JPH0583234B2 - - Google Patents

Info

Publication number
JPH0583234B2
JPH0583234B2 JP14882585A JP14882585A JPH0583234B2 JP H0583234 B2 JPH0583234 B2 JP H0583234B2 JP 14882585 A JP14882585 A JP 14882585A JP 14882585 A JP14882585 A JP 14882585A JP H0583234 B2 JPH0583234 B2 JP H0583234B2
Authority
JP
Japan
Prior art keywords
enzyme
water
resin
immobilized
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14882585A
Other languages
Japanese (ja)
Other versions
JPS6211093A (en
Inventor
Fumio Moriuchi
Hisae Muroi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arakawa Chemical Industries Ltd
Original Assignee
Arakawa Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arakawa Chemical Industries Ltd filed Critical Arakawa Chemical Industries Ltd
Priority to JP14882585A priority Critical patent/JPS6211093A/en
Publication of JPS6211093A publication Critical patent/JPS6211093A/en
Publication of JPH0583234B2 publication Critical patent/JPH0583234B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、吸水性樹脂を保持担体とし、該樹脂
を架橋反応させて樹脂内に酵素を固定化させる方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of immobilizing an enzyme within the resin by using a water-absorbing resin as a holding carrier and subjecting the resin to a crosslinking reaction.

従来の技術 酵素は、特定構造の物質の特定位置に立体選択
的に反応するという基質特異性、位置特異性及び
立体特異性を有しており、従つて該酵素の司どる
生化学反応によれば、一般の有機化学反応に比
し、副反応生成物が少なく、収率の向上、精製コ
ストの低減、環境汚染物質の排出の抑制等が可能
である。また酵素反応は通常常温、常圧下で進行
し、所要エネルギーの大幅な節減ができる利点が
ある。之等のことから、近年酵素を利用する反応
は、殊に医薬品、食料品等の製造分野や分析化学
分野で種々応用研究が行なわれている。しかしな
がら、酵素は一般に微生物や動植物から複雑な経
路を経て抽出精製された非常に高価であり、しか
も熱、有機溶媒、酸性やアルカリ性条件等に不安
定で容易に活性を失う欠点があり、更に通常一回
の反応毎に捨てており極めて不経済で、連続的な
工業生産過程での利用には適さない不利がある。
PRIOR ART Enzymes have substrate specificity, positional specificity, and stereospecificity in that they stereoselectively react with a specific position of a substance with a specific structure. For example, compared to general organic chemical reactions, there are fewer side reaction products, and it is possible to improve yields, reduce purification costs, and suppress emissions of environmental pollutants. Furthermore, the enzymatic reaction usually proceeds at room temperature and pressure, which has the advantage of significantly reducing the amount of energy required. For these reasons, in recent years, various applied researches have been conducted on reactions using enzymes, particularly in the fields of manufacturing pharmaceuticals, foodstuffs, etc., and in the field of analytical chemistry. However, enzymes are generally extracted and purified from microorganisms, animals and plants through complicated routes, and are very expensive.Moreover, they are unstable to heat, organic solvents, acidic or alkaline conditions, etc., and easily lose their activity. It is discarded after each reaction, making it extremely uneconomical and unsuitable for use in continuous industrial production processes.

このような酵素の持つ欠点を除き長所を活用す
るために、近時酵素を水不溶性担体に保持させる
所謂酵素の固定化技術の研究が活発化しており、
既に工業的規模で実用化されている例も相当認め
られるに至つている。
In order to eliminate these disadvantages and take advantage of the advantages of enzymes, research on so-called enzyme immobilization technology, in which enzymes are held in water-insoluble carriers, has recently become active.
There are already many examples of practical use on an industrial scale.

現在確立されている上記酵素の固定化方法は、
包括法、吸着法、架橋化法及び共有結合法に大別
される。このうち包括法は、保持担体としての高
分子格子内の空間に酵素を包括するが、マイクロ
カプセル内に酵素を封入する方法である。この方
法では酵素分子は高分子が形成する三次元網目構
造内又は高分子膜が形成する殻内に物理的に固定
化される。ここで用いられる高分子としては、例
えばポリアクリルアミド、エチレン−酢酸ビニル
共重合体、ポリビニルアルコール等の各種合成高
分子やコラーゲン、セルロース、アルギン酸、カ
ラギ−ナン等の各種天然高分子が知られている。
該包括法は、固定化操作が比較的簡単であり、吸
着法にして酵素の溶出が起りにくい利点がある反
面、共有給合法に比して酵素の溶出率は尚劣つて
おり、また基質と生成物との高分子格子内におけ
る拡散速度が遅く吸着法に比しても酵素反応速度
が遅い不利がある。
The currently established methods for immobilizing the above enzymes are:
It is broadly classified into inclusion method, adsorption method, crosslinking method and covalent bonding method. Among these, the entrapment method involves enclosing the enzyme in a space within a polymer lattice serving as a holding carrier, and is a method in which the enzyme is encapsulated in microcapsules. In this method, enzyme molecules are physically immobilized within a three-dimensional network structure formed by a polymer or a shell formed by a polymer membrane. Known polymers used here include various synthetic polymers such as polyacrylamide, ethylene-vinyl acetate copolymer, and polyvinyl alcohol, and various natural polymers such as collagen, cellulose, alginic acid, and carrageenan. .
Although the inclusion method has the advantage that the immobilization operation is relatively simple and enzyme elution is less likely to occur compared to the adsorption method, the enzyme elution rate is still lower than that of the covalent feeding method, and This method has the disadvantage that the diffusion rate of the product within the polymer lattice is slow, and the enzyme reaction rate is slow compared to the adsorption method.

吸着法は、例えばセルロース誘導体、ポリメタ
クリレート等の有機高分子又は活性炭、アルミナ
等の無機物質からなる不溶性担体に酵素を物理的
に吸着させて固定化する方法である。該方法は操
作が簡単で、得られた固定化酵素はその担体表面
で基質と酵素との接触反応が起るため反応効率が
よい利点があるが、酵素が溶出し易い不利があ
る。
The adsorption method is a method in which an enzyme is physically adsorbed and immobilized on an insoluble carrier made of an organic polymer such as a cellulose derivative or polymethacrylate or an inorganic substance such as activated carbon or alumina. This method is easy to operate, and the immobilized enzyme obtained has the advantage of high reaction efficiency because the contact reaction between the substrate and the enzyme occurs on the surface of the carrier, but it has the disadvantage that the enzyme is easily eluted.

架橋法は、酵素及び不溶性担体の存在下に低分
子量の多官能性物質を加えて酵素間又は酵素と不
溶性担体との間に共有結合による架橋構造を形成
させて酵素を不溶化させる方法である。この方法
も操作が比較的簡単な利点はあるが、拡散律速の
点から酵素反応効率が低下する場合が多く、また
用いる多官能性物質による酵素の失活がしばしば
問題となる不利がある。
The crosslinking method is a method in which a low molecular weight polyfunctional substance is added in the presence of an enzyme and an insoluble carrier to form a crosslinked structure by covalent bonds between the enzymes or between the enzyme and the insoluble carrier, thereby rendering the enzyme insolubilized. Although this method also has the advantage of being relatively simple to operate, it often has the disadvantage that enzyme reaction efficiency is often reduced due to diffusion rate limitation, and enzyme deactivation due to the polyfunctional substance used is often a problem.

また共有給合法は、不溶性担体が有する活性基
と酵素分子とを直接に又は何らかの化学物質を介
して化学結合させて酵素を不溶化させる方法であ
り、化学結合様式によりペプチド結合法、ジアゾ
法、アルキル化法、シツフ塩基形成法等に分けら
れる。そのいずれの方法によつても固定化された
酵素は、一般に高活性を有し、溶出が少ない利点
があるが、反面、固定化操作が煩雑で、固定化の
際に用いられる化学物質の種類により酵素活性が
極端に低下する場合があり、該化学物質の選択が
困難である欠点を有している。
In addition, the covalent feeding method is a method in which the active group of the insoluble carrier and the enzyme molecule are chemically bonded directly or through some kind of chemical substance to make the enzyme insolubilized. It is divided into the chemical conversion method, Schiff base formation method, etc. Enzymes immobilized by any of these methods generally have the advantage of having high activity and low elution, but on the other hand, the immobilization procedure is complicated and the types of chemicals used during immobilization are difficult. This has the drawback that enzyme activity may be extremely reduced due to chemical substances, and selection of the chemical substance is difficult.

以上のように、いずれの固定化方法にも一長一
短があり、現在酵素の固定化に当つては、固定化
すべき酵素の種類、得られる固定化酵素の使用目
的や該酵素と基質との反応条件等に応じて、上記
方法のいずれかが採用されているが、更に欠点の
少ない優れた固定化手段の開発、殊に固定化操作
が簡便で、得られる固定化酵素の失活が少なく且
つ安定であり、その工業プロセスへの適用が容易
な新しい固定化技術の確立が斯界で要望されてい
る。
As mentioned above, each immobilization method has its advantages and disadvantages.Currently, when immobilizing enzymes, the types of enzymes to be immobilized, the purpose of use of the obtained immobilized enzyme, and the reaction conditions between the enzyme and the substrate are Depending on the situation, one of the above methods has been adopted, but it is also important to develop an excellent immobilization method with fewer drawbacks, in particular, the immobilization operation is simple, the resulting immobilized enzyme is less likely to be deactivated, and is stable. Therefore, there is a demand in the industry for the establishment of a new immobilization technology that can be easily applied to industrial processes.

発明が解決しようとする問題点 本発明は、上記各種の酵素固定化技術に見られ
る欠点乃至難点を解消して、特に固定化操作が簡
便で、得られる固定化酵素の失活が少なく且つ安
定であり、その工業プロセスへの適用が容易な新
規にして且つ実用的価値の高い固定化技術を確立
することを目的とする。
Problems to be Solved by the Invention The present invention solves the drawbacks and difficulties found in the various enzyme immobilization techniques described above, and in particular, the immobilization operation is simple, the resulting immobilized enzyme is less likely to be deactivated, and is stable. The purpose of this study is to establish a new immobilization technology that is easy to apply to industrial processes and has high practical value.

問題点を解決するための手段 本発明によれば、酵素の水性液を分子中にカル
ボキシル基を有する吸水性樹脂に吸収させた後、
該樹脂を多価金属塩水溶液及びポリアミン水溶液
から選ばれる少なくとも一種と接触させて水の放
出及び架橋反応を行なわせることを特徴とする固
定化酵素剤の製造方法が提供される。
Means for Solving the Problems According to the present invention, after an aqueous enzyme solution is absorbed into a water-absorbing resin having a carboxyl group in the molecule,
A method for producing an immobilized enzyme agent is provided, which comprises bringing the resin into contact with at least one selected from a polyvalent metal salt aqueous solution and a polyamine aqueous solution to cause water release and a crosslinking reaction.

本発明者らは、酵素の固定化技術、そのうち特
に前記包括法に着目して、これに利用する保持担
体、その架橋方法、該担体への酵素の包括条件等
について鋭意研究を重ねる過程において、近年、
生理用品、衛生用品等として利用されつつある吸
水性樹脂が、酵素を溶解した緩衝液を被処理水と
するときにも、その本来の吸水性によりこれを樹
脂内部に吸収し、これに伴われて酵素も樹脂内部
に取り込まれ、しかも該酵素の吸収量は被処理水
における酵素濃度とほぼ完全に一致し、樹脂の種
類やその吸収能とは無関係であることも見出し
た。しかるに上記樹脂による酵素の取り込みは、
可逆的なものであり、この状態のままでは一旦取
り込まれた酵素は再度緩衝液と共に樹脂外に放出
され、何ら樹脂に固定化されないが、分子中にカ
ルボキシル基を有する吸水性樹脂の場合上記酵素
を取り込んだ樹脂を、次いで多価金属塩水溶液又
はポリアミン溶液中に投入する時には、多価金属
イオン又はポリアミンの共存によつて樹脂の吸水
能が低下し、樹脂内に吸収された緩衝液は放出さ
れるが、該多価金属イオン又はポリアミンと樹脂
との相互間でイオン架橋反応が生起し、この結
果、吸水膨張した樹脂の収縮と架橋とによつて、
大部分の酵素は樹脂の網目構造内に包括され、ま
た一部は樹脂表面に吸着され、かくして所望の酵
素の固定化が行なわれ、この酵素を固定化した樹
脂は、これを再度水中に分散させても樹脂内及び
樹脂表面に包括及び吸着された酵素をほとんど放
出しないという新しい知見を得た。本発明はこの
知見を基礎として完成されたものである。本発明
の酵素の固定化方法は、上記の通り架橋及び吸着
により吸水性樹脂に酵素を固定させるものであ
り、該方法自体従来の包括法及び吸着法の長所を
兼備えている。即ち、本発明方法により得られる
固定化酵素剤は、先ずその樹脂表面に吸着された
酵素が樹脂表面で基質と容易に接触できるもので
あり、この点で酵素反応効率がよく、次いで用い
る吸水性樹脂の架橋密度から推察して、樹脂内に
形成される網目構造も、その格子内に包括される
た酵素と基質との接触を充分容易ならしめる適度
のものであり、従来の包括型固定化酵素剤に比し
ても酵素反応効率が優れており、しかも酵素の固
定化率も高度に維持し得る。このように本発明に
より得られる固定化酵素剤は、従来のこの種固定
化酵素剤では到底満足し得なかつた酵素反応効率
と酵素固定化率との二律背反性を同時に満足し得
る特徴を有している。
The present inventors have focused on enzyme immobilization techniques, particularly the above-mentioned entrapment method, and in the process of diligently researching the holding carriers used for this, the crosslinking method thereof, the conditions for enclosing enzymes on the carriers, etc. recent years,
When water-absorbing resins, which are increasingly being used as sanitary products and sanitary products, use a buffer solution containing enzymes as the water to be treated, their inherent water-absorbing properties allow them to absorb this into the resin, resulting in It was also discovered that the enzyme was also incorporated into the resin, and that the amount of the enzyme absorbed almost completely matched the enzyme concentration in the water to be treated, and was independent of the type of resin and its absorption capacity. However, the uptake of the enzyme by the above resin is
It is reversible, and once the enzyme is taken up in this state, it is released out of the resin together with the buffer solution and is not immobilized on the resin at all. However, in the case of water-absorbing resins that have carboxyl groups in their molecules, the enzymes When the resin that has incorporated the ions is then put into a polyvalent metal salt aqueous solution or a polyamine solution, the coexistence of the polyvalent metal ions or polyamines reduces the water absorption ability of the resin, and the buffer solution absorbed into the resin is released. However, an ionic crosslinking reaction occurs between the polyvalent metal ion or polyamine and the resin, and as a result, the resin expanded by water absorption shrinks and crosslinks,
Most of the enzyme is enclosed within the network structure of the resin, and some is adsorbed on the resin surface, thus immobilizing the desired enzyme. We obtained a new finding that almost no enzymes entrapped and adsorbed within the resin or on the resin surface are released even if The present invention was completed based on this knowledge. The enzyme immobilization method of the present invention immobilizes the enzyme on a water-absorbing resin by crosslinking and adsorption as described above, and the method itself has the advantages of the conventional entrapment method and adsorption method. That is, in the immobilized enzyme preparation obtained by the method of the present invention, firstly, the enzyme adsorbed on the resin surface can easily contact the substrate on the resin surface, and in this respect, the enzyme reaction efficiency is high, and secondly, the water absorbency used Judging from the crosslinking density of the resin, the network structure formed within the resin is also moderate enough to facilitate contact between the enzyme enclosed within the lattice and the substrate, making it difficult to use conventional enclosing immobilization. The enzyme reaction efficiency is superior compared to enzyme agents, and the enzyme immobilization rate can also be maintained at a high level. As described above, the immobilized enzyme preparation obtained by the present invention has the characteristic that it can simultaneously satisfy the antinomy of enzyme reaction efficiency and enzyme immobilization rate, which were completely unsatisfactory with conventional immobilized enzyme preparations of this kind. ing.

また、本発明に用いる吸水性樹脂は、それ自体
優れた機械的強度、物理的強度、化学的安定性等
を有しており、しかも取扱い容易な任意の形状に
成形できる利点があり、加えて該樹脂の利用によ
り、本発明方法では、被処理水としての酵素水性
液の酵素濃度に応じて樹脂内の任意の量の酵素を
固定することができる。
In addition, the water-absorbing resin used in the present invention has excellent mechanical strength, physical strength, chemical stability, etc., and has the advantage that it can be easily handled and molded into any shape. By using the resin, in the method of the present invention, an arbitrary amount of enzyme can be immobilized in the resin depending on the enzyme concentration of the enzyme aqueous liquid as the water to be treated.

以下、本発明固定化酵素剤の製法を詳述する。 The method for producing the immobilized enzyme agent of the present invention will be described in detail below.

本発明方法において、用いられる酵素として
は、特に限定はなく、従来公知の各種のものを単
独で又は2種以上混合して用いることができる。
その代表例としては、例えばカタラーゼ、グルコ
ースオキシダーゼ、ペルオキシダーゼ等の酸化酵
素類、グリシンアミノトランスフエラーゼ、ロイ
シンアミノペプチダーゼ等の転移酵素類、アスパ
ラギナーゼ、イルベルターゼ、ウレアーゼ、リパ
ーゼ等の加水分解酵素類、グルコースイソメラー
ゼ、アラニンラセマーゼ、グルタミン酸ラセマー
ゼ等の異性化酵素類、グラタチオン、シンテター
ゼ、アスパラギンシンテターゼ等のリガーゼ類等
を例示できる。
In the method of the present invention, the enzyme used is not particularly limited, and various conventionally known enzymes can be used alone or in a mixture of two or more.
Typical examples include oxidizing enzymes such as catalase, glucose oxidase, and peroxidase, transferases such as glycine aminotransferase and leucine aminopeptidase, hydrolytic enzymes such as asparaginase, ilvertase, urease, and lipase, and glucose isomerase. Examples include isomerases such as alanine racemase and glutamate racemase, and ligases such as gratathione, synthetase, and asparagine synthetase.

本発明で用いられる吸水性樹脂は、吸水能を有
し且つ多価金属イオン又はポリアミンの共存によ
り架橋反応を生起されることを前提として、特に
制限はなく、従来公知のいずれのものでもよい。
The water-absorbing resin used in the present invention is not particularly limited, and may be any conventionally known resin, provided that it has water-absorbing ability and can undergo a crosslinking reaction due to the coexistence of polyvalent metal ions or polyamines.

本発明で用いられる吸水性樹脂は、具体的に
は、多価金属イオン又はポリアミンの共存により
架橋反応を惹起されるカルボキシル基を分子中に
有するものであり、その具体例としては、例えば
カルボキシルメチルセルロースの部分架橋物、デ
ンプン−アクリロニトルグラフト共重合体の加水
分解物、デンプン−アクリル酸グラフト共重合
体、ポリ−アクリル酸又は−メタクリル酸(以下
「ポリ(メタ)アクリル酸」と表記する)塩部分
架橋物、ポリビニルアルコール−(メタ)アクリ
ル酸塩共重合体、その他のポリビニルアルコール
−無水マレイン酸系、ポリイソブチレン−無水マ
レイン酸系のものを挙げることができる。これら
のうちでは、デンプン−アクリロニトリルグラフ
ト共重合体の加水分解物、デンプン−(メタ)ア
クリル酸グラフト共重合体、ポリ(メタ)アクリ
ル酸塩部分架橋物等が好ましい。上記各吸水性樹
脂は、いずれも公知の方法に従い製造することが
できる。その例としては、例えば特開昭56−
93716号、特開昭56−131608号、特開昭56−
147806号、特開昭56−171559号、特開昭58−
117222号、特公昭54−30710号、特公昭54−37994
号、特公昭53−46200号、米国特許第4041228号等
に示されている。
Specifically, the water-absorbing resin used in the present invention has a carboxyl group in its molecule that causes a crosslinking reaction in the presence of a polyvalent metal ion or a polyamine. partially crosslinked products, hydrolysates of starch-acrylonitrile graft copolymers, starch-acrylic acid graft copolymers, poly-acrylic acid or -methacrylic acid (hereinafter referred to as "poly(meth)acrylic acid") Partially crosslinked salts, polyvinyl alcohol-(meth)acrylate copolymers, other polyvinyl alcohol-maleic anhydride-based products, and polyisobutylene-maleic anhydride-based products can be mentioned. Among these, hydrolysates of starch-acrylonitrile graft copolymers, starch-(meth)acrylic acid graft copolymers, partially crosslinked poly(meth)acrylates, and the like are preferred. Each of the above-mentioned water absorbent resins can be manufactured according to a known method. As an example, for example, JP-A-56-
No. 93716, JP-A-56-131608, JP-A-56-
No. 147806, JP-A-56-171559, JP-A-58-
No. 117222, Special Publication No. 1971-30710, Special Publication No. 1977-37994
No. 53-46200, U.S. Pat. No. 4,041,228, etc.

また、本発明に利用される吸水性樹脂の吸水能
は、特に制限されないが、下記方法により求めら
れる吸水能が通常10以上であれば問題なく使用で
きる。一般に吸水性樹脂としてよく知られるもの
は、市販品をも含め、上記吸水能が約100〜1000
の範囲にある。
Further, the water absorbing capacity of the water absorbing resin used in the present invention is not particularly limited, but if the water absorbing capacity determined by the following method is usually 10 or more, it can be used without any problem. In general, well-known water absorbent resins, including commercially available products, have a water absorption capacity of approximately 100 to 1000.
within the range of

〔吸水能〕[Water absorption capacity]

(a) 200mlのビーカーに脱イオン水150gと吸水性
樹脂試料0.12gとを加え、30分間放置した後、
200メツシユの金網で別し、流出してくる水
の重量を測定し、次式により吸水能を算出し
た。
(a) Add 150 g of deionized water and 0.12 g of water-absorbing resin sample to a 200 ml beaker, leave it for 30 minutes, and then
The water was separated with a 200-mesh wire mesh, the weight of the flowing water was measured, and the water absorption capacity was calculated using the following formula.

吸水能=(始めに添加した水の重量)−(流
出してきた水の重量)/吸水性樹脂試料の重量 上記吸水性樹脂のゲル強度は、下記方法により
求められ、通常1.0×103ダイン/cm2以上であれ
ば、問題なく使用できる。
Water absorption capacity = (weight of water initially added) - (weight of water flowing out) / weight of water absorbent resin sample The gel strength of the above water absorbent resin is determined by the following method, and is usually 1.0 x 10 3 dynes/ If it is cm 2 or more, it can be used without any problem.

〔ゲル強度〕[Gel strength]

生理食塩水60gと吸水性樹脂試料2.0gとを混
合してゲル(以下、30倍ゲルという)を作成し、
飯尾電機株式会社製のネオカードメーターにより
ゲルの硬さ(表面硬さ)を測定する。ここで表面
硬さとは、試料表面において感圧軸がゲルを押し
退けて進入することを阻止する抵抗力として表わ
される。
A gel (hereinafter referred to as 30x gel) was created by mixing 60 g of physiological saline and 2.0 g of a water-absorbing resin sample.
The hardness (surface hardness) of the gel is measured using a Neocard meter manufactured by Iio Electric Co., Ltd. Here, the surface hardness is expressed as a resistance force that prevents the pressure-sensitive shaft from pushing away the gel and entering the sample surface.

本発明方法においては、まず酵素の水性液、例
えば代表的に酵素を溶解乃至分散させた水(以下
「酵素含有水」と表示する)を吸水性樹脂に吸収
させる。この際の酵素含有水における酵素濃度、
吸水性樹脂の使用形状及び使用量は、用いる酵素
及び樹脂の種類並びに得られる固定化酵素の使用
目的に応じて適宜に決定される。
In the method of the present invention, first, an aqueous enzyme solution, for example, typically water in which an enzyme is dissolved or dispersed (hereinafter referred to as "enzyme-containing water"), is absorbed into a water-absorbing resin. The enzyme concentration in the enzyme-containing water at this time,
The shape and amount of the water-absorbing resin to be used are appropriately determined depending on the type of enzyme and resin used and the purpose of use of the resulting immobilized enzyme.

上記吸水性樹脂は、通常入手される形状、例え
ばビーズ状、フイルム状、フレーク状、顆粒状、
塊状等のいずれの形状でも任意に利用でき、その
大きさも特に制限はないが、本発明方法に従い得
られる固定化酵素の用途等の使用時の条件等に勘
案して適宜決定される。かかる粒子径としては、
通常約0.1mm以上、好ましくは約5mm以上である
のが適当である。該吸水性樹脂と酵素含有水との
使用割合は、吸水性樹脂の給水能に応じて任意に
決定され、通常その吸水能と対応する量、即ち吸
水能100〜1000の吸水性樹脂では、その1重量部
に対して酵素含有水を約100〜1000重量部とする
のが適当である。
The above-mentioned water-absorbing resin may be in a commonly available shape, such as beads, film, flakes, granules,
It can be used in any shape, such as a lump, and its size is not particularly limited, but it is determined as appropriate in consideration of the usage conditions of the immobilized enzyme obtained according to the method of the present invention. The particle size is as follows:
Generally, it is appropriate that it is about 0.1 mm or more, preferably about 5 mm or more. The ratio of the water-absorbing resin to the enzyme-containing water is arbitrarily determined depending on the water-supplying capacity of the water-absorbing resin. Appropriately, the amount of enzyme-containing water is about 100 to 1000 parts by weight per 1 part by weight.

上記酵素含有水の吸水性樹脂への吸収は、両者
を混合撹拌することにより容易に行なわれる。こ
の混合撹拌操作は、酵素を水中に均一に分散させ
た状態で、該酵素含有水を吸水性樹脂の各粒子中
に吸収させるために行なわれるものであり、通常
の撹拌方法に従うことができる。この撹拌により
吸水性樹脂の各粒子中に酵素含有水が吸収され
る。また上記酵素含有水には必要に応じて、緩衝
剤を添加併用することもでき、これによれば酵素
反応に際しての反応系内のPHをほぼ一定に保つこ
とができ、至適PH域で酵素反応を円滑に進めるこ
とができる。上記によつて、容易に固定化酵素剤
を収得できるが、この際更に固定化されていない
余剰の酵素を、脱イオン水又は緩衝剤水溶液等を
用いて洗浄除去することもできる。
The enzyme-containing water can be easily absorbed into the water-absorbing resin by mixing and stirring the two. This mixing and stirring operation is carried out in order to absorb the enzyme-containing water into each particle of the water-absorbing resin while the enzyme is uniformly dispersed in the water, and can be carried out by a normal stirring method. This stirring causes the enzyme-containing water to be absorbed into each particle of the water-absorbing resin. Furthermore, if necessary, a buffer can be added to the enzyme-containing water. By doing so, the pH in the reaction system during the enzyme reaction can be kept almost constant, and the enzyme can be used in the optimum pH range. The reaction can proceed smoothly. An immobilized enzyme preparation can be easily obtained by the above method, but at this time, excess unimmobilized enzyme can also be removed by washing using deionized water, an aqueous buffer solution, or the like.

本発明方法によれば、次いで上記酵素の水性液
を吸収して膨潤した吸水性樹脂を、多価金属塩水
溶液及び/又はポリアミン水溶液と接触させて、
水の放出及び架橋反応を行なわせる。ここで用い
られる多価金属塩としては、吸水性樹脂分子内に
存在するカルボキシル基を架橋反応させ得る多価
金属イオン、例えばカルシウム、マグネシウム、
銅、鉄、アルミニウム、コバルト等の2価又は3
価の金属イオンを提供できる各種のものでよい。
その具体例としては例えば塩化カルシウム、塩化
マグネシウム、塩化第一鉄、塩化第二鉄、塩化第
二銅、塩化アルミニウム、塩化コバルト等の塩化
物、硝酸カルシウム、硝酸マグネシウム、硫酸第
一鉄、硫酸第二鉄、硫酸アルミニウム等を例示で
きる。之等のうちで塩化カルシムウ、硫酸第一
鉄、硫酸第二鉄、塩化アルミニウム、硫酸アルミ
ニウム等は中性付近でイオン化し、酵素に対して
毒性を及ぼすおそれがないため特に好適である。
上記多価金属塩溶液は、通常0.1〜10重量%程度
の濃度の水溶液形態で有利に用いられる。その使
用量は得られる固定化酵素の酵素固定化能及びそ
の使用時の物理的強度に若干影響を与えるため、
これらの点を考慮して適当なものとするのがよ
く、通常は使用される吸水性樹脂分子内に含有さ
れるカルボキシル基1モル当り多価金属イオンが
0.03モル以上となる量とするのが好ましい。多価
金属塩水溶液と酵素吸収樹脂との接触は、単に樹
脂を多価金属塩水溶液中に投入して撹拌するのみ
で容易に行なわれ、この接触により、樹脂自体の
吸水能の低下による吸収水の放出が起ると同時に
樹脂の架橋反応が起り、これにより結果として樹
脂内部に酵素を閉じ込めた所望の固定化酵素を収
得できる。かくして得られる固定化酵素剤は、架
橋された吸水性樹脂の内部空隙に酵素が閉じ込め
られると共に、若干量の水を保有しているが、該
保有水は必要に応じてこれらを乾燥除去すること
もできる。
According to the method of the present invention, the water-absorbing resin swollen by absorbing the enzyme aqueous solution is then brought into contact with a polyvalent metal salt aqueous solution and/or a polyamine aqueous solution,
Allow water release and crosslinking reaction to occur. The polyvalent metal salt used here includes polyvalent metal ions that can crosslink the carboxyl groups present in the water-absorbing resin molecules, such as calcium, magnesium,
Divalent or trivalent materials such as copper, iron, aluminum, cobalt, etc.
Any type of material that can provide valent metal ions may be used.
Specific examples include chlorides such as calcium chloride, magnesium chloride, ferrous chloride, ferric chloride, cupric chloride, aluminum chloride, cobalt chloride, calcium nitrate, magnesium nitrate, ferrous sulfate, and ferrous sulfate. Examples include diiron and aluminum sulfate. Among these, calcium chloride, ferrous sulfate, ferric sulfate, aluminum chloride, aluminum sulfate, etc. are particularly suitable because they are ionized near neutrality and are not likely to be toxic to enzymes.
The above polyvalent metal salt solution is advantageously used in the form of an aqueous solution, usually with a concentration of about 0.1 to 10% by weight. The amount used slightly affects the enzyme immobilization ability of the obtained immobilized enzyme and the physical strength during its use.
It is best to take these points into account and select an appropriate value, and usually the polyvalent metal ion per mole of carboxyl group contained in the water-absorbing resin molecule used is
The amount is preferably 0.03 mol or more. Contact between the polyvalent metal salt aqueous solution and the enzyme-absorbing resin can be easily carried out by simply adding the resin into the polyvalent metal salt aqueous solution and stirring, and this contact reduces the amount of water absorbed due to a decrease in the water absorption capacity of the resin itself. Simultaneously with the release of the resin, a crosslinking reaction of the resin occurs, and as a result, the desired immobilized enzyme with the enzyme trapped inside the resin can be obtained. The thus obtained immobilized enzyme agent has the enzyme trapped in the internal voids of the cross-linked water-absorbing resin and also retains a small amount of water, but this retained water can be removed by drying if necessary. You can also do it.

また、上記多価金属塩水溶液と共に又はこれに
代替使用されるポリアミン水溶液は、固定化操作
の作業性、吸水性樹脂とのイオン架橋性等に影響
を与える水溶解性、粘度(分子量)、カチオン性
等を考慮して公知のポリアミンの水溶液より適宜
選択される。その具体例としては、例えばポリア
リルアミン、ポリビニルアミン、ポリアルキレン
ポリアミン、ポリエチレンイミン、ポリビニルピ
リジニウムハライド、その他ジアルキルアミノア
ルキル(メタ)アクリレート、ジアルキルアルキ
ル(メタ)アクリルアミド等のカチオン性モノマ
ーを構成成分とする重合体もしくは該モノマーを
主な構成成分として含有する共重合体を挙げるこ
とができる。之等ポリアミンの分子量は、通常約
1000〜1000000の範囲にあるのが好ましく、アミ
ン価は約130〜1300の範囲にあるのが好ましい。
また該ポリアミンの水溶液濃度は、その水溶液の
粘度を考慮して適宜決定されるが、通常前記多価
金属塩水溶液の濃度と同程度とするのが好まし
い。
In addition, the polyamine aqueous solution used together with or as an alternative to the above polyvalent metal salt aqueous solution has water solubility, viscosity (molecular weight), cationic content, etc. It is appropriately selected from known aqueous solutions of polyamines in consideration of properties and the like. Specific examples thereof include polymers containing cationic monomers such as polyallylamine, polyvinylamine, polyalkylene polyamine, polyethyleneimine, polyvinylpyridinium halide, dialkylaminoalkyl (meth)acrylate, dialkylalkyl (meth)acrylamide, etc. Copolymers or copolymers containing the monomers as a main component can be mentioned. The molecular weight of such polyamines is usually about
Preferably, the amine number is in the range of 1000 to 1,000,000, and the amine number is preferably in the range of about 130 to 1,300.
Further, the concentration of the aqueous solution of the polyamine is appropriately determined in consideration of the viscosity of the aqueous solution, but it is usually preferably about the same concentration as the aqueous solution of the polyvalent metal salt.

上記ポリアミン水溶液の使用量は、用いるポリ
アミンのアミン価により若干変化するが、吸水性
樹脂に対して通常約0.01〜50重量%程度、好まし
くは約0.01〜20重量%(いずれも固形分比)程度
とするのが適当である。
The amount of the above polyamine aqueous solution to be used varies slightly depending on the amine value of the polyamine used, but it is usually about 0.01 to 50% by weight, preferably about 0.01 to 20% by weight (all solid content ratio) based on the water absorbent resin. It is appropriate to

上記ポリアミン水溶液は、前記多価金属塩水溶
液と同様にして用いられ、これにより同様の結果
が得られる。即ち、該ポリアミン水溶液を用いて
これを酵素吸収樹脂と接触させることにより、樹
脂内から吸収水の放出が起ると同時に樹脂の架橋
反応が起り、樹脂内部に酵素を閉じ込めることが
できる。従つて勿論、上記ポリアミン水溶液と多
価金属塩水溶液とは、両者を併用することもでき
る。
The polyamine aqueous solution is used in the same manner as the polyvalent metal salt aqueous solution, and similar results are obtained. That is, by using the polyamine aqueous solution and bringing it into contact with an enzyme-absorbing resin, a crosslinking reaction of the resin occurs simultaneously with the release of absorbed water from within the resin, making it possible to confine the enzyme within the resin. Therefore, of course, both the polyamine aqueous solution and the polyvalent metal salt aqueous solution can be used in combination.

かくして、本発明によれば、目的とする酵素の
固定化を容易に且つ良好な固定化率をもつて実施
することができ、得られる固定化酵素はその酵素
反応効率が優れると共に固定化酵素本来の活性、
機械的強度、化学的安定性、取り扱い容易性等を
有しており、酵素を利用する工業プロセスへの適
用に非常に有用である。
Thus, according to the present invention, the target enzyme can be immobilized easily and with a good immobilization rate, and the resulting immobilized enzyme has excellent enzymatic reaction efficiency and has the properties inherent to the immobilized enzyme. activity,
It has mechanical strength, chemical stability, ease of handling, etc., and is extremely useful for application to industrial processes that utilize enzymes.

実施例 以下、本発明固定化酵素の製造例を実施例とし
て挙げるが、本発明は之等実施例に限定されるも
のではない。
Examples Hereinafter, examples of producing the immobilized enzyme of the present invention will be described as examples, but the present invention is not limited to these examples.

実施例 1 ブタ腎臓より得たアミノアシラーゼ(18.6単
位/mg)10mgを、濃度0.01Mトリス−塩酸緩衝液
(PH=7.0、0.5%塩化コバルトを含む)10mlに溶
解し、これに吸水性樹脂としてポリアクリル酸塩
部分架橋物(荒川化学工業株式会社製、商品名ア
ラソーブ)0.45gを加え、充分に給水させた。こ
れを同緩衝液で洗浄することにより、固定化アミ
ノアシラーゼ剤10.7g(温重量)を得た。
Example 1 10 mg of aminoacylase (18.6 units/mg) obtained from pig kidney was dissolved in 10 ml of 0.01 M Tris-HCl buffer (PH = 7.0, containing 0.5% cobalt chloride) and added as a water-absorbing resin. 0.45 g of partially crosslinked polyacrylate (manufactured by Arakawa Chemical Co., Ltd., trade name: Arasorb) was added, and water was sufficiently supplied. By washing this with the same buffer solution, 10.7 g (warm weight) of the immobilized aminoacylase agent was obtained.

かくして得られたアミノアシラーゼ剤に、濃度
0.1MのN−アセチル−DL−メチオニン溶液(水
酸化カリウムでPH=7.0に調節した、0.2%塩化コ
バルトを含む)30mlを加え、次いで37℃で10分間
回転攪拌しながら酵素反応を行なつた後、生成し
たL−メチオニンをニンヒヂリン比色法により定
量した。
The concentration of the aminoacylase agent thus obtained is
30 ml of 0.1 M N-acetyl-DL-methionine solution (adjusted to pH 7.0 with potassium hydroxide, containing 0.2% cobalt chloride) was added, and the enzymatic reaction was then carried out at 37°C for 10 minutes with rotational stirring. Thereafter, the L-methionine produced was quantified by ninhydrin colorimetry.

その結果、得られた固定化酵素剤の活性は、
10.56単位/gを示し、これは用いた酵素の活性
の60.8%に相当した。尚、上記酵素活性の1単位
とは、1分間に1μモルのL−メチオニンを生成
する酵素活性をいう。
As a result, the activity of the obtained immobilized enzyme agent was
It showed 10.56 units/g, which corresponded to 60.8% of the activity of the enzyme used. In addition, 1 unit of the above-mentioned enzyme activity refers to the enzyme activity that produces 1 μmol of L-methionine per minute.

実施例 2 ブタ腎臓より得たアミノアシラーゼ(20.1単
位/mg)10mgを、濃度0.01Mトリス−塩酸緩衝液
(PH=7.1、1%塩化コバルトを含む)10mlに溶解
し、これに吸水性樹脂としてポリアクリル酸塩部
分架橋物(荒川化学工業株式会社製、商品名アラ
ソーブ)0.62gを加え、充分に給水させた。これ
を0.5%塩化コバルトを含む同緩衝液で洗浄する
ことにより、固定化アミノアシラーゼ剤10.8g
(温重量)を得た。
Example 2 10 mg of aminoacylase (20.1 units/mg) obtained from pig kidney was dissolved in 10 ml of 0.01 M Tris-HCl buffer (PH = 7.1, containing 1% cobalt chloride) and added as a water-absorbing resin. 0.62 g of partially crosslinked polyacrylate (manufactured by Arakawa Chemical Industries, Ltd., trade name: Arasorb) was added, and water was sufficiently supplied. By washing this with the same buffer containing 0.5% cobalt chloride, 10.8 g of immobilized aminoacylase agent was obtained.
(warm weight) was obtained.

得られた固定化酵素剤を実施例1と同様の方法
により酵素反応させ、その活性を測定したとこ
ろ、6.29単位/gを示した。これは用いた酵素の
活性の33.8%に相当した。
The obtained immobilized enzyme agent was subjected to an enzymatic reaction in the same manner as in Example 1, and its activity was measured, and it was found to be 6.29 units/g. This corresponded to 33.8% of the activity of the enzyme used.

実施例 3 植物性タンパク分解酵素パパイン(21.6単位/
mg)10mgを、0.005Mシステイン、0.01Mエチレ
ンジアミン四酢酸及び0.02Mクエン酸−リン酸緩
衝液(PH=6.2、0.5%塩化カルシウムを含む)10
mgに溶かし、これにアラソーブ0.69gを加え、充
分に吸水させた。これを同緩衝液で洗浄すること
により、固定化パパイン剤9.5g(温重量)を得
た。
Example 3 Plant proteolytic enzyme papain (21.6 units/
mg) 10mg in 0.005M cysteine, 0.01M ethylenediaminetetraacetic acid and 0.02M citric acid-phosphate buffer (PH = 6.2, containing 0.5% calcium chloride)10
mg, and 0.69 g of Arasorb was added thereto, followed by sufficient water absorption. By washing this with the same buffer solution, 9.5 g (warm weight) of immobilized papain agent was obtained.

得られた固定化パパイン剤に、上記と同一の緩
衝液に溶かした0.1Mベンゾイルアルギニンエチ
ルエステル(以下、「BAEE」という)溶液30ml
を加え、次いで37℃で10分間回転攪拌しながら酵
素反応を行なつた後、生じたベゾイルアルギニン
をアルカリで測定して定量した。
Add 30 ml of 0.1 M benzoyl arginine ethyl ester (hereinafter referred to as "BAEE") solution dissolved in the same buffer as above to the obtained immobilized papain agent.
was added, and then an enzymatic reaction was carried out at 37°C for 10 minutes with rotational stirring, and the resulting bezoyl arginine was quantified by measuring with an alkali.

その結果、固定化酵素剤の活性は4.3単位/g
を示した。これは用いた酵素の活性の19%に相当
した。尚、上記酵素活性の1単位とは、1分間に
1μモルのBAEEを加水分解により生成する酵素活
性をいう。
As a result, the activity of the immobilized enzyme agent was 4.3 units/g.
showed that. This corresponded to 19% of the activity of the enzyme used. In addition, 1 unit of the above enzyme activity means 1 unit of enzyme activity per minute.
Refers to the enzyme activity that produces 1 μmol of BAEE by hydrolysis.

実施例 4 ウシの膵臓より得たトリプシン(10単位/mg)
10mgを、0.02Mトリス−塩酸緩衝液(PH=7.5、
0.5%塩化カルシウムを含む)10mlに溶かし、こ
れにアラソーブ0.70gを加え、充分に給水させ
た。これを同緩衝液で洗浄することにより、固定
化トリプシン剤10.3g(温重量)を得た。
Example 4 Trypsin (10 units/mg) obtained from bovine pancreas
10mg was added to 0.02M Tris-HCl buffer (PH=7.5,
(containing 0.5% calcium chloride), 0.70 g of Arasorb was added thereto, and water was supplied sufficiently. By washing this with the same buffer solution, 10.3 g (warm weight) of immobilized trypsin agent was obtained.

かくして得られた固定化酵素剤を、実施例3と
同様にしてBAEEを基質として酵素反応させ、そ
の活性を測定したところ、3.26単位/gを示し
た。これは用いた酵素の活性の33.6%に相当し
た。
The thus obtained immobilized enzyme agent was subjected to an enzymatic reaction using BAEE as a substrate in the same manner as in Example 3, and its activity was measured and found to be 3.26 units/g. This corresponded to 33.6% of the activity of the enzyme used.

実施例 5 ブタの心臓より得たフマラーゼ(20.5単位/
mg)10mgを、濃度0.02Mトリス−塩酸緩衝液(PH
=7.2、0.5%塩化コバルトを含む)10mgに懸濁さ
せ、これにアラソーブ0.79gを加え、充分に吸水
させた。これを同緩衝液で洗浄することにより、
固定化フマラーゼ剤11.7g(温重量)を得た。
Example 5 Fumarase obtained from pig heart (20.5 units/
mg) 10 mg in 0.02M Tris-HCl buffer (PH
= 7.2, containing 0.5% cobalt chloride), 0.79 g of Arasorb was added thereto, and water was sufficiently absorbed. By washing this with the same buffer,
11.7 g (warm weight) of immobilized fumarase agent was obtained.

得られた固定化酵素剤に、濃度0.2MのL−リ
ンゴ酸溶液(水酸化ナトリウムでPH=7.8に調節
した、0.1%%塩化カルシウムを含む)30mlを加
え、次いで37℃で10分間回転攪拌しながらにより
酵素反応を行なつた後、生成するフマル酸を
OD240の増加により定量した。
Add 30 ml of L-malic acid solution with a concentration of 0.2 M (containing 0.1% calcium chloride, adjusted to PH = 7.8 with sodium hydroxide) to the obtained immobilized enzyme agent, and then stir with rotation at 37°C for 10 minutes. After carrying out the enzymatic reaction, the fumaric acid produced is
Quantified by increase in OD240 .

その結果得られた固定化酵素剤の活性は、0.22
単位/gを示した。これは用いた酵素の活性の
12.7%に相当した。尚、該酵素の1単位とは、1
分間に1μモルのフマル酸を生成する活性をいう。
The resulting immobilized enzyme activity was 0.22
Units/g are shown. This is based on the activity of the enzyme used.
This corresponded to 12.7%. Furthermore, 1 unit of the enzyme means 1
It refers to the activity of producing 1 μmol of fumaric acid per minute.

実施例 6 酵母より得たインベルターゼ(17.4単位/g)
10mgを、濃度0.04Mクエン酸−リン酸緩衝液(PH
=4.6、0.5%塩化カルシウムを含む)10mlに溶解
し、これにアラソーブ0.77gを加え、充分に給水
させた。これを同緩衝液で洗浄することにより、
固定化インベルターゼ剤10.6g(温重量)を得
た。
Example 6 Invertase obtained from yeast (17.4 units/g)
10mg was added to 0.04M citrate-phosphate buffer (PH
= 4.6, containing 0.5% calcium chloride), 0.77 g of Arasorb was added thereto, and water was sufficiently supplied. By washing this with the same buffer,
10.6 g (warm weight) of immobilized invertase agent was obtained.

得られた固定化酵素剤に、上記緩衝液に溶かし
た0.3Mシヨ糖溶液30mlを加え、次いで37℃で10
分間回転攪拌しながら酵素反応を行なつた後、生
じた還元糖量を、ウイルシユテツター・シユデル
法により測定した。
30 ml of 0.3M sucrose solution dissolved in the above buffer was added to the obtained immobilized enzyme preparation, and then incubated at 37°C for 10
After carrying out the enzymatic reaction with rotational stirring for one minute, the amount of reducing sugar produced was measured by the Wilschüttester-Schüdel method.

その結果、固定化酵素剤の酵素活性は、7.36単
位/gを示した。この活性は、用いた酵素の活性
の44.8%に相当した。尚、上記酵素活性の1単位
とは、1分間に1μモルのシヨ糖を加水分解する
酵素活性をいう。
As a result, the enzyme activity of the immobilized enzyme agent was 7.36 units/g. This activity corresponded to 44.8% of the activity of the enzyme used. In addition, 1 unit of the above-mentioned enzyme activity refers to the enzyme activity that hydrolyzes 1 μmol of sucrose per minute.

実施例 7 ブタ膵臓より得たアミノアシラーゼ(9.0単
位/mg)10mgを、ポリアリルアミン(分子量約1
万)を固形分濃度換算で1%含有する0.01Mトリ
ス−塩酸緩衝液(PH=7.0)10mlに溶解し、これ
にアラソーブ0.56gを加え、充分に吸水させた。
これを同緩衝液で洗浄することにより、固定化ア
ミノアシラーゼ剤12.56g(温重量)を得た。
Example 7 10 mg of aminoacylase (9.0 units/mg) obtained from porcine pancreas was mixed with polyallylamine (molecular weight approx.
) was dissolved in 10 ml of 0.01 M Tris-HCl buffer (PH = 7.0) containing 1% solid content, 0.56 g of Arasorb was added thereto, and water was thoroughly absorbed.
By washing this with the same buffer solution, 12.56 g (warm weight) of the immobilized aminoacylase agent was obtained.

得られた固定化酵素剤を実施例と同様の方法に
より酵素反応させ、その活性を測定したところ、
3.0単位/gを示した。これは用いた酵素の活性
の42.0%に相当した。
The obtained immobilized enzyme agent was subjected to an enzymatic reaction in the same manner as in the example, and its activity was measured.
It showed 3.0 units/g. This corresponded to 42.0% of the activity of the enzyme used.

実施例 8 ブタ膵臓より得たアミノアシラーゼ(18.3単
位/mg)10mgを、ポリビニルアミン(分子量約10
〜12万)を固形分濃度換算で0.02%含有する
0.01Mトリス−塩酸緩衝液(PH=7.0)10mgに溶
解し、これにアラソーブ0.38gを加え、充分に吸
水させた。これを同緩衝液で洗浄することによ
り、固定化アミノアシラーゼ剤13.8g(温重量)
を得た。
Example 8 10 mg of aminoacylase (18.3 units/mg) obtained from porcine pancreas was added to polyvinylamine (molecular weight approximately 10
Contains 0.02% solid content (~120,000)
It was dissolved in 10 mg of 0.01M Tris-HCl buffer (PH=7.0), 0.38 g of Arasorb was added thereto, and water was sufficiently absorbed. By washing this with the same buffer, 13.8 g (warm weight) of the immobilized aminoacylase agent was obtained.
I got it.

得られた固定化酵素剤を実施例1と同様の方法
により酵素反応させ、その活性を測定したとこ
ろ、7.38単位/gを示した。これは用いた酵素の
活性の55.6%に相当した。
The obtained immobilized enzyme agent was subjected to an enzymatic reaction in the same manner as in Example 1, and its activity was measured, and it was found to be 7.38 units/g. This corresponded to 55.6% of the activity of the enzyme used.

Claims (1)

【特許請求の範囲】 1 酵素の水性液を分子中にカルボキシル基を有
する吸水性樹脂に吸収させた後、該樹脂を多価金
属塩水溶液及びポリアミン水溶液から選ばれる少
なくとも一種と接触させて水の放出及び架橋反応
を行なわせることを特徴とする固定化酵素剤の製
造方法。 2 吸水性樹脂が、デンプン−アクリロニトリル
グラフト共重合体の加水分解物、デンプン−アク
リル酸グラフト共重合体、デンプン−メタクリル
酸グラフト共重合体、ポリアクリル酸塩部分架橋
物及びポリメタクリル酸塩部分架橋物からなる群
から選択される少なくとも一種である特許請求の
範囲第1項に記載の方法。
[Scope of Claims] 1. After absorbing an aqueous enzyme solution into a water-absorbing resin having a carboxyl group in the molecule, the resin is brought into contact with at least one selected from a polyvalent metal salt aqueous solution and a polyamine aqueous solution to absorb water. 1. A method for producing an immobilized enzyme agent, which comprises performing release and crosslinking reactions. 2 The water-absorbing resin is a hydrolyzate of starch-acrylonitrile graft copolymer, starch-acrylic acid graft copolymer, starch-methacrylic acid graft copolymer, partially crosslinked polyacrylate, and partially crosslinked polymethacrylate The method according to claim 1, wherein the at least one kind selected from the group consisting of:
JP14882585A 1985-07-05 1985-07-05 Production of immobilized enzyme agent Granted JPS6211093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14882585A JPS6211093A (en) 1985-07-05 1985-07-05 Production of immobilized enzyme agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14882585A JPS6211093A (en) 1985-07-05 1985-07-05 Production of immobilized enzyme agent

Publications (2)

Publication Number Publication Date
JPS6211093A JPS6211093A (en) 1987-01-20
JPH0583234B2 true JPH0583234B2 (en) 1993-11-25

Family

ID=15461567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14882585A Granted JPS6211093A (en) 1985-07-05 1985-07-05 Production of immobilized enzyme agent

Country Status (1)

Country Link
JP (1) JPS6211093A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2665593B2 (en) * 1988-01-07 1997-10-22 和光純薬工業株式会社 New method for producing modified enzyme and new modified enzyme
AU2568797A (en) * 1996-04-12 1997-11-07 Novo Nordisk A/S Enzyme-containing granules and process for the production thereof

Also Published As

Publication number Publication date
JPS6211093A (en) 1987-01-20

Similar Documents

Publication Publication Date Title
Tosa et al. Immobilization of enzymes and microbial cells using carrageenan as matrix
Krajewska et al. Urease immobilized on chitosan membrane: preparation and properties
US4478976A (en) Water-insoluble protein material, its preparation and its use
FI93124C (en) Procedure for immobilization of dissolved egg white
Akgöl et al. Reversible immobilization of urease onto Procion Brown MX-5BR-Ni (II) attached polyamide hollow-fibre membranes
GB2118949A (en) Method of immobilizing enzymatically active materials
CN1962861A (en) Combined immobilization method applied to biocatalytic conversion
JPH0583234B2 (en)
US5093253A (en) Method for microbial immobilization by entrapment in gellan gum
Pitcher Introduction to immobilized enzymes
Çevik et al. Immobilization of urease on copper chelated EC-Tri beads and reversible adsorption
EP0340378B1 (en) Method for microbial immobilization
JPS61181376A (en) Production of immobilized biologically active compound
Hartmeier Methods of immobilization
Johnson et al. Activity of enzyme trypsin immobilized onto macroporous poly (epoxy-acrylamide) cryogel
CA1203187A (en) Immobilization of invertase on polyethylenimine- coated cotton cloth
JPH0517835B2 (en)
JPH0583236B2 (en)
JPH03133386A (en) Enzymatic reaction using immobilized bacterium
JPH0320230B2 (en)
JPS6087787A (en) Production of immobilized enzyme
Kennedy et al. Immobilisation of biocatalysts by metal-link/chelation processes
JPS5914790A (en) Immobilized enzyme and its preparation
JPS59154988A (en) immobilized enzyme
JPS59109173A (en) Preparation of immobilized biocatalyst