JPH0581588A - Preamplifier for otdr device - Google Patents

Preamplifier for otdr device

Info

Publication number
JPH0581588A
JPH0581588A JP23978291A JP23978291A JPH0581588A JP H0581588 A JPH0581588 A JP H0581588A JP 23978291 A JP23978291 A JP 23978291A JP 23978291 A JP23978291 A JP 23978291A JP H0581588 A JPH0581588 A JP H0581588A
Authority
JP
Japan
Prior art keywords
preamplifier
circuit
amplifier circuit
compound semiconductor
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23978291A
Other languages
Japanese (ja)
Inventor
Yasuki Mikamura
泰樹 御神村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP23978291A priority Critical patent/JPH0581588A/en
Publication of JPH0581588A publication Critical patent/JPH0581588A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress 'blind over edging' phenomena caused by frequency dispersion peculiar to a compound semiconductor. CONSTITUTION:The amplifier circuit 101 of the preamplifier consists of the compound semiconductor FET and it is the amplifier of a trans impedance type or a high impedance type. The feature of the preamplifier is that the equalization circuit 107 of RC constitution are provided between the light detecting element and the input of the amplifier circuit. 'VB' shows being connected with a power source terminal for a bias. The equalization circuit 107 consists of resistance R1 to R4 and a capacitor C4, e.g. When a frequency rises, the impedance of the capacitor C4 is decreased and current flowing resistance R3 is increased. Thus, the output v1 of the equalization circuit becomes larger and compensation is executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光TDR(OTDR)
装置などの光計測器のフロントエンドに用いられるOT
DR装置用前置増幅器に関し、特に、化合物半導体を用
いた高速動作の前置増幅器に関するものである。
The present invention relates to an optical TDR (OTDR)
OT used for the front end of optical measuring instruments such as devices
The present invention relates to a preamplifier for a DR device, and particularly to a high-speed preamplifier using a compound semiconductor.

【0002】[0002]

【従来の技術】OTDR装置は、光ファイバケーブルの
各種損失(伝送損失、接続損失など)及び障害点の位置
(破断点)の測定を行うための計測器である。これらに
測定は、インパルス状の光を光ファイバケーブルに入射
し、戻り光の強度を測定することでなされる。その代表
的な測定結果は、図6に示すように、光ファイバへの光
入射時の端面反射により生じる強いインパルス(図6の
左側)があらわれ、その後光ファイバケーブル内の散
乱、反射などによる微弱な信号が続くというものになっ
ている。
2. Description of the Related Art An OTDR device is a measuring instrument for measuring various types of loss (transmission loss, connection loss, etc.) of an optical fiber cable and the position of a failure point (break point). The measurement is performed by injecting impulse-shaped light into the optical fiber cable and measuring the intensity of the returned light. As shown in FIG. 6, a typical measurement result shows a strong impulse (left side in FIG. 6) caused by end face reflection when light is incident on the optical fiber, and then weak due to scattering and reflection in the optical fiber cable. It is supposed to be followed by various signals.

【0003】OTDR装置に用いられる前置増幅器に
は、光通信装置と同様、トランスインピーダンス型(図
7(a)参照),ハイインピーダンス型(図7(b)参
照)と呼ばれている回路構成のものが用いられている。
これらについては、例えば、「K.Ogawa:Considerations
for Optical reciever design,IEEE Journal onSelect
ed Areas in Comunications.Vol.SAC-1,No.3,1983」に
記載されている。また、図8には、図7(a)のトラン
スインピーダンス型増幅回路を化合物半導体FETで構
成した場合の回路図が示されている。
Like the optical communication device, the preamplifier used in the OTDR device has a circuit configuration called a transimpedance type (see FIG. 7A) or a high impedance type (see FIG. 7B). Is used.
About these, for example, "K.Ogawa: Considerations
for Optical reciever design, IEEE Journal on Select
ed Areas in Comunications. Vol. SAC-1, No. 3, 1983 ". Further, FIG. 8 shows a circuit diagram in the case where the transimpedance type amplifier circuit of FIG. 7A is configured by a compound semiconductor FET.

【0004】[0004]

【発明が解決しようとする課題】化合物半導体FET
は、化合物半導体のもつ高いキャリア易動度により、非
常に高速であるが、図9に示すようにそのドレインコン
ダクタンスに周波数分散を持つという欠点がある。この
周波数分散の生じる周波数領域は1kHz〜100kH
z程度であり、これは、FETのチャネル基板間界面や
チャネル表面に存在するトラップ準位などの影響である
といわれている。このような化合物半導体FETで構成
した増幅回路では、その電圧利得に周波数分散が生じ
る。そのため、図7(a)のトランスインピーダンス型
増幅回路では、図10に示すような電圧利得特性とな
る。したがって、この増幅回路の変換利得を示すトラン
スインピーダンス(出力電圧VOUT /入力電流IPD)に
も、図11に示すような周波数分散が生じる。
PROBLEM TO BE SOLVED BY THE INVENTION Compound semiconductor FET
Is extremely fast due to the high carrier mobility of the compound semiconductor, but has the drawback that its drain conductance has frequency dispersion as shown in FIG. The frequency range in which this frequency dispersion occurs is 1 kHz to 100 kHz.
It is about z, and it is said that this is an effect of the trap level existing on the interface between the channel substrates of the FET and the channel surface. In an amplifier circuit composed of such a compound semiconductor FET, frequency dispersion occurs in its voltage gain. Therefore, the transimpedance type amplifier circuit of FIG. 7A has a voltage gain characteristic as shown in FIG. Therefore, the frequency dispersion as shown in FIG. 11 also occurs in the transimpedance (output voltage V OUT / input current I PD ) indicating the conversion gain of this amplifier circuit.

【0005】このような増幅回路で構成された前置増幅
器に図12のようなステップ状のパルス光を入力する
と、その出力電圧VOUT には、「すそひき」(図13の
プロット)が生じる。これは周波数分散が原因であり、
周波数分散がないときは良好な立上がりを示す(図13
の実線)。OTDR装置では図6のような測定結果とな
るのであるが、光ファイバへの光入射時に入射端面のフ
レネル反射によって生じる強いインパルス(図6の左
側)によって「すそひき」が生じる。この「すそひき」
は図13に示したように数μS程度続くため、インパル
スに続く微弱な信号の波形に大きな影響を与え、「すそ
ひき」がおさまるまで測定ができない、という問題があ
った。
When a step-like pulsed light as shown in FIG. 12 is input to the preamplifier constituted by such an amplifier circuit, the output voltage V OUT of the preamplifier has a “tail” (plot in FIG. 13). .. This is due to frequency dispersion,
A good rise is shown when there is no frequency dispersion (Fig. 13).
Solid line). With the OTDR device, the measurement results are as shown in FIG. 6, but when light is incident on the optical fiber, a strong impulse (left side in FIG. 6) caused by Fresnel reflection of the incident end face causes “tailing”. This "Susukiki"
As shown in FIG. 13, since it lasts for several μS, it has a great influence on the waveform of the weak signal following the impulse, and there is a problem that measurement cannot be performed until the “tailing” stops.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明のOTDR装置用前置増幅器は、光ファイバ
からの光を電気信号に変換する光検出素子と、化合物半
導体FETを含んで構成され、光検出素子からの電気信
号を増幅して出力する増幅回路と、光検出素子と増幅回
路の入力との間に、増幅回路のもつ周波数分散を補償す
るRC構成の等化回路とを備えたことを特徴とする。
In order to solve the above problems, a preamplifier for an OTDR device of the present invention includes a photodetector for converting light from an optical fiber into an electric signal and a compound semiconductor FET. An amplification circuit configured to amplify and output an electric signal from the photodetection element and an equalization circuit having an RC configuration for compensating the frequency dispersion of the amplification circuit between the photodetection element and the input of the amplification circuit. It is characterized by having.

【0007】[0007]

【作用】化合物半導体FETは、非常に高速であるが、
周波数分散を有する。そのため、このFETで構成され
た増幅回路は周波数分散がある。
Function: The compound semiconductor FET is very fast,
Has frequency dispersion. Therefore, the amplifier circuit composed of this FET has frequency dispersion.

【0008】本発明のOTDR装置用前置増幅器では、
光検出素子と増幅回路の入力との間の等化回路によっ
て、光検出素子からの電気信号は、この等化回路により
増幅回路のもつ周波数分散の補償がなされ、増幅回路で
増幅されて出力される。
In the preamplifier for the OTDR device of the present invention,
The equalization circuit between the photodetector and the input of the amplifier circuit compensates the electrical signal from the photodetector for the frequency dispersion of the amplifier circuit, and the amplified signal is amplified and output by the amplifier circuit. It

【0009】[0009]

【実施例】本発明の実施例を図面を参照して説明する。
図1には、本発明のOTDR装置用前置増幅器の基本構
成が示されている。この前置増幅器の増幅回路101
は、化合物半導体FETで構成され、トランスインピー
ダンス型又はハイインピーダンス型の増幅器である。図
1の前置増幅器は、光検出素子と増幅回路の入力との間
に、RC構成の等化回路107が設けられている点に特
徴を有する。ここで、図の「VB 」はバイアス用電源端
子につながれていることを示している。等化回路107
は、例えば、図1のような抵抗R1 ,R2 ,R3
4 ,コンデンサC4 とで構成され、図2の等価回路で
あらわされる。ハイインピーダンス型の増幅器である場
合、フォトダイオードの光電流IPDと等化回路の出力v
1との関係は、
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a basic configuration of a preamplifier for an OTDR device according to the present invention. Amplifier circuit 101 of this preamplifier
Is a transimpedance-type or high-impedance-type amplifier which is composed of a compound semiconductor FET. The preamplifier shown in FIG. 1 is characterized in that an equalizer circuit 107 having an RC structure is provided between the photodetector and the input of the amplifier circuit. Here, “V B ” in the figure indicates that it is connected to the bias power supply terminal. Equalization circuit 107
Is, for example, resistors R 1 , R 2 , R 3 and
It is composed of R 4 and capacitor C 4, and is represented by the equivalent circuit of FIG. In the case of a high impedance type amplifier, the photocurrent I PD of the photodiode and the output v of the equalization circuit
The relationship with 1 is

【0010】[0010]

【数1】 [Equation 1]

【0011】という伝達関数であらわされる。即ち、周
波数が高くなるとコンデンサC4 のインピーダンスが減
少し、抵抗R3 に流れる電流i3 が増加する。このた
め、等化回路の出力v1 が大きくなる。これによって補
償がなされる。
It is represented by the transfer function That is, as the frequency increases, the impedance of the capacitor C 4 decreases and the current i 3 flowing through the resistor R 3 increases. Therefore, the output v 1 of the equalization circuit becomes large. This provides compensation.

【0012】これらの抵抗,コンデンサを適当な値にす
ることでフォトダイオードPDに入射した光は、電気信
号(光電流iPD)に変換され、等化回路107により増
幅回路101のもつ周波数分散が補償され、増幅回路1
01で増幅され周波数特性が平坦化されて出力される。
By setting these resistors and capacitors to appropriate values, the light incident on the photodiode PD is converted into an electric signal (photocurrent i PD ), and the frequency dispersion of the amplifier circuit 101 is converted by the equalization circuit 107. Compensated and amplified circuit 1
The signal is amplified by 01, the frequency characteristic is flattened, and output.

【0013】増幅回路101を、トランスインピーダン
ス型とし図8の化合物半導体FETで構成された増幅部
101Aで製作したものが、図3に示されている。この
図において、増幅部101Aの電圧利得|−A|は、直
流で29dB、1MHzで26dBであり、また、全入
力容量は1pFである。フィードバック抵抗Rf は30
kΩ、等化回路107の抵抗R1 は10kΩ、抵抗
2 ,R3 は5kΩ、抵抗R4 は37kΩ、コンデンサ
4 は40pFである。
A transimpedance type amplifier circuit 101 is shown in FIG. 3, which is manufactured by the amplifier section 101A composed of the compound semiconductor FET shown in FIG. In this figure, the voltage gain | -A | of the amplifier 101A is 29 dB at direct current and 26 dB at 1 MHz, and the total input capacitance is 1 pF. Feedback resistance Rf is 30
kΩ, the resistance R 1 of the equalization circuit 107 is 10 kΩ, the resistances R 2 and R 3 are 5 kΩ, the resistance R 4 is 37 kΩ, and the capacitor C 4 is 40 pF.

【0014】図3の前置増幅器について、増幅回路のト
ランスインピーダンスの測定結果が図4に示されてい
る。また、図12と同様のステップ状のパルス光に対す
る応答特性が図5に示されている。これらの図の比較か
らも明らかなように、図3の前置増幅器では、等化回路
107により周波数分散が補償されほぼ平坦なものにな
り、パルスの応答特性が改善されている。
FIG. 4 shows the results of measuring the transimpedance of the amplifier circuit for the preamplifier of FIG. Further, FIG. 5 shows response characteristics to stepwise pulsed light similar to FIG. As is clear from the comparison of these figures, in the preamplifier of FIG. 3, the equalization circuit 107 compensates for the frequency dispersion and makes it substantially flat, and the pulse response characteristics are improved.

【0015】この前置増幅器に、光ファイバから図6の
ような光が入射しても、「すそひき」がおさえられてい
るので、光ファイバへの光入射時に生じる強いインパル
スの影響はなく、また、増幅部101Aは、化合物半導
体FETで構成されているので、高速動作となってい
る。そのため、インパルスに続く微弱な信号の波形が良
好に測定される。
Even if light as shown in FIG. 6 is incident on the preamplifier from the optical fiber, since "tailing" is suppressed, there is no influence of a strong impulse generated when the light is incident on the optical fiber. Further, since the amplification unit 101A is composed of the compound semiconductor FET, it operates at high speed. Therefore, the waveform of the weak signal following the impulse can be measured well.

【0016】[0016]

【発明の効果】以上の通り本発明によれば、等化回路に
より増幅回路のもつ周波数分散が補償されるので、周波
数分散の影響が押さえられ、出力の立上がり時の「すそ
ひき」を抑制することができる。そのため、光ファイバ
への光入射時に生じるインパルスの影響が押さえられる
ので、化合物半導体FETの持つ欠点がカバーされ、そ
の高速性が利用でき、OTDR装置などによる光ファイ
バについての各種測定を良好に行うことができる。
As described above, according to the present invention, the frequency dispersion of the amplifier circuit is compensated by the equalization circuit, so that the influence of the frequency dispersion is suppressed and the "tailing" at the rise of the output is suppressed. be able to. Therefore, the influence of the impulse generated when light is incident on the optical fiber can be suppressed, the drawbacks of the compound semiconductor FET can be covered, its high speed can be used, and various measurements of the optical fiber by the OTDR device can be performed well. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の前置増幅器の基本構成図。FIG. 1 is a basic configuration diagram of a preamplifier of the present invention.

【図2】等化回路を等価的にあらわした図。FIG. 2 is a diagram equivalently showing an equalization circuit.

【図3】本発明の前置増幅器を図8の増幅部で構成した
ときの構成図。
FIG. 3 is a configuration diagram when the preamplifier of the present invention is configured by the amplification unit of FIG. 8.

【図4】トランスインピーダンス特性図。FIG. 4 is a transimpedance characteristic diagram.

【図5】ステップパルスに対する応答特性図。FIG. 5 is a response characteristic diagram for a step pulse.

【図6】OTDR装置の代表的な測定結果を示す図。FIG. 6 is a diagram showing a typical measurement result of an OTDR device.

【図7】従来の前置増幅器の構成図。FIG. 7 is a configuration diagram of a conventional preamplifier.

【図8】トランスインピーダンス型増幅回路を化合物半
導体FETで構成した場合の回路図。
FIG. 8 is a circuit diagram when a transimpedance type amplifier circuit is composed of compound semiconductor FETs.

【図9】化合物半導体FETのドレインコンダクタンス
の周波数分散を示す図。
FIG. 9 is a diagram showing frequency dispersion of drain conductance of a compound semiconductor FET.

【図10】化合物半導体FETで構成した増幅回路の電
圧利得の周波数分散を示す図。
FIG. 10 is a diagram showing frequency dispersion of voltage gain of an amplifier circuit composed of compound semiconductor FETs.

【図11】図11の増幅回路のトランスインピーダンス
特性図。
11 is a transimpedance characteristic diagram of the amplifier circuit of FIG.

【図12】入力するステップパルスを示す図。FIG. 12 is a diagram showing input step pulses.

【図13】図11の増幅回路のステップパルスに対する
応答特性図。
13 is a response characteristic diagram of the amplifier circuit of FIG. 11 with respect to a step pulse.

【符号の説明】[Explanation of symbols]

PD…フォトダイオード,101…増幅回路,107…
等化回路
PD ... Photodiode, 101 ... Amplification circuit, 107 ...
Equalization circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバからの光を電気信号に変換す
る光検出素子と、 化合物半導体FETを含んで構成され、前記光検出素子
からの前記電気信号を増幅して出力する増幅回路と、 前記光検出素子と前記増幅回路の入力との間に、前記増
幅回路のもつ周波数分散を補償するRC構成の等化回路
とを備えたことを特徴とするOTDR装置用前置増幅
器。
1. A photodetector for converting light from an optical fiber into an electric signal; and an amplifier circuit including a compound semiconductor FET for amplifying and outputting the electric signal from the photodetector, A preamplifier for an OTDR device, comprising an RC-equalization equalizer circuit for compensating the frequency dispersion of the amplifier circuit between the photodetector and the input of the amplifier circuit.
JP23978291A 1991-09-19 1991-09-19 Preamplifier for otdr device Pending JPH0581588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23978291A JPH0581588A (en) 1991-09-19 1991-09-19 Preamplifier for otdr device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23978291A JPH0581588A (en) 1991-09-19 1991-09-19 Preamplifier for otdr device

Publications (1)

Publication Number Publication Date
JPH0581588A true JPH0581588A (en) 1993-04-02

Family

ID=17049811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23978291A Pending JPH0581588A (en) 1991-09-19 1991-09-19 Preamplifier for otdr device

Country Status (1)

Country Link
JP (1) JPH0581588A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005011116A1 (en) * 2003-07-25 2005-02-03 Sony Corporation Mems type resonator, process for fabricating the same and communication unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005011116A1 (en) * 2003-07-25 2005-02-03 Sony Corporation Mems type resonator, process for fabricating the same and communication unit

Similar Documents

Publication Publication Date Title
KR100900205B1 (en) Wide dynamic range transimpedance amplifier
US4540952A (en) Nonintegrating receiver
US4574249A (en) Nonintegrating lightwave receiver
US4764732A (en) Switchable mode amplifier for wide dynamic range
US6057738A (en) High dynamic range optical receiver preamplifier
US5166819A (en) Front end for a broadband optical receiver
EP1041750A3 (en) Optical receiving circuit and optical communication device
DE69026720D1 (en) Fiber optic transimpedance receiver
US8867929B2 (en) Optical receiver using single ended voltage offset measurement
US5111324A (en) Optical receivers
US4647762A (en) Optical receiver
EP0609018B1 (en) Apparatus for measuring optical power in an optical receiver or the like
US5123732A (en) Optical time domain reflectometer and current voltage converter for use therein
WO2014010515A1 (en) Light receiver and light-receiving current monitoring method
US4139767A (en) Photodetector with improved signal-to-noise ratio
JP2933657B2 (en) Current limiting circuit and optical receiver using the current limiting circuit
JPH0581588A (en) Preamplifier for otdr device
JPH0581586A (en) Preamplifier for otdr device
JPH0581587A (en) Preamplifier for otdr device
JPH0581585A (en) Preamplifier for otdr device
US5142401A (en) Apparatus and method for a linear, wideband sensitive optical receiver
JPH05136633A (en) Input stage of optical receiver
JPH04225630A (en) Wide dynamic range optical receiver
JPH05227104A (en) Light receiver
CN208313429U (en) A kind of Electro-Optical Sensor Set of optional channel gain range