge port 49 to the atmosphere and a pipe 47 to the tank 14.

【0022】本実施例の示差走査熱量測定装置において
試料ホルダ11をゆっくりと冷却するときは、示差走査
熱量測定装置の制御装置(図示せず)は試料冷却装置1
0の冷却部12の内部のヒータ27に電流を流す。これ
によりヒータ27が加熱され、冷却部12の閉空間20
内に保持されている液化冷却媒体21(液体窒素等)が
気化する。気化した冷却媒体28は閉空間20の上部の
空間を満たし、更に、冷却ガス送出管24を通って内殻
19の内側の試料ホルダ11に吹き付けられる。この試
料ホルダ11に吹き付けられる冷却媒体ガス28の量
は、ヒータ27の加熱量により変化するため、このヒー
タ27の通電量を制御する熱分析装置の制御装置が試料
の冷却速度を制御することができることになる。
When the sample holder 11 is slowly cooled in the differential scanning calorimeter of this embodiment, the controller (not shown) of the differential scanning calorimeter measures the sample cooling device 1.
An electric current is passed through the heater 27 inside the cooling unit 12 of 0. As a result, the heater 27 is heated and the closed space 20 of the cooling unit 12 is heated.
The liquefied cooling medium 21 (liquid nitrogen or the like) held therein is vaporized. The vaporized cooling medium 28 fills the space above the closed space 20 and is further sprayed onto the sample holder 11 inside the inner shell 19 through the cooling gas delivery pipe 24. Since the amount of the cooling medium gas 28 blown to the sample holder 11 changes depending on the heating amount of the heater 27, the controller of the thermal analysis device that controls the energization amount of the heater 27 can control the cooling rate of the sample. You can do it.

【0023】試料ホルダ11に吹き付けられた冷却媒体
ガス28は、切替バルブ44の操作により、上部管25
及び放出口43を通って外部に排出される。また、冷却
部12の閉空間20内の液化冷却媒体21の量が減り、
その液面が液面検出センサ26のレベル以下となったと
きは、センサ26から制御部13に信号が送られ、制御
部13がポンプ16を駆動する。これにより、タンク1
4内の液化冷却媒体15が供給口23を通して冷却部1
2に供給される。この制御機構により、冷却部12の閉
空間20内の液化冷却媒体21の量は常に一定に保たれ
る。
The cooling medium gas 28 sprayed onto the sample holder 11 is operated by the switching valve 44 to operate the upper pipe 25.
And is discharged to the outside through the discharge port 43. Further, the amount of the liquefied cooling medium 21 in the closed space 20 of the cooling unit 12 decreases,
When the liquid level falls below the level of the liquid level detection sensor 26, a signal is sent from the sensor 26 to the control unit 13, and the control unit 13 drives the pump 16. This allows the tank 1
The liquefied cooling medium 15 in the cooling unit 4 passes through the supply port 23 and the cooling unit 1
2 is supplied. By this control mechanism, the amount of the liquefied cooling medium 21 in the closed space 20 of the cooling unit 12 is always kept constant.

【0024】上記の通り、本実施例に係る試料冷却装置
10では、冷却媒体ガスが気化してからすぐに試料(試
料ホルダ11)に吹き付けられることと、冷却ガス送出
管24自体が液化冷却媒体21中を通っているため、試
料に吹き付けられる冷却媒体ガスはほぼ沸点温度のまま
の低温となっている。更に、前記の通り内殻19に良熱
伝導体を使用すれば、内殻19及び試料ホルダ11周辺
の気体層を通しての気体伝導による冷却効果も得ること
ができる。
As described above, in the sample cooling device 10 according to the present embodiment, the cooling medium gas is blown onto the sample (sample holder 11) immediately after being vaporized, and the cooling gas delivery pipe 24 itself is liquefied cooling medium. Since it passes through 21, the cooling medium gas blown to the sample is at a low temperature that is almost the boiling point temperature. Furthermore, if a good heat conductor is used for the inner shell 19 as described above, a cooling effect by gas conduction through the inner shell 19 and the gas layer around the sample holder 11 can also be obtained.

【0025】一方、試料ホルダ11内の試料をアモルフ
ァス化する等のために急冷する必要があるときは、切替
バルブ46及び44を操作することにより、ポンプ16
からの液化冷却媒体を上部管25の方に流す。これによ
り、前記実施例と同様に試料ホルダ11に直接(或い
は、蓋を開けた場合には、試料に直接)、液化冷却媒体
29が掛けられ、試料が急冷される。なお、試料ホルダ
11に掛けられて気化した冷却媒体は、冷却ガス送出管
24を通って閉空間20に入り、さらに、バルブ48の
操作により、供給口23、大気放出口49から外部に排
出される。
On the other hand, when it is necessary to rapidly cool the sample in the sample holder 11 to make it amorphous, etc., the pump 16 is operated by operating the switching valves 46 and 44.
The liquefied cooling medium from the above is flowed toward the upper tube 25. As a result, the liquefied cooling medium 29 is applied directly to the sample holder 11 (or directly to the sample when the lid is opened) as in the above-described embodiment, and the sample is rapidly cooled. The cooling medium that has been vaporized by being placed on the sample holder 11 enters the closed space 20 through the cooling gas delivery pipe 24, and is further discharged to the outside from the supply port 23 and the atmospheric emission port 49 by the operation of the valve 48. It

【0026】なお、第2の実施例で使用される切替バル
ブ44、46、48はいずれも制御装置からの指令によ
り自動的に切り替えが行なわれる電磁弁とすると便利で
ある。また、以上2つの実施例ではいずれも熱分析装置
として示差走査熱量測定装置を挙げたが、示差熱分析装
置等の他の熱分析装置についても全く同様に本発明を適
用することができる。
It is convenient that the switching valves 44, 46 and 48 used in the second embodiment are all electromagnetic valves which are automatically switched by a command from the control device. Further, in each of the above two embodiments, the differential scanning calorimetry device is mentioned as the thermal analysis device, but the present invention can be applied to other thermal analysis devices such as the differential thermal analysis device in the same manner.

【0027】[0027]

【発明の効果】本発明に係る熱分析装置では、例えばア
モルファス化試料の作製等、試料を急冷する前処理を行
なった後、時間を置かず、直ちに熱分析を開始すること
ができる。また、冷却媒体の供給を厳密に制御すること
ができるようにもなるため、急冷アモルファス化におい
て再現性の良い熱処理が可能となる。さらに、冷却媒体
通路を用いた徐冷を含め、試料加熱・冷却装置で試料に
任意の熱履歴を加えた後、熱分析を行なうこともでき、
試料のより広い範囲の状態の特性を分析することができ
るようになる。
In the thermal analyzer according to the present invention, the thermal analysis can be started immediately without any time after the pretreatment for rapidly cooling the sample such as the preparation of the amorphized sample. Further, since it becomes possible to strictly control the supply of the cooling medium, it becomes possible to perform heat treatment with good reproducibility in the rapid cooling and amorphization. Furthermore, thermal analysis can be performed after adding an arbitrary thermal history to the sample with the sample heating / cooling device, including slow cooling using the cooling medium passage,
It allows for the analysis of a wider range of properties of the sample.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1の実施例である示差走査熱量測
定装置の構造を示す断面図。
FIG. 1 is a cross-sectional view showing the structure of a differential scanning calorimeter according to a first embodiment of the present invention.

【図2】 本発明の第2の実施例である熱分析装置の試
料冷却装置の構造を示す断面図。
FIG. 2 is a cross-sectional view showing the structure of a sample cooling device of a thermal analysis device which is a second embodiment of the present invention.

【図3】 示差走査熱量測定装置の構造を示す断面図。FIG. 3 is a sectional view showing the structure of a differential scanning calorimeter.

【符号の説明】[Explanation of symbols]

10…試料冷却装置 11…試料ホル
ダ 12…冷却部 13…制御部 18…外殻 19…内殻 25…上部管(冷却媒体通路) 29…液化冷却
媒体 30…断熱カバー(試料加熱・冷却器) 31…上部パイプ(冷却媒体通路) 34…試料ホルダ
DESCRIPTION OF SYMBOLS 10 ... Sample cooling device 11 ... Sample holder 12 ... Cooling part 13 ... Control part 18 ... Outer shell 19 ... Inner shell 25 ... Upper pipe (cooling medium passage) 29 ... Liquefied cooling medium 30 ... Insulating cover (sample heating / cooler) 31 ... Upper pipe (cooling medium passage) 34 ... Sample holder

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 試料の周辺を覆う試料加熱・冷却器を備
えた熱分析装置において、試料に液体又は気体の冷却媒
体を掛けるための冷却媒体通路を設けたことを特徴とす
る熱分析装置。
1. A thermal analysis device comprising a sample heating / cooling device for covering the periphery of a sample, wherein a cooling medium passage is provided for applying a liquid or gaseous cooling medium to the sample.
JP3250990A 1991-09-30 1991-09-30 Thermal analyzer Expired - Fee Related JP2586733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3250990A JP2586733B2 (en) 1991-09-30 1991-09-30 Thermal analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3250990A JP2586733B2 (en) 1991-09-30 1991-09-30 Thermal analyzer

Publications (2)

Publication Number Publication Date
JPH0587753A true JPH0587753A (en) 1993-04-06
JP2586733B2 JP2586733B2 (en) 1997-03-05

Family

ID=17216027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3250990A Expired - Fee Related JP2586733B2 (en) 1991-09-30 1991-09-30 Thermal analyzer

Country Status (1)

Country Link
JP (1) JP2586733B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336751A (en) * 1992-04-06 1994-08-09 General Electric Company Preparation of copolycarbonate from resorcinol

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56159760U (en) * 1980-01-11 1981-11-28
JPS5739339A (en) * 1980-08-22 1982-03-04 Hitachi Ltd Measuring method for lowest limit temperature of nematic phase of liquid crystal material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56159760U (en) * 1980-01-11 1981-11-28
JPS5739339A (en) * 1980-08-22 1982-03-04 Hitachi Ltd Measuring method for lowest limit temperature of nematic phase of liquid crystal material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336751A (en) * 1992-04-06 1994-08-09 General Electric Company Preparation of copolycarbonate from resorcinol

Also Published As

Publication number Publication date
JP2586733B2 (en) 1997-03-05

Similar Documents

Publication Publication Date Title
US4848093A (en) Apparatus and method for regulating temperature in a cryogenic test chamber
Horrocks et al. Non-steady-state measurements of the thermal conductivities of liquid polyphenyls
Tuinstra et al. The calorimetric glass transition of amorphous Pd40 Ni40 P20
JPH11190706A (en) Method for analyzing modulation difference
JPH0755738A (en) Equipment and method for thermal conductivity measurement
Schick et al. Fast scanning chip calorimetry
JP2586733B2 (en) Thermal analyzer
JPH1019815A (en) Thermal analysis and x-ray measuring device
Ballico et al. Novel experimental technique for measuring high-temperature spectral emissivities
WO1996021152A1 (en) Gas concentration and injection system for chromatographic analysis of organic trace gases
Abdulagatov et al. Isochoric heat capacity of {xH2O+(1-x) KOH} near the critical point of pure water
Haida et al. Realization of glassy liquid and glassy crystal of ethanol
JPS6119935B2 (en)
Takeda et al. Specific Heat of Liquid Se–Te Alloys
CN107976589A (en) A kind of quasi-static d33 tests system of width temperature range
Dumas et al. Heat transfer inside emulsions. Determination of the DSC thermograms. Part 1. Crystallization of the undercooled droplets
JPH10132770A (en) Thermal analysis apparatus
JPH10104182A (en) Analyzer
JPH0587793A (en) Temperature-raising oven for gas chromatograph
Ge et al. New controlled environment vitrification system for preparing wet samples for cryo‐SEM
JPH1054813A (en) Parallax scanning calorimetry device
JPS63143478A (en) Cryostat
Su Thermal Conductivity Measurements and Results
Poon et al. Amorphous superconducting ribbons quenched at elevated substrate temperature
US5896852A (en) Chemical reactant bottle and method of use thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees